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Abstract

Diabetes is the seventh leading cause of death in the United States, but careful symptom 

monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one 

of the solutions to help patients with diabetes and their healthcare professionals monitor health-

related measurements and provide dynamic feedback. However, data-driven methods to 

dynamically prioritize and generate tasks are not well investigated in the domain of remote health 

monitoring. This paper presents a wireless health project (WANDA) that leverages sensor 

technology and wireless communication to monitor the health status of patients with diabetes. The 

WANDA dynamic task management function applies data analytics in real-time to discretize 

continuous features, applying data clustering and association rule mining techniques to manage a 

sliding window size dynamically and to prioritize required user tasks. The developed algorithm 

minimizes the number of daily action items required by patients with diabetes using association 

rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of 

these tasks maximizes information gain, thereby improving the overall level of patient adherence 

and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms 

show that the developed algorithm can predict further events with higher confidence levels and 

reduce the number of user tasks by up to 76.19 %.
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I. INTRODUCTION

In the United States, 8.3% of the population has diabetes with $174 billion spent annually on 

the disease. If this trend continues, one in three Americans is expected to have diabetes in 

their lifetime in the next forty years [1]. Diabetes is the seventh leading cause of death in the 

United States and accompanied by significant complications including blindness, 

hypoglycemia, renal failure, cardiovascular disease [2]. Various studies have shown that 

regulating and monitoring comorbid conditions including blood glucose, symptoms, blood 

pressure, weight and activities can have a significant impact in helping delay or prevent 

complications [3][4][5][6]. With recent advances in technology, people supplement or even 

tailor this process using sensors and data processing units in their home or in the hospital 

using remote health monitoring systems. Remote health monitoring systems can help 

patients with diabetes and their healthcare professionals monitor health-related 

measurements and provide real-time feedback.

In remote health monitoring, patients are required to perform a series of daily tasks 

requested by their healthcare professionals. For instance, congestive heart failure patients in 

Chaudhry’s work were required to answer 16 questions and measure and enter their weight 

using telephone keypads [7] and the study results showed a high missing data rate. Authors 

in [8] required patients to measure weight, blood pressure, and a 12-symptom questionnaire 

on a daily basis and showed frequent system non-use. Such system non-use in remote patient 

monitoring can severely degrade the patient participation rate and the effectiveness of 

designed systems. As missing data can lead to biased and dangerous conclusions, it is 

important to reduce the missing data rate and adequately handle missing data [9]. As task 

complexity is one of the main factors that highly affect user participation and satisfaction 

[10][11][12][13], reducing the number of required tasks should decrease missing data rate.

For designing a human-centered system, it is critical to distinguish which tasks should be 

handled by users or automatically processed by computers [13]. In remote health 

monitoring, analyzing the output of user tasks in real time can help schedule sequences of 

tasks, avoid unnecessary tasks, and increase usability and effectiveness of the system. Most 

remote health monitoring systems utilize medical domain experts’ knowledge to determine 

and assign priorities and task sequences. For example, Tang applied a heuristic evaluation 

method using expert knowledge [14] and Dabbs utilized expert knowledge and patients’ 

survey feedback for designing a health monitoring system [15]. As such, most remote health 

monitoring systems do not apply a data-driven dynamic process for designing human-

centered units and yield redundant information gains.

This paper describes a human-centered task optimizing process combining data 

discretization methods and first-order logic to reduce the burden in remote diabetes patient 

monitoring systems. This technique was verified using WANDA (Weight and Activity with 

Blood Pressure and Other Vital Signs), a remote monitoring system leveraging wireless 

sensor and communication technologies to monitor the health status of patients with diabetes 

[8]. The WANDA diabetes study was designed in collaboration between the UCLA 

Computer Science Department and the UCLA Ronald Regan Medical Center. In this study, 
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we applied data clustering and association rule mining techniques to 21 of the subjects with 

Type-2 Diabetes enrolled in the intervention group. The experimental results show that the 

developed algorithm can reduce the required time windows by 80% compared to the case of 

using experts’ knowledge to reach the maximum conditional probability. In addition, the 

developed algorithm reduces the number of tasks by up to 76.19% with a minimum 

confidence of 0.95.

II. RELATED WORKS

A. Remote Health Monitoring for Diabetics

According to Desai [16], an effective remote health monitoring system must contain the 

necessary elements that together complete the circle of disease management. Some of the 

important circle elements are the reliable measurement of physiological variables that can 

help in the early detection of adverse events, the efficient transmission of data to enable a 

timely response, the direct reception of data by personnel qualified to recommend an 

effective intervention, and patient adherence.

