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Abstract

The segmentation of tissue regions in high-resolution microscopy is a challenging problem due to 

both the size and appearance of digitized pathology sections. The two point correlation function 

(TPCF) has proved to be an effective feature to address the textural appearance of tissues. 

However the calculation of the TPCF functions is computationally burdensome and often 

intractable in the gigapixel images produced by slide scanning devices for pathology application. 

In this paper we present several approaches for accelerating deterministic calculation of point 

correlation functions using theory to reduce computation, parallelization on distributed systems, 

and parallelization on graphics processors. Previously we show that the correlation updating 

method of calculation offers an 8–35× speedup over frequency domain methods and decouples 

efficient computation from the select scales of Fourier methods. In this paper, using distributed 

computation on 64 compute nodes provides a further 42× speedup. Finally, parallelization on 

graphics processors (GPU) results in an additional 11–16× speedup using an implementation 

capable of running on a single desktop machine.

Keywords

Microscopy; Image Segmentation; Digital Pathology; Two Point Correlation Function; Graphical 
Processing Unit

I. Introduction

With the development of high resolution digital scanning imaging technology, huge amount 

of histology images are being generated in both clinical applications and basic research 

projects. In both situations, these images need to be analyzed by personnel with pathology 

training for identifying cellular and tissue structures of interest. However, the large image 

size and quantity are prohibiting from accurate quantitative analysis of such images in many 

cases. For instance, the histology image for a specimen of size 1 cm-by-1 cm, when scanned 
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with 40X objective lens, will yield an image of about 40, 000 × 40, 000 pixels. Thus such 

large images require the development of (semi)automatic computer based methods for 

segmenting specific objects of interest [1], [2].

In our previous work, we have demonstrated that the two-point correlation function (TPCF) 

is an effective image feature for segmenting different types of tissues in digitized histology 

images [3], [4], [1], [5]. However they are accompanied by a significant computational 

burden. Consider the following example: computing TPCF features for a 16K×16K-pixel 

image with four components implies the calculation of more than one billion 2D 

correlations. Performing these correlations is a considerable task, with large image datasets 

pushing the correlation calculations into the trillions. Recently, using a correlation updating 
technique, we were able to significantly improve the computational efficiency by up to 67 

times. This technique uses a derived relationship between TPCFs of neighboring regions-of-

interest to update TPCF values rather than computing them from scratch. Thus we do not 

waste computation on unused correlation values, and that eliminates the strong time-

dependency on window size that exists for FFT-based correlation.

However, since the computation of TPCF as a local image feature for image segmentation is 

a local operation, it is highly parallelizable. Thus it is expected that parallel computing will 

further reduce the running time. In this paper, we take two approaches. The first approach is 

the parallelization of TPCF feature calculations on the multi-node and multi-socket levels. 

The second approach is the implementation of correlation updating using graphics 

processors (GPU), taking advantage of the fine-grained parallelism and fast on-chip memory 

to further optimize TPCF feature calculation.

II. Two Point Correlation Function

We have given detailed description of local TPCF features for an image and how to use them 

for image segmentation in our previous work [3], [4], [1], [5]. However, for completeness, 

we reiterate the formulation of TPCF, its calculation and the correlation updating process in 

this section.

The computation of TPCF features is depicted in Figure 1. The computation consists of three 

main processes: correlation calculation, normalization, and sampling/interpolation.

Given an M×N digital phase image I, a w×w region-of-interest (ROI) Φx,y is defined with 

upper left corner I(x, y). For each phase i in the ROI, the autocorrelation of the binary mask 

ℐx, y
(i)  is calculated

R(i)(Δx, Δy) = ∑
m

∑
n

ℐx, y
(i) (m, n)ℐx, y

(i) (m + Δx, n + Δy), (1)

where Δx,Δy ∈ ℤ. The values of Ri are normalized by the number of overlapping pixels to 

calculate probabilities

Cooper et al. Page 2

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2018 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R(i) = R(i) . /(1M × N ∗ 1M × N), (2)

where 1M×N is an M×N matrix of ones, ./ is element-wise division, and * is convolution.

