
Evolutionary Improvement of Search Queries and Its
Parameters

Pavel Krömer, Václav Snášel, Jan Platoš
Department of Computer Science,

VŠB - Technical University of Ostrava
17. listopadu 15, 708 33

Ostrava-Poruba, Czech Republic
Email:{pavel.kromer, vaclav.snasel, jan.platos}@vsb.cz

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs)

Scientific Network for Innovation and Research Excellence,
WA, USA

Email: ajith.abraham@ieee.org

Abstract—The formulation of user queries is an important part
of the information retrieval process. In the complex environment
of the World Wide Web and other large data collections, it is
often not easy for the users to express their information needs
in an optimal way. In this paper, we investigate evolutionary
algorithms (in particular genetic programming) as a tool for the
optimization of user queries and seek for its good settings.

Keywords-Evolutionary algorithms, genetic programming,
query optimization.

I. INTRODUCTION

In this paper, we describe the usage of a powerful evo-
lutionary optimization method, the genetic programming, for
optimization of search queries. We investigate Web search as
a fuzzy information retrieval task and create a test data set to
evaluate and tune the algorithm. In a series of computational
experiments, we seek for good parameters of the optimization
algorithm that would provide above average results in terms
of used fitness function.

The goal of evolutionary query optimization is to improve
user queries on the basis of a user profile covering the informa-
tion needs of a particular user. We focus on the implementation
of genetic programming and its settings and emulate the user
profile by a ”model query” – a query that marks a fuzzy set
of relevant documents in the collection.

Evolutionary algorithms, as well as their particular imple-
mentations, have a number of high- and low-level modifica-
tions and variants. They have been developed and tuned for
different application areas; however, no ultimate general setup
of evolutionary optimization has been found. No variant or
particular setup of the evolutionary computation seems to be
a silver bullet for optimization tasks. The situation has been
paraphrased by the “no free lunch“ theorem which states [16]
that for any algorithm, any increased performance over one
class of problems is paid for in performance over another class.
The no free lunch theorem advocates the experimental search
for good settings of deployed EA for different application
domains.

II. INFORMATION RETRIEVAL

The area of information retrieval (IR) is a branch of
computer science dealing with storage, maintenance and search

in large amounts of data. The data could be in different formats,
e.g. textual, visual, audio or multimedia documents [1].

An information retrieval system (IRS) is a software tool
serving for data representation, storage and subsequent infor-
mation search. The amount of documents contained in data
collections managed by IRS is usually very large and the task
of easy, efficient and accurate information search is specially
challenging.

An IR model is a formal background defining internal
document representation, query language and document–query
matching mechanism. Consequently, the model determines
document indexing procedure, result ordering and other aspects
of particular information retrieval system. In this study, we
have implemented extended Boolean IR model.

A. Extended Boolean IR model

Extended Boolean model of IR is based on fuzzy set theory
and fuzzy logic. Documents are interpreted as fuzzy sets
of indexed terms, assigning to every term contained in the
document particular weight from the range [0, 1] expressing the
degree of significance of the term for document representation.
Hence documents are modeled more accurate than in classic
Boolean IR model. Formal description of a document di and
full collection D in an extended Boolean IR model is shown
in (1) and (2) respectively.

di = (ti1, ti2, . . . , tim), ∀ tij ∈ [0, 1] (1)

D =


t11 t12 · · · t1m
t21 t22 · · · t2m
...

...
. . .

...
tn1 tn2 · · · tnm

 (2)

Another feature of extended Boolean IR model is fuzzy
extension of query language aiming at providing apparatus
to express more flexible and accurate search requests. Two
techniques are being used for query enhancement query term
weighting using numeric weights or linguistic variables and
Boolean conjunction parameterization for expressing relation-
ships among the extremes of AND, OR, NOT etc. [2].

Choosing appropriate indexing procedure is essential for
exploitation of extended Boolean IR model benefits. Internal

documentary collection model should be as accurate as possi-
ble snapshot of the collection of textual documents in natural
language and at the same time a basis for efficient and practical
search. Fuzzy indexing function is defined as shown in (3),
where D stands for the set of all documents and T for set of
all indexed terms.

F : D × T → [0, 1] (3)

Donald Kraft proposed in [2] the usage of Gerard Saltons
tf × idft indexing formula introduced for vector space IR
model as document indexing mechanism in extended Boolean
IR model.

