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Abstract—This paper presents an approach for underdeter-
mined blind source separation in the case of additive Gaussian
white noise and pink noise. Likewise, the proposed approach
is applicable in the case of separating I + 3 sources from I
mixtures with additive two kinds of noises. This situation is
more challenging and suitable to practical real world problems.
Moreover, unlike to some conventional approaches, the sparsity
conditions are not imposed. Firstly, the mixing matrix is
estimated based on an algorithm that combines short time
Fourier transform and rough-fuzzy clustering. Then, the mixed
signals are normalized and the source signals are recovered
using modified Gradient descent Local Hierarchical Alternat-
ing Least Squares Algorithm exploiting the mixing matrix
obtained from the previous step as an input and initialized
by multiplicative algorithm for matrix factorization based
on alpha divergence. The experiments and simulation results
show that the proposed approach can separate I + 3 source
signals from I mixed signals, and it has superior evaluation
performance compared to some conventional approaches.

Keywords-Underdetermined Blind Source Separation; Rough
Fuzzy clustering; Short Time Fourier transform; Hierarchical
Alternating Least Squares

I. INTRODUCTION

Blind Source Separation (or Blind Signal Separation,
BSS) in combination with information theory, artificial neu-
ral networks, and computer science applications has a wide
range of applications in the fields of digital communication
systems, wireless communications, speech processing, fea-
ture extraction, speech processing, medical imaging, water
marking, biomedical engineering, and data mining [4]–[8] in
the last decade. Blind separation or blindness means that no
or very little information is known about the mixing system
or the original source signals that need to be extracted [1].

The main goal of BSS algorithms is to estimate or extract
original source signals using only the information gathered
from observable mixed signals without or with very limited
knowledge about the source signals or the mixing system.
The approaches developed by researchers in the last two
decades can be classified into two methodologies, namely
overdetermined BSS and underdetermined BSS, according to
the number of source signals and observable mixed signals
[12]. If the number of sensors or mixed signals is less
than the number of source signals, then the problem is

called underdetermined BSS while if the number of sensors
or mixed signals is greater than or equal the number of
source signals, then the problem is called over-determined
BSS. Underdetermined BSS is challenging and is more
realistic to most practical situations and real world problems.
However, most approaches for BSS rarely involve underde-
termined BSS cases. The classical independent component
analysis (ICA) approach fails to solve underdetermined BSS
problems [11]. Moreover, in many practical problems there
are a large number of source signals but a few numbers
of sensors that means the underdetermined case. Another
major difficulty of ICA is that its ambiguities and that the
order, sign, and the variances of the independent components
cannot be determined, therefore the mixing matrix and the
magnitude of original source signals cannot be estimated [3].

Matrix factorization is very important and unifying topic
that has a great deal of attention in signal processing, and
linear algebra and has found numerous applications in many
other areas [17]. A special case of matrix factorization
is Nonnegative Matrix Factorization (NMF) which has the
non-negativity constraints. Recently, NMF has been widely
applied to many BSS problems. However, the separation
results are sensitive to the initialization of parameters. An-
other major drawback of NMF is that the additive parts
by NMF are not necessarily localized consequently, the
solution is not unique. Avoiding the subjectivity of choosing
parameters, we use general matrix factorization (GMF),
which completely relaxes the non-negativity constraints from
its factors with matrix factorization multiplicative algorithm
as an initialization to the source signals instead of random
initial values. GMF is a generalization of the well-known
NMF where the NMF is constrained by non-negativity on all
its factors, is not necessarily localize, has low convergence
and, does not provide a unique solution in some cases with-
out additive constraints and parameters. However, GMF has
no constraints of non-negativity and is fast convergent with
the ALS method used for initialization and improvement [2].

Most of the conventional BSS approaches assume that
the source signals are as statistically independent as pos-
sible given the sensors data. Another hypothesis by these
approaches is that the mixing matrix is of full column rank.