The normalized elements of R̂ represent the homogeneous anisotropic TPCF S2
(i)(x). The 

isotropic quantity S2
(i)(r) is calculated using the process of circumferential sampling depicted 

in Figure 2. Samples taken at a distance r from R̂(i)(0, 0) are averaged over angle

S2
(i)(r) = Δθ

π ∑
k = 0

π
Δθ − 1

R(i)(r cos (kΔθ), r sin (kΔθ)), (3)

where Δθ is the angular interval. Samples that do not fall on the discrete grid of R(̂i) can be 

inferred using bilinear interpolation. Due to the symmetry of R(̂i), the sampling angles can be 

restricted to [0, π).

This procedure is repeated for every phase i in the ROI Φx,y to calculate the feature vector 

vx,y. The ROI is positioned at every complete location in the phase image (x, y) ∈ {0, 1, 

…,N −w}×{0, 1, …,M −w} to generate a set of (M − w + 1)(N − w + 1) feature vectors.

III. Direct FFT-based correlation

The most computationally demanding portion of the TPCF calculations are the correlations 

of Equation 1. These correlations may be computed efficiently using the Fast Fourier 

Transform (FFT). The binary mask ℐx, y
(i)  is padded to the size 2w − 1

𝒫x, y
(i) ≡

ℐx, y
(i) 0w × w − 1

0w − 1 × w 0w − 1 × w − 1
(4)

and transformed forward to the discrete frequency domain

ℱ[k, l] = 1
(2w − 1) ∑

n = 0

2w − 1
∑

m = 0

2w − 1
𝒫x, y

(i) [m, n]e
−2π jmk + nl

2w − 1 . (5)

The power spectrum is calculated by taking the magnitude of the complex elements ℱ[k, l] 
and the inverse transformation is computed to obtain the autocorrelation R
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R(i) = 1
(2w − 1) ∑

l = 0

nw − 1
∑

k = 0

2w − 1
ℱx, y

(i) [k, l]e
2π jmk + nl

2w − 1 . (6)

The dimension 2w − 1 is critical for the performance of the FFT calculations. The most 

widely used FFT library, FFTW [6], offers optimal performance for powers of two or small 

prime factors. The padding of Equation 4 may be manipulated to achieve these sizes, only by 

adding zeros to achieve the next most favorable size. A demonstration of the effects of 

transform size and padding is presented in Section VIII.

A. Sparse sampling

The FFT calculates all (2w−1)2 elements of the autocorrelation R, however only a small set 

of these are required for the circumferential sampling procedure of Equation 3. This is 

apparent in Figure 2, where for w = 32 and Δθ = π/8 only 10% elements of R(i) are used to 

interpolate S2
(i)(r). Although algorithms exist for computing subsets of FFT outputs [7], [8], 

[9], the available implementations of ordinary full-output FFT are optimized to the extent 

that only a relatively large transform will benefit [6].

B. Correlation updating

In addition to the sampling sparsity, the shared content between neighboring ROIs also 

points to significant amounts of wasted computation. For example, although Φx,y,Φx+1,y 

differ by only two w-length columns of pixels, a straight-forward FFT method calculates 

correlations from scratch for each region.

The observations of sparsity and shared content may be simultaneously addressed using the 

linearity of correlation. Rather than computing R(i) from scratch for each ROI, the portions 

of neighboring ROIs, say Φx,y and Φx+1,y, that are not shared may be used to update R(i) 

from Φx,y to Φx+1,y instead. Furthermore, if this updating is performed directly in the image 

domain then the locations used in sampling may be selectively updated, and the spatial 

dependency between the image and frequency domains can be avoided.

Given two horizontally adjacent w×w ROIs Φx,y,Φx+1,y with corresponding indicators

ℐx, y
(i) = cx, cx + 1, …, cx + w − 1

ℐx + 1.y
(i) = cx + 1, cx + 2, …, cx + w ,

(7)

where c are w-length columns of pixels. The autocorrelation of ℐx, y
(i)  is denoted Rx, y

(i) . Given 

that Ix, y
(i) , Ix + 1, y

(i)  are distinguished only by cx, cx+w+1, the autocorrelation Rx + 1, y
(i)  can be 

calculated from Rx, y
(i)  by adding the contribution of cx+w+1 and removing the contribution of 

cx.
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Define the correlation sums between the columns and their respective regions

aΔx, Δy
− ≡ ∑

m
ℐx, y

(i) (Δx, m)cx(m + Δy)

aΔx, Δy
+ ≡ ∑

m
ℐx + 1, y

(i) (Δx, m)cx + w(m + Δy) .