Query language is in extended Boolean IR model enhanced
with the possibility of weighting query terms in order to
express different importance of those in search request and
by weighting (parameterizing) aggregation operators to soften
or blur their impact on query evaluation [1], [2]. Consider
Q to be the set of user queries over a collection then the
weight of term t in query q is denoted as a(q, t) satisfying
a : Q × T → [0, 1]. To evaluate atomic query of one
term, stating therefore only one search criterion, will be used
function g : [0, 1]× [0, 1] → [0, 1]. The value of g(F (d, t), a)
is called retrieval status value (RSV). For RSV enumeration
is crucial the interpretation of query term weight a. The most
used interpretations are to see query term weight as importance
weight, threshold or ideal document description [1], [2].

In this study, we adopt the threshold interpretation defined
in (4) and illustrated in Fig. 1. The functions P (a) and
Q(a) are coefficients used for tuning the threshold curve. An
example of P (a) and Q(a) could be as follows: P (a) = 1+a

2

and Q(a) = 1−a2

4 . Acording to the threshold interpretation, an
atomic query containing term t of the weight a is a request to
retrieve documents having F (d, t) equal or greater to a. For
documents satisfying this condition will be rated with high
RSV and contrariwise documents having F (d, t) smaller than
a will be rated with small RSV.

g(F (d, t), a) =

{
P (a)

F (d,t)
a

for F (d, t) < a

P (a) +Q(a)
F (d,t)−a

1−a
for F (d, t) ≥ a

(4)

Fig. 1: g(F (d, t), a) according to (4).

B. IR effectiveness evaluation

Precision P and recall R are among the most used IR
effectiveness measures. They are defined in (5), where REL
stands for the set of all relevant documents and RET for

the set of all retrieved documents. Precision can be then
understood as the probability of retrieved document to be
relevant and recall can be seen as the probability of retrieving
relevant document.

P =
|REL

⋂
RET |

|RET |
R =

|REL
⋂
RET |

|REL|
(5)

Precision and recall in the extended Boolean IR model can
be defined using sigma count ‖A‖ [3]:

ρ(X|Y) =

{
‖X∩Y ‖
‖Y ‖ ‖Y ‖ 6= 0

1 ‖Y ‖ = 0
(6)

P = ρ(REL|RET) R = ρ(RET |REL) (7)

For easier IR effectiveness evaluation were developed mea-
sures combining precision and recall into one scalar value.
F-score F [4] is among the most used scalar combinations of
P and R.

F =
2PR

(P +R)
(8)

III. EVOLUTIONARY ALGORITHMS

Evolutionary computation or evolutionary algorithms is a
common label for a group of iterative stochastic search and
optimization methods based on programmatical emulation of
successful optimization strategies observed in nature [5], [6].

A. Genetic algorithms

Genetic algorithms are popular variant of evolutionary algo-
rithms. They are based on programmatical implementation of
genetic evolution and they emphasize selection and crossover
as the most important operations in the whole evolutionary
optimization process [7], [6].

Genetic algorithms evolve a population of chromosomes
representing potential problem solutions encoded into suitable
data structures. The evolution is implemented by iterative
application of genetic operators modifying the chromosomes,
i.e. the encoded form of problem solutions. Proper encoding
is vital for the evolutionary search effectiveness. It defines the
genotype, the space of all encoded problem solutions, which is
different from phenotype, the space of all problem solutions.
Genetic algorithms explore the genotype of investigated prob-
lem and the size and shape of problem genotype define its
fitness landscape.

B. Genetic programming

Problem representation and chromosome structure is one
of the key characteristics of genetic algorithms. Linear fixed
length chromosomes consisting of 0s and 1s (or other dis-
crete alphabets) are not very suitable for solving problems in
artificial intelligence or for search queries optimization. This
kind of problems requires rather hierarchical structures with
unequal and unknown lengths [7], [8]. Genetic programming
is an extension to GA allowing work with hierarchical, often
tree-like, chromosomes with unlimited length [7], [8].