Many studies [17][18][19] have shown the effectiveness of remote health monitoring for 

patients with diabetes. Criteria for evaluating the effectiveness of remote health monitoring 

include the accuracy of the collected data, automated feedback and decision support and 

improvements in clinical outcomes, inlcuding HbA1c or glycemic variability [20]. The 

studies have demonstrated the effectiveness of well-designed remote monitoring systems 

that collect accurate data using sensors and reduce the time interval between blood glucose 

measurements and feedback from healthcare professionals. Well-designed remote health 

monitoring can also help patients manage their medications and daily behavioral routines 

including their dietary intakes and activity patterns.

IDEATel is one of the most successful remote health monitoring studies between 2000 and 

2008 [18][21]. IDEATel utilized devices and techniques from American Telecare [22]. In 

this study, patients with diabetes monitored and uploaded blood pressure and blood glucose 

values through a serial port connected to a computer, and also participated in 

videoconferencing, electronic messaging, and accessing study web pages. The IDEATel 

study resulted in improved HbA1c, LDL-cholesterol and blood pressure levels over 5 years 

compared to the control group who did not use IDEATel components.

In Stone’s study [19], patients with diabetes measured blood glucose, blood pressure, and 

weight using the Viterion 100 Telemonitor [23] connected to a telephone line. If the 

transmitted readings were in an abnormal range, nurse practitioners adjusted medication for 

blood glucose, blood pressure and lipid control based on American Diabetes Association 

target values. The intervention resulted significant reductions in HbA1C levels, which is 

relevant to long-term blood glucose level.

Montori’s study [24] also demonstrated improvement in HbA1c levels after 6 months use of 

a telemonitoring system. The patients in the intervention arm measured their blood glucose 

using the ACCU-CHEK Complete glucometer [25] and a phone-line connection. Nurses 
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spent an average of 50 more minutes per patient providing feedback to patients over the 

phone, demonstrating the increased collaboration between patients and their healthcare 

providers with the use of these technologies. As diabetes control is so closely linked to 

variations in daily activities such as dietary intake and physical activity, the exchange of 

information regarding daily blood glucose readings, meal and/or activity planning are 

critical for patient education and support [26].

B. Patient-oriented Remote Health Monitoring

One way to quantify patient satisfaction with health monitoring systems is to evaluate the 

amount of system use [20]. Huang [27] designed a neural network-based remote health 

monitoring system adoption model to predict the behavior intention toward using the system, 

using survey answers as inputs to the model (Figure 1).

Wu’s study [28] showed that acceptance and satisfaction with a mobile healthcare system is 

related to compatibility, ease of use and perceived usefulness. In addition, this study showed 

that the perceived usefulness and ease of use are highly related to self-efficacy, which is a 

belief that the person has an ability to execute a series of required tasks. As self-efficacy is 

related to task complexity [29], it is important to make the task procedure simple.

Time and cost-effectiveness is also an important criterion related to patient satisfaction of 

remote health monitoring systems. Time-effectiveness is a factor of perceived ease of use, 

while cost-effectiveness is one of perceived usefulness [30]. Estimations in the degree of 

cost reduction with use of remote health monitoring studies compared to traditional care 

have varied between 1.6% to 68.3% [31]. Reduced hospitalization and nursing home visits 

are major contributors of the cost lowering effects in remote health monitoring. However, 

initial costs of device and service purchase can be an obstacle to user satisfaction despite 

long-term savings [18]. Therefore, reducing the number of required devices and daily tasks 

can reduce further costs of equipments and physician workload.

In our study, we focus on the perceived ease of use and usefulness of the system for 

enhancing patient satisfaction and adherence rates by decreasing the number of required 

sensors and tasks.

III. SYSTEM ARCHITECTURE

WANDA is a three-tier end-to-end remote monitoring system with extensive hardware and 

software components designed to cover the broad spectrum of the telehealth and remote 

monitoring paradigm. The overall architecture is summarized in Figure 2 and further details 

are available in [8].

The first tier of the architecture consists of a data collection framework, which is formed 

from a heterogeneous set of sensing devices that measure various bodily statistics such as 

blood glucose, weight, body fat, body water, blood pressure, heart rate, blood oxygen 

saturation and body movements. Considering the variability in age and preferences with 

regard to network options [1][32], we offer several communication options. The data from 

Suh et al. Page 4

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these sensors are collected, processed, and transmitted via a phone-line, Ethernet or 

smartphone-based gateway to the cloud—the second tier of the WANDA architecture.

Data are stored and indexed using a scalable database and can be easily accessed. Data 

collected from the first tier are sent to web servers to store data and provide monitoring 

applications such as those in Figure 3. Through the monitoring applications, healthcare 

providers can leave comments and annotation of collected data, as well as export data. 

Additionally, the WANDA web application includes a basic statistical analysis tool to verify 

the test result and the effectiveness of the clinical trial. This function includes Wilcoxon rank 

test, log-rank test, t-test, etc. which are widely used in many randomized trials [33].

The last tier of the WANDA architecture is a backend analytics engine capable of 

continuously generating statistical models and predicting outcomes using various machine 

learning and data mining algorithms. Once data are transmitted to the server, basic 

preprocessing and dimensionality reduction algorithms are executed prior to data analytics. 