In many real-world situations, however, this hypothesis is
not valid. Consequently, recovering the source signals by
multiplying the observable data mixtures by the pseudo
inverse of the mixing matrix cannot be used. This makes
recovering the source signals a difficult and very challenging
task [9]. In practical terms, the overdetermined mixture
assumption does not always hold. For instance, in radio
communications the probability of receiving more source
signals than sensors data or observed mixed signals increases
with increase of reception bandwidth, hence it is urgently
necessary to solve the problem of underdetermined blind
source separation (UBSS) [10].

The motivation of this paper is to separate sparse, and
super and sub-Gaussian signals in the underdetermined case
with additive noise such as Gaussian white noise and pink
noise without imposing any sparsity conditions. Another
motivation of this paper and to increase the performance
of the separation in case of noisy mixtures. The rest of
the paper is organized as follows. Section II formulates
the problem. In Section III, we present the details of the
proposed approach. In section IV, we show the analysis of
typical experiments and the results obtained by different BSS
methods, where the simulation results show the effectiveness
and high performance of the proposed algorithm. Finally, a
short conclusion and future work are presented in Section
V.

II. PROBLEM FORMULATION

The problem considered in this paper is an underde-
termined instantaneous BSS with additive white Gaussian
background noise and pink noise, which can be mathe-
matically formulated as follows: Assume that for I unob-
servable components X(t) = tr[X1(t), X2(t), ...., XJ(t)]
, where J is the number of source signals, and X(t) is
a zero-mean vector. The available sensor vector Y (t) =
tr[Y1(t), Y2(t), ...., YI(t)] , where I is the number of sensors
and tr is the transpose of the vector, is given by

Y (t) = AX(t) + E(t). (1)

Here A ∈ RI×J is unobservable matrix, and the rank of A is
I . X ∈ RJ×T , Y ∈ RI×T , t = 0, ..., T −1 are the sampling
instant time points. Moreover, The vector E(t) represents
the noise which will be in this paper two kinds of noise
throughout the experiments.

III. PROPOSED UBSS ALGORITHM

In this section, the proposed approach is presented starting
with estimating the mixing matrix knowing only the observ-
able mixtures matrix which contains noise. Also, a method
for GMF gradient descent based update rules initialized with
matrix factorization multiplicative algorithm based on alpha
divergence is introduced.

A. Mixing matrix estimation based on short time Fourier
transform and rough fuzzy clustering

Conventional algorithms estimate the mixing matrix based
on clustering algorithms such as the k-means algorithm
require that the source signals to be very sparse in the time
domain and this is unavailable in many practical real world
problems. Other algorithms are based on an assumption
that there exist many TF points of single source occupancy
(SSO), or require that there exists at least one small region in
the TF plain with only a single source and such a TF region
must exist for each source. All aforementioned approaches
require that for each source there exist many TF points of
SSO. However, single source detection (SSD) requires that
there exists at least one TF point of SSO and is hence
less restrictive than the other approaches [13]. The short
time Fourier transform (STFT) of the ith observed signal is
defined by the following equation:

Y Fourieri (t, r) =

∞∑
l=0

h(l − t)Xi(l)e
−jrl (2)

at frame t and frequency bin r where h(l) is a window
sequence. In equation (2), i = 1, 2, , I; t = 0, 1, , T − 1 are
the sampling points over the time domain and r = 0, 1, , T−
1 are the sampling points over the frequency domain. The
SSD is based on the ratio of the TF transforms and finds a set
of TF points where a single source is active for each source.
Therefore, for a given ε > 0 the set that represents the
detected points can be obtained by the following equation:

χF = {(t, r)|
∥∥∥∥Im[

Y Fo(t, r)

Y Fo1 (t, r)
]

∥∥∥∥
F

< ε,

Y Fo1 (t, r) 6= 0}
(3)

where, Y Fo represents the matrix of Y Fourier obtained from
Eq. (2), Im[.] denotes the imaginary part. We can choose any
of the mixture instead of Y1.