1 Define objective (fitness) function and problem encoding
2 Encode initial population P of possible solutions as fixed length strings
3 Evaluate chromosomes in initial population using objective function
4 while Termination criteria not satisfied do
5 Apply selection operator to select parent chromosomes for

reproduction: sel(Pi)→ parent1, sel(Pi)→ parent2

6 Apply crossover operator on parents with respect to crossover
probability PC to produce new chromosomes:
cross(PC , parent1, parent2)→ {offspring1, offspring2}

7 Apply mutation operator on offspring chromosomes with respect to
mutation probability PM :
mut(PM , offspring1)→ offspring1,
mut(PM , offspring2)→ offspring2

8 Evaluate offspring chromosomes:
fit(offspring1)→ offspringfit1 ,
fit(offspring2)→ offspringfit2

9 Create new population from current population and offspring
chromosomes: migrate(offspring1, offsprig2, Pi)→ Pi+1

10 end

Algorithm 1: A summary of genetic algorithm

Genetic programming has been introduced as a tool to
evolve whole computer programs and represented a step to-
wards adaptable computers that could solve problems without
being programmed explicitely [9]. Moreover, genetic program-
ming can be used to develop solutions in the field of machine
learning, symbolic processing or any other domain that can
formulate its solutions by the means of parseable symbolic
expression. Genetic programming allows efficient evolution
of such symbolic expressions with well defined syntax and
grammar.

The chromosomes take in GP form of hierarchical variable
size expressions, point labeled structure trees. The trees are
constructed from nodes of two types, terminals and functions.
More formally, a GP chromosome is a symbolic expression
created from terminals t from the set of all terminals T and
functions f from the set of all functions F satisfying the
recursive definition [9]:

1) ∀t ∈ T : t is correct expression
2) ∀f ∈ F : f(e1, e2, . . . , en) is correct expression if f ∈

F and e+1, . . . , en are correct expressions. The function
arity(f) represents the arity of f .

3) there are no other correct expressions
GP chromosomes are evaluated by recursive execution of

instructions corresponding to tree nodes [9]. Terminal nodes
are evaluated directly (e.g. by reading an input variable) and
functions are evaluated after left-to-right dept-first evaluation
of their paramaters.

Genetic operators are applied on the nodes in the tree-
shaped chromosomes. Crossover operator is implemented as
mutual exhchange of randomly selected subtrees of the parent
chromosomes. For an example see Fig. 2. Mutation has to
modify the chromosomes by pseudorandom arbitrary changes
in order to prevent premature convergence and broaden the
coverage of fitness landscape.

Genetic programming enables efficient evolution of sym-
bolic expressions, even whole computer programs. However,

+

* /

x -

- z

x y

+ cos

x x -

y x

+

/ *

exp sin

sin

+

x y

*

x exp

*

y z

y x

Fig. 2: Crossover in genetic programming.

the original design and the closure property are limiting factors
to the algorithm.

IV. EVOLUTIONARY APPROACHES TO SEARCH
OPTIMIZATION

Evolutionary optimizations were applied to document in-
dexing, query representation and optimization, matching and
ranking function optimization and user profile improvements.

The optimization of IR ranking function was described e.g.
in [10], [11]. The studies describe in detail the importance of
suitable ranking function and propose an automated GP based
ranking function improvement mechanism for consensual and
personalized IR systems. The optimization exploits document
content and structure and it is demonstrated on vector space
model of IRS.

There were several works dealing with query optimization
by GA or GP. Donald Kraft et al. [2] used genetic programming
to optimize Boolean search queries over documentary database
with emphasis on comparison of several IR effectiveness
measures as objective functions. Cordón et al. [12] introduced
MOGA-P, an algorithm to deal with search query optimization
as with a multi-objective optimization problem.

Gordon et al. [13] employed genetic programming to auto-
matically evolve optimal term weighting function for retrieval
algorithms based on a users evaluation of previously viewed
documents.

Nyongesa and Maleki-dizaji [14] proposed reinforced in-
teractive evolutionary learning for user modeling over a
vector space mode of information retrieval. Cummins and
O’Riordan [15] applied genetic programming for automatic
query expansion technique adding terms to users initial query
and observed improvement in mean average precision in sev-
eral cases.

In this paper, we focus on the implementation and tuning
of a GP for the optimization of the extended Boolean queries.
The agorithm facilitates efficient evolution of flexible search
queries in context of the powerfull extended Boolean IR model.