(8)

The update matrices containing these correlation sums represent the contributions of cx to 

Rx, y
(i)  and cx+w+1 to Rx + 1, y

(i)

A− ≡

aw − 1, w − 1
− ⋯ a0, w − 1

− a1, 1 − w
− ⋯ aw − 1, 1 − w

−

aw − 1, w − 2
− ⋯ a0, w − 2

− a1, 2 − w
− ⋯ aw − 1, 2 − w

−

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

aw − 1, 0
− ⋯ a0, 0

− a1, 0
− ⋯ aw − 1, 0

−

aw − 1, − 1
− ⋯ a0, − 1

− a1, 1
− ⋯ aw − 1, 1

−

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

aw − 1, 1 − w
− ⋯ a0, 1 − w

− a1, w − 1
− ⋯ aw − 1, w − 1

−

,

A+ ≡

a0, 1 − w
+ ⋯ aw − 1, 1 − w

+ aw − 2, w − 1
+ ⋯ a0, w − 1

+

a0, 2 − w
+ ⋯ aw − 1, 2 − w

+ aw − 2, w − 2
+ ⋯ a0, w − 2

+

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

a0, 0
+ ⋯ aw − 1, 0

+ aw − 2, 0
+ ⋯ a0, 0

+

a0, 1
+ ⋯ aw − 1, 1

+ aw − 2, − 1
+ ⋯ a0, − 1

+

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

a0, w − 1
+ ⋯ aw − 1, w − 1

+ aw − 2, 1 − w
+ ⋯ a0, 1 − w

+ .

The relationship between the autocorrelations for adjacent regions is then

Rx + 1, y
(i) = Rx, y

(i) − A− + A+ . (9)

This updating procedure clearly applies to vertically adjacent ROIs as well.

Since only a subset of the elements of R are required for sampling, the corresponding update 

elements of A+,A− may be calculated individually for the sampling locations. Each sampling 

location will then require only 2w multiply-add operations for updating from one ROI to the 

next. Given the updating procedure, to calculate TPCF features over an entire phase image 

requires only P total FFTs to initialize R0, 0
(i) , i = 1, …, P. With the initialization calculated the 
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updating procedure is used to iterate the ROI both horizontally and vertically through the 

remaining positions.

The updating procedure does not compromise numerical accuracy in the calculation of 

autocorrelation. Since the elements of R represent counts of pixels with a given separation 

there is no accumulation of error through repeated rounding operations. The updating 

procedure also provides flexibility in choosing the ROI size w since performance is not 

subject to the restrictions on FFT size.

Results comparing the time performance of updating against the ordinary FFT method are 

presented in Section VIII.

IV. Parallelization

The procedure for calculating TPCF feature vectors from a phase image is a simple data 

parallelism. The image may be divided among different nodes, sockets, or cores, with each 

resource computing TPCF features for a separate portion of the image.

The implementation used for the experiments of this chapter assumes a head/worker 

organization. A single node loads the phase image, partitions it into horizontal strips and 

distributes the strips to processing elements (including itself) using asynchronous 

communication and double buffering to overlap communication with disk operation. Each 

node calculates the TPCF features for its portion of the image and returns the results to the 

head node. Message Passing Interface (MPI) is used for communication between sockets 

and nodes [10] to achieve multi-node and symmetric multiprocessor (SMP) parallelism.

V. GPU Implementation

The massive parallelism and fast memory present in graphics processor hardware makes 

GPUs an obvious choice for many image processing tasks. The Compute Unified Device 

Architecture provides a convenient interface for programming image processing and other 

general-purpose computation tasks on NVIDIA GPU hardware [11]. The basic unit in the 

CUDA interface is the thread. Threads are organized into blocks that are mapped to GPU 

processors. The threads in a block share a limited but fast on-chip memory called shared 
memory. Threads in distinct blocks may not communicate. A large store of global memory 
provides slower access, and is often a staging area between CPU memory and the work 

happening in GPU multiprocessors. A complete review of the CUDA architecture is 

available in [11].

The process of calculating TPCF features contains both fine and coarse parallelisms: the 

computation of sample updates (fine) and computation of ROIs (coarse). The fine level of 

parallelism exists within a single ROI and is the computation of the select update values, the 

normalization of updated locations, and the bilinear interpolation to calculate S2
(i)(x). There 

are no dependencies in any of these processes so each is easily distributed. The coarse level 

of parallelism is the simultaneous calculation within multiple ROIs. Clearly the process of 

correlation updating is dependent though, as updating the autocorrelations for Φx+1,y 
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requires the autocorrelations for Φx,y to be available. Both of these levels of parallelism can 

be effectively mapped to GPU using the CUDA block and thread parallelisms.