After clustering, the ith column vector of A, denoted as
âi, is estimated as

âi =
1

|χCi |
∑

(t,r)∈χCi

Re[Y Fo(t, r)] (4)

Here, χCi represents the number of TF points in cluster Ci
for i = 1, 2, , J .

B. The initialization technique for source signlas estimation

The source signals estimation algorithm will be initialized
using multiplicative alpha GMF algorithm. This initialization
technique will help to improve the results and obtain a
better separation performance. The cost function for alpha
divergence is outlined in the following equation:

COSTα(Y ||AX) =
1

α(α− 1)∑
it

(
[Y ]it[AX]1−αit − αYit + (α− 1)[AX]it

) (5)



The final alpha multiplicative learning algorithm is ex-
pressed by the following update rules:

(xjt)new = (xjt)old

(∑I
i=1 aij(yit/[AX]it)

α∑I
i=1 aij

) 1
α

,

(aij)new = (aij)old

(∑T
t=1(yit/[AX]it)

αxjt∑T
t=1 xjt

) 1
α

;α 6= 0

(6)
But here we will make initialization to only the source
signals, so we will exploit only the first part of the equation.

C. Modified gradient descent local Hierarchical alternating
least squares

This section will introduce a quick overview on the
analysis and derivation of Hierarchical Alternating Least
Squares (HALS). Hierarchical Alternating Least Squares
method is suitable for large-scale NMF problems, and it
can be applied also for sparse non-negative coding or repre-
sentation [14]. HALS algorithm can be derived by choosing
exploiting a set of local cost functions such as Alpha- and
Beta-divergences, and the squared Euclidean distance. Then
perform consecutive or simultaneous minimization of these
local cost functions. For example, using gradient descent
or some nonlinear transformations. The family of HALS
algorithms can not only do better for the over-determined
case of BSS, but they can also solve underdetermined
BSS case under some simple conditions. Especially for
the multi-layer technique [15], the extensive experiments
and simulation results show the superior performance and
validity of the family of HALS algorithms. HALS is used
here in this paper in a modified version by relaxing the non-
negativity constraints and depending on the gradient descent
algorithm.

Denote A = [a1, a2, ....., aj ] and S = XT =
[s1, s2, ...., sj ] to express the squared Euclidean cost func-
tion as

J [a1, .., aj , s1, .., sj ] =
1

2
‖Y −AST ‖2f =

1

2
‖Y −

J∑
j=1

ajs
T
j ‖2Fro

(7)

where, Fro refers to the Frobenious norm. The main idea is
to define the residues followed by minimizing the set of local
cost functions alternatively with respect to the parameters ai
and sj . The residues can be obtained as:

Y (j) = Y −
∑
p 6=J

aps
T
p = Y −AST + ajs

T
P

= E + ajs
T
j (j = [1, 2, ...., J ])

(8)

Then the alternative minimization of the set of cost functions

can be obtained by [16]

Cost
(j)
Fro(Y

(j)||ajsTj ) =
1

2
‖Y (j)− ajsTj ‖2Fro,

Forj = 1, 2, ..., J
(9)

The optimality conditions for the set of cost functions (9)
can be defined as

aj ⊗∇ajCost
(j)
Fro(Y

(j)||ajsTj ) = 0 (10)

sj ⊗∇sjCost
(j)
Fro(Y

(j)||ajsTj ) = 0 (11)

The gradients of the local cost functions in Eq. (9) are
computed with respect to the unknown vectors aj and sj to
obtain the critical or stationary points with the assumption
that the other vectors are fixed by the following equation:

∇ajCost
(j)
Fro(Y

(j)||ajsTj ) =
∂Cost

(j)
Fro(Y

(j)‖ajsTj )
∂aj

= ajs
T
j sj − Y (j)sj

(12)

∇sjCost
(
Froj)(Y

(j)||ajsTj ) =
∂Cost

(j)
Fro(Y

(j)||ajsTj )
∂sj

= aTj ajsj − Y (j)Taj
(13)