V. EXPERIMENTAL EVOLUTIONARY QUERY OPTIMIZATION

We have created an information retrieval system to evalu-
ate genetic programming for search query optimization. The
information retrieval system implements extended Boolean
information retrieval model as described in Section II-A. The

tf · idft term statistics was used for document indexing and
query weights (RSV) were evaluated using (4). Query language
in implemented IRS supported standard Boolean operators
AND, OR and NOT.

The information retrieval system served as a test bed for
evolutionary query optimization. We have implemented genetic
programming over extended Boolean queries. The GP evolved
tree representations of search queries with Boolean operators
as function nodes and terms leaves. Both, operator nodes
and term nodes, were weighted. In order to generate random
initial population for GP, the system was able to generate
random queries. Particular settings of random query generator
showing the probabilities of generating particular query node,
are summarized in Table Ia. An example of three random
queries generated by the system is shown in Fig. 3.

Crossover operator was is implemented as a mutual ex-
change of two randomly selected branches of parent tree
chromosomes. Mutation operator in query GP aims to per-
turbe content and structure of chromosomes randomly. In
our implementation, it selects a node from the processed
chromosome at random and performs one of the mutation
operations summarized in Table Ib.

Event Probability
Generate
term

0.5

Generate
AND

0.24

Generate OR 0.24
Generate
NOT

0.02

(a) Probabilities of generating
random query nodes.

Event Probability
Mutate node weight 0.5
Insert or delete NOT node 0.1
Replace with another node
or delete NOT node

0.32

Replace with random
branch

0.08

(b) Probabilities of mutation operations.

TABLE I: Random query generation an mutation probabilities.

AND:0.45

potteri:0.3 OR:0.73

technician:1 NOT:0.21

harpoon:0.23

(a) Query potteri:0.3 AND:0.45
(technician OR:0.73 NOT:0.21 har-
poon:0.23).

NOT:0.2

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

(b) Query NOT:0.2 ((
NOT:0.2 april) AND
novemb:0.3).

Fig. 3: Sample random queries.

Implemented query mutation types included:
• change of selected node weight. This mutation type is

shown in Fig.4a
• replacement of selected node type with a compatible node

type (i.e. operator OR replace by operator AND, term
replaced by another term). This mutation type is shown
in Fig. 4b.

• insertion of NOT operator before selected node (Fig. 4c).
• removal of NOT operator if selected (Fig. 4d).
• replacement of selected node with randomly generated

branch (Fig. 4d).

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:0.3

NOT:0.2

april:1.0

novemb:0.3

(a) Node weight mutation.

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:1.0

NOT:0.2

april:1.0

mondrian:0.3

(b) Node mutation.

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

NOT:0.2

(c) Insert NOT node mutation.

AND:1.0

april:1.0 novemb:0.3

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

(d) Delete NOT node mutation.

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:1.0

AND:0.25

prisma:0.6 antarctica:0.3

novemb:0.3

(e) Replace node by branch muta-
tion.

Fig. 4: Query mutation types.

F-Score has been used as fitness function in all experiments.

A. Experimental data set

A dump of one language mutation of the popular Web
encyclopedia Wikipedia1 was used as data collection for exper-
iments. Simple English Wikipedia2 is a language mutation of
Wikipedia written in simple English with limited vocabulary
and using only simple grammar. For our purposes, it is
attractive because it contains only a relativelly small number
of articles in English language. As in other language variants,
articles are linked (within simple Wikipedia but also to other
Web sites) and categorized.

We have selected small subset of Simplewiki collection to
perform experiments in order to tune the genetic programming
for evolutionary query optimization. We have used random
node sampling method to select 110 documents (nodes) from
Simplewiki at random with uniform probability. Selected nodes
and links between them formed a small test collection called
Rand110 with 5107 index terms.

VI. EVOLUTIONARY QUERY OPTIMIZATION

This section presents computational experiments performed
in order to verify the ability of genetic programming to evolve
extended Boolean queries over a collection of relevance ranked
documents. The goal of the algorithm is to evolve queries
describing the fuzzy set of relevant documents marked by
model query.

1http://wikipedia.org/
2http://simple.wikipedia.org/

The experiments with genetic programming are influenced
by its stochastic nature. In order to obtain representative
results, we have repeated every experiment in multiple inde-
pendent runs and we present average values of obtained results.