At the fine level, the computation of update values and bilinear interpolations can be divided 

among threads in a single block. Fine level details aside, at the course level sequences of 

dependent ROIs can be divided among blocks. The arrangement into dependent sequences of 

ROIs is essential since distinct blocks are unable to cooperate. A simple way to achieve this 

arrangement is for each block may process a horizontal strip of ROIs {Φ0,y,Φ1,y, 
… ,ΦN−w,y}. Each block may then perform the updating sequentially on its sequence of 

ROIs while other blocks do the same, achieving the coarse parallelism.

For the fine level parallelism the kernel runs in an iterative manner, starting with initialized 

values for R0, y
(i) , i = 1, 2, …, P and lists of the sampling locations and interpolation 

coordinates. In the first step, portions of Φ0,y are loaded into shared memory, and each 

thread calculates the update values for one sampling location until the list is exhausted. 

These sampling locations are then updated and normalized. In the next step, each thread then 

calculates one interpolation until the interpolation list is exhausted. The threads then reduce 

the interpolations, averaging to calculate S. The kernel repeats this process for each ROI in 

the dependent sequence and then expires.

A. Memory access patterns and shared memory

With each thread calculating a pair of update values, the memory accesses to Φ overlap 

significantly among threads. Each update value requires w multiply-add operations, and 

some elements of Φ may be accessed up to w times. For this reason Φ is stored in shared 

memory to avoid repeated reads to global memory. This decision is key since effective 

shared memory usage is one of the critical components of algorithm performance on GPU. 

Due to limited shared memory sizes, the autocorrelation matrices are maintained in global 

memory. This presents a problem as the calculation of update values cannot be organized 

among the threads so that accesses to R(i) are coalesced. Storing R in texture memory would 

be beneficial for caching and hardware interpolation, however textures are read only and 

cannot be changed within the duration of a kernel.

The limitations on shared memory size prohibit a general implementation for different ROI 

sizes. For this reason, the implementation used in Section VIII focused on the case w = 

32,Δθ = π/8 that is useful for the analysis of 5X magnification images. Each block was 

assigned 128 threads, 2176 bytes of shared memory, and 8 registers/thread to achieve a 

100% occupancy on a Quadro FX5600 card.

VI. Related works

For the proposed fast correlation updating algorithm, a similar idea is found in the work on 

fast median filtering [12]. In this algorithm the ROI filter response is calculated at every 

position in the image by updating a kernel histogram based on the incoming and exiting 

information as the ROI shifts.

Cooper et al. Page 7

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2018 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Commodity graphics hardware has become a cost-effective parallel platform to implement 

biomedical imaging applications. In radiology, GPU processing has been used to accelerate 

tomographic reconstruction [13], registration [14], and segmentation [15]. In pathology, 

GPU processing has been used to accelerate both nonrigid registration [16] and 

segmentation [17] of very large high-resolution microscopy images.

VII. Experimental Setup

Experiments were performed to examine the effects of correlation updating, parallelization, 

and GPU implementation. Four implementations for calculating TPCF features were 

produced:

1. Serial direct FFT. A fully serial implementation of the direct FFT-based 

method, written in C++ using the FFTW library [6].

2. Serial correlation updating. A fully serial implementation of the correlation 

updating method, written in C++.

3. Parallel correlation updating. A parallel SMP/multi-node implementation of 

the correlation updating method, written in C++ using MPI.

4. GPU correlation updating. A GPU implementation of correlation updating, 

using C++/CUDA. The implementation is specific for w = 32,Δθ = π/8.

A. Hardware

The above implementations were tested on a GPU equipped cluster, the BALE system at the 

Ohio Supercomputer Center. The BALE supercomputer is endowed with 55 workstation 

nodes based on a dual-core Athlon 64 X2 architecture with integrated graphics card and 16 

visualization nodes enhanced with dual-socket × dual-core AMD Opteron 2218 CPUs and 

dual-card Nvidia Quadro FX 5600 GPUs. All of these nodes are interconnected with 

Infiniband, and include a 750 GB, 7200 RPM local SATA II hard disk with 16 MB cache.