Without resorting to any non-negativity constraints on the
entries of vectors aj and sj ∀j, the critical points can be
obtained by the following simple update rules:

sj ←
1

aTj aj
(Y (j)Taj) =

1

aTj aj
Y (j)Taj . (14)

aj ←
1

sTj sj
(Y (j)sj) =

1

sTj sj
Y (j)sj , (j = 1, 2, ..., J) (15)

The algorithm of Modified gradient descent local Hierarchi-
cal alternating least squares is stated below:

Algorithm 1 Modified gradient descent local Hierarchical
alternating least squares algorithm

Input: The observable matrix Y±, the number of source
signals J
Output: The source signals X = ST ∈ RJ×T± such that
the cost function in Eq. 9 is minimized

Intitialize the source signals X = ST by multiplicative
alpha GMF algorithm by Eq. 6;
set E = Y −AST ;
repeat

for k=1 to J do
Y (k) ← E + aks

T
k

sk ← Y (k)Tak
E ← Y (k) − aksTk

end for
until a stopping criterion is met



IV. EXPERIMENTS AND SIMULATION RESULTS

In this section, the performance and effectiveness of the
proposed approach will be discussed by comparing results of
experiments and stimulations. Experiments and simulations
were performed on synthetically generated signals using
the proposed approach and some other approaches. In the
simulations, sparse, super- and sub-Gaussian signals were
separated from the underdetermined noisy mixtures in the
challenging case where the true number of source signals is
unknown. The types of noise that is considered in this paper
is the white noise and pink noise.

The parameter inputs of the modified Modified gradient
descent local Hierarchical alternating least squares algorithm
are the observable mixtures matrix Y, and the mixing matrix
A obtained by the method stated above. We choose the
maximum number of iterations to be only 50 iterations. We
investigate the performance of the proposed UBSS approach
in the above mentioned cases by comparing its results with
the results of approaches in Snoussi and Idier (2006) [18],
Peng and Xiang (2010) [19], and S. Sun et al. (2012) [20].
Here, the simulation of the separation of a variety of sparse,
non-sparse, and super- and sub-Gaussian signals are stated.

A. Separation of synthetic signals with additive noise

Here, the simulation of the separation of a variety of
sparse, non-sparse, and super- and sub-Gaussian signals
are stated. All these cases are in the presence of above
mentioned kinds of noise.

1) Sparse, non-sparse, and super- and sub-Gaussian sig-
nals: The effectiveness of the proposed UBSS approach
is investigated by comparing the results of the proposed
approach with the methods mentioned above. We chose the
number of mixtures to be only 2 and the number of sources
to be 5 to create a more challenging case and to prove that
the proposed approach can separate I + 3 source signals
from I mixtures. The five source signals, two observable
mixtures that contains additive white noise, and pink noise,
and The estimated source signals are plotted in Figs. 1, 2, 3,
and 4. The number of sampling time points is 10,000. The
simulation results of the proposed approach in addition to
those of the five different UBSS methods are shown in Figs.
5, 6, 7. The performance of the source recovery method can
be evaluated by Eqs. (16) and (17).

SIR = −10 log


∥∥∥X̂i −Xi

∥∥∥2
Fro

‖Xi‖2Fro

 , i = 1, 2, ..., J (16)

SNR =
1

J

∑
i

10 log

 ‖Xi‖2Fro∥∥∥X̂i −Xi

∥∥∥2
Fro

 , i = 1, 2, ..., J

(17)
where, J is the number of source signals. The efficiency of
the separation results is good when SNR > 25 [21]

Figure 1. The source signals

Figure 2. The mixed signals with additive white noise

Figure 3. The mixed signals with additive pink noise

Figure 4. The estimated source signals



Figure 5. Performance estimation of the source signals from 3 observable
mixtures with additive white noise

Figure 6. Performance estimation of the source signals from 3 observable
mixtures with additive pink noise