A. Parameter tuning

A series of experiments to find suitable settings for query
evolution GP has been conducted. Right settings can signif-
icantly affect performance and results of any evolutionary
algorithm. The no free lunch theorem [16] states that there
is no particular evolutionary algorithm performing optimally
for all problems. In a similar manner, we can say that there
is no general setting for any evolutionary algorithm, though
there are some best practices for setting PC , PM , population
size and so on. Nevertheless, it has been shown many times
that the GP with commonly used parameters can be for some
problems outperformed by GP with domain specific settings.

1) Crossover and mutation probability: We have sought
for the best setting of mutation probability PM and crossover
probability PC . To mark documents in Rand110 relevant and
non-relevant, the model query ”month or year or day” has
been used. The use of model query guarantees that there
is a search expression describing the fuzzy set of relevant
documents perfectly and reaches F-Score 1. Indeed, this is a
certainty we do not have in a general case. The model query
assigned to each document in Rand110 a relevance score as
illustrated in Fig. 5. Algorithm parameters for this experiment
are summarized in Table II.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,8

Fig. 5: Relevance used for PC and PM tuning in Rand110.

We have performed query evolution for every combination
of PC and PM from the interval [0.1, 1] with the step 0.1
and recorded the fitness values (best, average and worst) in
final populations. The results of query evolution with different
settings of PC and PM are visualized as contour plots in Fig. 6.

The best fitness values (larger than 0.67) have been achieved
in optimization runs with large PM . From the results can be
seen that experimental runs with large PM and large PC at the
same time achieved also good average final fitness and worst
final fitness comparing to other test cases.

This is an interesting observation since the usual settings
for genetic algorithms suggest large PC but rather smaller PM .
The reason for the need for large PM in search query evolution
could be the size and complexity of query chromosomes.
Rand110 contains more than 5000 terms, but the random initial
population of 100 queries contains only a very limited sample
of randomly generated term nodes. Because of this fact and
thanks to chosen mutation implementation (during mutation,

only one node is selected and transformed), the need for larger
PM arose. Based on the experience from this experiment, we
are using probability of crossover PC = 0.8 and probability
of mutation PM = 0.8 for the rest of experiments presented
in this thesis.

Despite the fact that a relevant query was used to create
the fuzzy set of relevant documents, GP did not find a search
expression with fitness close to 1 in the first 400 generations.
It suggests that the number of generations should be larger
than 400 and it also indicates that the GP might require an
initial information to reach better fitness. After all, the space
of all possible extended Boolean queries (even over Rand110
vocabulary only) is frankly immense.

Parameter Value
Model query ”month or year or day”
Population size 100
Selection scheme Elitary
Generations limit 400
Fitness F-Score
Independent runs 10

TABLE II: Parameters used for PC and PM tuning.

PM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pc

(a) Best fitness values for different
PC and PM .

PM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pc

(b) Average fitness values for dif-
ferent PC and PM .

PM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pc

(c) Worst fitness values for different
PC and PM .

Fig. 6: Mutation and crossover probability tuning results in
contour plot.

2) Selection method: Suitable selection strategy for the
query optimization task has been investigated. We have con-
sidered roulette wheel selection and elitary selection. In our
genetic programming implementation, roulette wheel selection
picks a chromosome with probability corresponding to chro-
mosomes relative fitness. It means that a chromosome with
higher fitness has better chance to become parent. Elitary
selection was implemented so that first two best chromosomes
were selected as parents. If there were either more than two

best or second best chromosomes, the parents were selected
among them randomly with uniform probability.

The parameters of GP for the experiment with selection
types are shown in Table III and the values of maximum,
average and worst fitness in an average final population are
summarized in Table IV.

Parameter Value
Population size 100
Generations limit 1000
Fitness F-Score
Mutation probability 0.8
Crossover probability 0.8
Repeat 10

TABLE III: Algorithm parameters used for selection method
comparison.

Fitness in final population

Selection Best Average Worst
Elitary 0.388 0.303 0.300
Roulette wheel 0.388 0.372 0.365

TABLE IV: Comparison of query evolution results with dif-
ferent selections algorithm.

Table IV suggests that best fitness in an average final
population is the same for both selection methods. However,
the use of roulette wheel selection leads to better average
fitness and better worst fitness in an average final population.