All GPU experiments and comparisons were run on the sixteen visualization nodes, where 

each node has 8 GB of DDR2 DRAM running at 667 MHz on the CPU side and 2×1.5 GB 

of on-board GDDR3 DRAM running at 1600 MHz on the GPU side, for a total of 11GB 

available DRAM per node. The remaining experiments were performed on the workstation 

nodes.

B. Data

Two sets of data were used in testing the three implementation varieties. The first dataset is 

used to compare direct-FFT and correlation updating and to examine scalability for the 

parallel implementation. It consists of ten 1000 × 1000 five-phase images taken from 20× 

magnification digitized mouse placenta tissue stained with hematoxylin and eosin.

The GPU time performance experiments used randomly generated images of size 256×256, 

512×512, and 1024× 1024 with two, four, and eight-phase variations.
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VIII. Results

A. Correlation Updating

To compare the performance of correlation updating with the direct-FFT method, TPCF 

features were calculated for the ten test images using the parameters of Table I. Parameters 

were chosen to reflect typical choices for the segmentation 5× and 20× magnifications, and 

also favorable and unfavorable FFT sizes. In the power of two cases the 2w−1 DFT was 

padded to 2w. The transforms for the non power of two cases were not padded. Justification 

for this choice is provided in Table II where it is clear that this padding would be detrimental 

in the w = 130 case, and would only help marginally in the w = 34 case.

The execution times for the serial direct-FFT and correlation updating calculations are 

presented in Figure 3. The average per-image execution times for direct-FFT are 1280, 

11637, 43129, and 126489 seconds for the w =32, 34, 128, and 130 sizes respectively. The 

corresponding average times for correlation updating are 162, 178, 3474, and 3557 seconds. 

Overall the increase in execution times from the small window cases to the large window 

cases are considerable. From w = 32 to 128, the increase for direct-FFT is 34× where the 

corresponding increase for correlation updating is only 21x. There is a strong penalty with 

the direct-FFT implementation for non power of two cases, roughly a 10× increase for the 

small window sizes and 3× for the large. The correlation updating implementation does not 

suffer the same penalties with commensurate increases limited to 1.1× for the small window 

case.

The average speedup factors for correlation updating are presented in Table III. The speedup 

factors range between 8× and 67× depending on w. The larger speedup factors correspond to 

the non-power-of-two sizes due to the large penalty on FFT performance.

B. Parallelization

To demonstrate parallelization scalability the TPCF features were calculated for the large 

power of two case using the parallel implementation of correlation updating on 2, 4, 8, 16, 

32, and 64 processors on 1, 2, 4, 8, 16, and 32 nodes. The execution times for these 

configurations are presented in Figure 4. Table IV contains the speedup factors for the 

parallel execution as compared to a fully serial single node implementation. These speedup 

factors are depicted graphically in Figure 5. There is a consistent reduction in execution time 

all the way through 16 processors, with more limited gains for the 32 and 64 processor 

cases, indicating that the unparallelized portions of execution account for a considerable 

portion of the total execution time. There is a relatively large amount of communication 

required for the worker nodes to report TPCF values to the head node, with each ROI 

generating P(w/2+1) double-precision elements. In the case of a single 1000×1000 test 

image this corresponds to approximately 1.85 GBytes. Where increasing the number of 

nodes reduces the time spent in computation, the time spent in communication remains 

unchanged and the result on scalability is apparent.
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C. GPU Implementation

To demonstrate execution time performance TPCF features were calculated using correlation 

updating implementations on both CPU and GPU for random images of size 256×256, 

512×512, and 1024×1024 with two, four, and eight phases. The results from this experiment 

are presented in Table V. The corresponding speedup factors are presented in Table VI. All 

measures of execution time include communication and transfer of data between the CPU 

and GPU. For both CPU and GPU, execution time increases linearly with image size and the 

presence of additional phases, as expected. The speedup factor is greater for the more 

compute-intensive cases with larger image sizes and more phases, as the total amount of 

time spent in communication represents a smaller percentage of the total execution time. The 

kernel execution is interrupted by the CUDA watchdog timer in the case of 1024 × 1024 

eight phase image. This is a feature of CUDA enabled to interrupt a kernel after a prescribed 

period to prevent a loss of graphics response for the user. The duration of the kernel depends 

on the sizes of the dependent sequences of ROIs, so to avoid watchdog timer interruptions 

the the sizes of these sequences must be limited based on the allowed kernel execution 

maximum.