We note from Fig. 5 that the proposed approach achieves
about 4 dB higher SNR for J=7 sources with only two
mixtures than the highest performance algorithm among
the other five approaches. Likewise, the proposed approach
achieves higher performance in case of Pink noise. Another
comparison of the proposed approach with the other three
approaches is presented using the SNR index for each kind
of noise and is demonestrated in the following Fig. 7

Figure 7. SNR index for the source signals from 3 observable mixtures
with white and noises

From the results in Figs. 1, 2, 3, 4, 5, 6, 7, we can conclude
that the separation performance of the proposed approach is
very high, has faster convergence, and can separate sparse,
non-sparse, and super- and sub-Gaussian signals in addition
to sparse and non-sparse signals when compared with the
other approaches.

B. Separation of real-world signals

To further measure the estimation performance of the
source recovery approach in the previous Subsection,
other comparisons are performed with the three other ap-
proaches using a dataset of real-world signals that are
available to download from http://www.bsp.brain.riken.jp/
ICALAB/ICALABSignalProc/benchmarks. This benchmark
is EEG19, which contains 19 electroencephalogram (EEG)
signals with clear heart, eye movement, and eye blinking
artifacts. Only five signals are chosen as shown in Fig. 8.
Note that the first four signals X1, X2, and X3 are super-
Gaussian while the last two signals X4 and X5 are sub-
Gaussian. Fig. 9, Fig. 10 shows the observable mixtures
signals and Fig. 11 shows the estimated source signals. The
mixing matrix A is the same as in the previous experiments.
Figs. 12, 13 shows the SIR results for all methods tested.

Figure 8. The source signals (EEG)

Figure 9. The mixed signals with additive white noise (EEG)

Figure 10. The mixed signals with additive pink noise (EEG)



Figure 11. The estimated source signals

Figure 12. Performance estimation of the seven EEG19 source signals
from 3 observable mixtures with additive white noise

Figure 13. Performance estimation of the seven EEG19 source signals
from 3 observable mixtures with additive pink noise

V. CONCLUSION

In this paper, we addressed the problem of underdeter-
mined blind source separation with the challenging case
that to separate I+3 source signals from I mixtures with
addtive white and pink noises. A new two-step approach for
optimum estimation of the source signals. In this approach,
STFT is combined with rough fuzzy c-means clustering to

estimate the mixing matrix. Then the source signals are
estimated by a modified gradient descent local Hierarchical
alternating least squares based general matrix factorization.
Simulation experiments demonstrated the validity and supe-
rior performance of the proposed approach.

ACKNOWLEDGMENT

The authors would like to thank all SRGE members who
contribute in this paper. Special thanks are expressed to Dr.
Nashwa El-Bendary for her untold contributions, helping me
through this work and her continuous cooperation.

REFERENCES

[1] Ossama S. Alshabrawy, M. E. Ghoniem, W. A. Awad and
Aboul ella hassanien, Underdetermined Blind Source Sepa-
ration based on Fuzzy C-Means and Semi-Nonnegative Ma-
trix Factorization. IEEE Federated Conference on Computer
Science and Iinformation Systems (FedCSIS), Wroclaw,
Poland, pp. 695-700, 9-12 September, 2012

[2] Ossama S. Alshabrawy, M. E. Ghoniem, A. A. Salama,
Aboul ella hassanien, Underdetermined Blind Separation of
an Unknown Number of Sources Based on Fourier Trans-
form and Matrix Factorization, IEEE Federated Conference
on Computer Science and Iinformation Systems (FedCSIS),
Krakw, Poland, pp. 19-25, 8 - 11 September, 2013

[3] A. Hyvarinen, J. Karhunen, E. Oja, Independent Component
Analysis, Wiley, New York, 2001.

[4] Yadong, Liu, Zongtan, Zhou, Dewen, Hu. A novel method
for spatio temporal pattern analysis of brain fMRI data,
Science in China Series F: Information Sciences, vol. 48,
no. 2, pp. 151160, 2005.