Examples of query evolution are shown in Fig. 7. There
are no significant differencies between best runs with roulette
wheel selection and elitary selection. We can note that the
average fitness is with roulette wheel selection (Fig. 7b)
growing more slowly but in a smoother manner. Average
fitness and worst fitness in final population were better when
using roulette wheel selection.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200 400 600 800 1000

F
it

n
e

ss

Generation

Best fitness Worst fitness Average fitness

(a) Best run with elitary selection.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200 400 600 800 1000

F
it

n
e

ss

Generation

Best fitness Worst fitness Average fitness

(b) Best run with roulette wheel
selection.

Fig. 7: Exmples of query evolution.

VII. CONCLUSIONS

We have studied genetic programming for evolutionary
query optimization. A test data set for the research of informa-
tion retrieval in hyperlinked environments has been created. As
the basis for testing data, one language variant of the Wikipedia
was used.

We have designed, implemented and evaluated genetic pro-
gramming for evolutionary query optimization. We have sought
for good parameters for the algorithm and we have shown

that the algorithm is able to find search expressions describing
corresponding documents in extended Boolean information
retrieval model. To achieve good performance and good results,
the genetic programming for evolutionary query optimization
required high values of PC and PM . The experiments have
shown that the use of roulette wheel selection leads to better
average fitness in the final population.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Industry and
Trade of the Czech Republic, under the grant no. FR-TI1/420.

REFERENCES

[1] F. Crestani and G. Pasi, “Soft information retrieval: Applications of
fuzzy set theory and neural networks,” in Neuro-Fuzzy Techniques
for Intelligent Information Systems (N. Kasabov and R. Kozma, eds.),
pp. 287–315, Heidelberg, DE: Springer Verlag, 1999.

[2] D. H. Kraft, F. E. Petry, B. P. Buckles, and T. Sadasivan, “Genetic
Algorithms for Query Optimization in Information Retrieval: Relevance
Feedback,” in Genetic Algorithms and Fuzzy Logic Systems (E. Sanchez,
T. Shibata, and L. Zadeh, eds.), (Singapore), World Scientific, 1997.

[3] H. L. Larsen, “Retrieval evaluation,” in Modern Information Retrieval
course, Aalborg University Esbjerg, 2004.

[4] R. M. Losee, “When information retrieval measures agree about the
relative quality of document rankings,” Journal of the American Society
of Information Science, vol. 51, no. 9, pp. pp. 834–840, 2000.

[5] M. Dianati, I. Song, and M. Treiber, “An introduction to genetic algo-
rithms and evolution strategies,” technical report, University of Waterloo,
Ontario, N2L 3G1, Canada, July 2002.

[6] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[7] J. Koza, “Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems,” Technical Report
STAN-CS-90-1314, Dept. of Computer Science, Stanford University,
1990.

[8] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[9] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham, Genetic Al-
gorithms and Genetic Programming: Modern Concepts and Practical
Applications. Chapman & Hall/CRC, 2009.

[10] W. Fan, M. D. Gordon, and P. Pathak, “A generic ranking function
discovery framework by genetic programming for information retrieval,”
Inf. Process. Manage, vol. 40, no. 4, pp. pp. 587–602, 2004.

[11] W. Fan, M. D. Gordon, P. Pathak, W. Xi, and E. A. Fox, “Ranking
function optimization for effective web search by genetic programming:
An empirical study,” in HICSS, 2004.

[12] O. Cordón, F. de Moya, and C. Zarco, “Fuzzy logic and multiobjective
evolutionary algorithms as soft computing tools for persistent query
learning in text retrieval environments,” in IEEE International Confer-
ence on Fuzzy Systems 2004, (Budapest, Hungary), pp. 571–576, 2004.

[13] M. Gordon, W. P. Fan, and P. Pathak, “Adaptive web search: Evolving
a program that finds information,” IEEE Intelligent Systems, vol. 21,
pp. 72–77, 2006.

[14] H. O. Nyongesa and S. Maleki-Dizaji, “User modelling using evolution-
ary interactive reinforcement learning,” Inf. Retr., vol. 9, no. 3, pp. 343–
355, 2006.

[15] R. Cummins and C. O’Riordan, “Using genetic programming for in-
formation retrieval: local and global query expansion,” in GECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, (New York, NY, USA), pp. 2255–2255, ACM, 2007.

[16] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” Evolutionary Computation, IEEE Transactions on, vol. 1,
pp. 67–82, August 2002.