Numerical Accuracy—The calculation of TPCF feature vectors is just one step in the 

segmentation procedure. After the features are calculated, they are subjected to 

dimensionality reduction prior to being clustered to form a segmentation. To demonstrate the 

effect on the end segmentation result, segmentations were generated for a digitized sample 

of hematoxlyin and eosin stained mouse placenta tissue to segment two major tissue layers 

(the labyrinth layer vs. the spongiotropoblast layer) using both double-precision CPU 

calculated features, and single-precision GPU calculated features (Figure 6). The 

segmentations produced were identical to the pixel indicating that the loss of precision in 

feature calculation has no impact on the outcome of the downstream analysis in this case.

IX. Discussion and Conclusions

TPCF features provide a method for the segmentation of histological images, however, this 

capability is accompanied by a significant computational burden. The direct-FFT method for 

deterministic TPCF calculation makes use of an efficient algorithmic staple, but execution 

time is strongly influenced by ROI size w as dictated by FFT transform size guidelines. The 

direct method also neglects the sparse autocorrelation sampling pattern and and close 

relationship between neighboring regions of interest resulting in significant amounts of 

wasted computation.

This paper discusses a novel method of correlation updating that uses the derived 

relationship between the autocorrelations of neighboring ROIs to update TPCF values rather 

than computing them from scratch. This method simultaneously addresses the considerations 

of wasted computation and ROI size sensitivity without compromising accuracy. Using the 

linearity of correlation, the autocorrelation calculations can be updated from one ROI to the 

next, rather than computed from scratch. Furthermore, performing these updates directly in 

the image domain permits the sampling locations to be selectively updated, and frees the 
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algorithm from the sensitivity to ROI size. The improvements of correlation updating result 

in a speedup from 8–67× over the direct-FFT method.

Both multi-node and GPU hardware solutions were pursued to further reduce execution 

time. The parallelization of feature calculations produces a speedup of up to 42× on 64 

processors, reducing the total execution time for the set of ten 1000×1000 test images from 

9.6 hours to just 13 minutes. General purpose GPU implementation of correlation updating 

provides a further 16× improvement over CPU, without compromising accuracy in 

segmentation results. This gain is impressive considering it is more than equivalent to using 

16 processors on eight nodes, and puts performance within reach of end users who do not 

have access to production computing clusters.
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Figure 1. 
Computation of TPCF features. (a) A ROI Φ(x, y) is defined in the phase image. (b) A 

binary mask is generated for each phase of the ROI. (c) The autocorrelation R(i) is calculated 

for each mask and normalized and sampled to generate the TPCF S2
(i)(r). (d) The ROI is 

iterated throughout the entire image.
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Figure 2. 
Sparsity of samples for autocorrelation circumferential sampling. (a) Full autocorrelation 

matrix with the sampling pattern imposed. Red indicates the interpolation locations, black 

indicates bilinear sampling points. Very few samples of the full autocorrelation are required 

for calculation.
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Figure 3. 
Execution times for serial direct-FFT and correlation updating. (a) Small w case. (b) Large 

w case.
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Figure 4. 
Execution times for parallel correlation updating, w = 128 case.
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Figure 5. 
Scalability of parallel TPCF correlation updating implementation.
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Figure 6. 
Example results of segmentation of mouse placenta histology images. The green lines marks 

the boundary generated by the TPCF-based algorithm. The blue lines marks the boundary 

manually drawn by a student with pathology training.
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Table I

Correlation updating and direct-FFT comparison parameters.

case small-pow2 small large-pow2 large

w 32 34 128 130

Δθ π/8 π/8 π/16 π/16
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Table III

Average speedup for correlation updating.

Small Large

w 32 34 128 130

speedup 7.9× 67.0× 12.4× 35.6×
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Table V

Execution times for GPU correlation updating implementation.

CPU, GPU

phases 256×256 512×512 1024×1024

2 3.64, 0.33 16.69, 1.15 71.07, 4.52

4 7.28, 0.55 33.22, 2.21 141.13, 8.84

8 14.54, 1.02 66.41, 4.32 282.71, ★

★
-watchdog timer intervention
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Table VI

GPU/CPU speedup.

phases 256×256 512×512 1024×1024

2 11.1 15.6 15.7

4 13.2 15.0 16.0

8 14.2 15.4 ★

★
-watchdog timer intervention
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