[5] Araki, S., Makino, S., Blin, A., Underdetermined blind sep-
aration for speech in real environment with sparseness and
ICA, In Proceedings of the ICASSP04, Montreal, Canada,
pp.881884, 2004.

[6] Ohnishi, Naoya, Imiya, Atsushi, Independent component
analysis of optical flow for robot navigation, Neurocomput-
ing, vol.7, nos. 1012, pp. 21402163, 2008.

[7] Tonazzini, Anna, Bedini, Luigi, Salerno, Emanuele, A
Markov model for blind image separation by a mean-field
EM algorithm, IEEE Transactions on Image Processing, vol.
15, no.2, pp.473482, 2005.

[8] Er-Wei, Bai, QingYu, Li, Zhiyong ,Zhang, Blind source
separation channel equalization of nonlinear channels with
binary inputs, IEEE Transactions on Signal Processing, vol.
53, no. 7, pp.23152323, 2005.

[9] Dezhong Peng, Yong Xiang, Underdetermined blind sep-
aration of nonsparse sources using spatial time-frequency
distributions, Digital Signal Processing, vol. 20, pp. 581596,
2010.

[10] Fengbo Lu, Zhitao Huang,Wenli Jiang, Underdetermined
blind separation of non-disjoint signals in timefrequency
domain based on matrix diagonalization, Signal Processing,
vol. 91, pp. 15681577, January 2011.



[11] Chaozhu Zhang, Cui Zheng, Underdetermined Blind Source
Separation Based on Fuzzy C-Means Clustering and Sparse
Representation, International Conference on Graphic and
Image Processing (ICGIP), Proc. of SPIE vol. 8285, 2011.

[12] SangGyun Kim, Chang D. Yoo, Underdetermined Blind
Source Separation Based on Subspace Representation, IEEE
Transaction on Signal Processing, vol. 57, no. 7, July 2009.

[13] SangGyun Kim, Chang D. Yoo, Underdetermined Blind
Source Separation Based on Subspace Representation, IEEE
Transaction on Signal Processing, vol. 57, no. 7, July 2009.

[14] A. Cichocki, A.H. Phan, C. Caiafa, FlexibleHALSalgorithms
for sparse non-negative matrix/tensor factorization, In Proc.
of 18th IEEE workshops on Machine Learning for Signal
Processing, Cancun, Mexico, 1619, 2008.

[15] A. Cichocki, R. Zdunek, and S.-I. Amari. Hierarchical ALS
algorithms for nonnegative matrix and 3-D tensor factoriza-
tion. Springer, Lecture Notes on Computer Science, LNCS-
4666, pages 169176, 2007.

[16] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, Shun-
ichi Amari, Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis and
Blind Source Separation, John Wiley, 2009

[17] Mohammed E. Fathy, Ashraf Saad Hussein, M. F. Tolba,
Fundamental matrix estimation: A study of error criteria,
Pattern Recognition Letters 32(2): 383-391, 2011

[18] Hichem Snoussi, Jerome Idier. Bayesian blind separation of
generalized hyperbolic processes in noisy and underdeter-
minate mixtures, IEEE Transactions on Signal Processing,
vol. 54 no. 9, pp. 32573269, 2006.

[19] Dezhong Peng, Yong Xiang. Underdetermined blind sep-
aration of non-sparse sources using spatial time-frequency
distributions, Digital Signal Processing, vol. 20, pp. 581596,
2010.

[20] Shijun Sun, Chenglin Peng, Wensheng Hou, Jun Zheng,
Yingtao Jiang, Xiaolin Zheng. Blind source separation with
time series variational Bayes expectation maximization al-
gorithm, Digital Signal Processing, vol. 22, pp. 1733, 2012.

[21] Chaozhu Zhang, Cui Zheng, Underdetermined Blind Source
Separation Based on Fuzzy C-Means Clustering and Sparse
Representation, International Conference on Graphic and
Image Processing (ICGIP), Proc. of SPIE vol. 8285, 2011.