Data cleaning and signal transformations are the main goals of this pre-processing step. The 

analytics process normally consists of two stages. First, the data are downloaded and 

analyzed offline based on various hypotheses. Once a strong model has been generated and 

validated, it can then be uploaded to the server to perform real-time analytics. One of the 

challenges is to optimize the algorithm so that it can be executed in a real-time fashion. 

Finally, when the algorithm detects a pattern that is strongly associated with a predictable 

user action, a predicted outcome of task optimization, missing data or an undesirable 

outcome, real-time feedback is provided to remote health monitoring systems, patients and 

healthcare professionals.

IV. TASK OPTIMIZATION

As one of the data analytics in the third tier, WANDA performs data transformation for 

quantizing sensory data readings and executes data association rule mining. Instead of using 

experts’ knowledge, WANDA finds data clusters and their ranges in order to discretize 

timestamps and blood glucose readings. Association rule analysis is a method to find 

interesting relations among attributes in large data sets. Rules are derived using previously 

collected data to help predict the current or future behaviors of a patient.

First order logic from association rule mining can be used for patient task optimization, 

emergency event prediction and system optimization, as shown in Figure 4. Association rule 

mining and its feedback are used for reducing the number of tasks required by patients while 

increasing information gain. One of the advantages of the task optimization step is 

improving patients’ adherence to remote health monitoring and enhancing missing data 

imputation results by obtaining more data or finding underlying data relationships. After 

task optimization for improving patient participation, missing data imputation techniques 

can be applied to WANDA in order to predict missing values and provide alarms to 

healthcare professionals when the predicted missing values are out of acceptable range [35]. 

In addition, association rules related to emergency events can be used to generate early 

adaptive alarms and guidance to prevent emergency events. For example, analyzing past vital 
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signal data can help find trends of readings, which cause emergent events such as 

hospitalization. Also, the association rule mining finds users’ tendency of remote health 

monitoring system usage and provides dynamic feedback to the system for optimizing 

battery life.

A. Data Discretization

Sensor readings and corresponding timestamps in remote health monitoring are continuous 

signals. To reduce the dimensionality and complexity of processing continuous numeric and 

timestamp data, it is necessary to discretize the data. Under supervised settings, patients 

might have regular schedules of meal and blood glucose measurement such as 6:30 am, 

11:30 am and 5:00 pm [38]. However, in unsupervised environments such as remote health 

monitoring, patients can have more flexible schedules, so it is hard to categorize time frames 

as morning, afternoon and evening. In addition, as patients with diabetes generally have 

higher blood sugar, their readings can be more biased and may not follow normal 

distribution or standards [3]. Moreover, results of Jarrett’s study show that blood glucose 

levels in the afternoon or evening are generally higher than in the morning [39]. Since blood 

glucose levels vary depending on the time of day, discretizing blood glucose data 

equivalently for different time intervals can result in biased results.

Therefore, it is necessary to categorize and quantize data using data-driven methods instead 

of experts’ knowledge or human intuition. In this paper, we assume that the collected sensor 

data follows a mixture of Gaussian distribution and apply an expectation maximization (EM) 

algorithm to cluster data into the pre-defined numbers of bins. The EM algorithm [40][41] is 

an iterative method to optimize the estimation of an unknown parameter ⊖, given measured 

variables U and unmeasured variables J. The objective of the EM algorithm is the 

maximization of the posterior probability (1) of the parameter ⊖ given U and J.

(1)

The EM algorithm consists of two steps: The expectation step (E step) and the maximization 

step (M step). The E step finds a local lower-bound to the posterior distribution while the M 

step optimizes the bound obtained from the E step using iteration. In the E step, the 

algorithm calculates the expected value of the log likelihood function under the current 

estimate of the parameters ⊖t of the conditional distribution J given U. This step finds the 

best lower bound, B(⊖|⊖t)

(2)

while . The M step iterates and chooses ⊖t+1 by 

maximizing the bound, B(⊖|⊖t) from the E step
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(3)

while Qt(θ) is the expected complete log-likelihood, log P(U,J|θ) and P(θ) is the prior on the 

parameters θ.

The developed algorithm quantizes timestamps of sensor readings and sensor readings in 

each time range are discretized. Based on mean and standard deviation values of each 

Gaussian curve from the EM algorithm, the developed algorithm finds intersection points 

and these points are used for discretizing time and blood glucose ranges.

B. Data Association Rule Mining

Association rule analysis is a method to find interesting and strong association among 

attributes in large data sets. One example is affinity analysis to find the purchase behavior of 

different groups of consumers and their market baskets [42]. The results of affinity analysis 

can be used for arranging items in the store, planning store promotions, etc.

In remote health monitoring for patients with chronic diseases, patients’ health status 

changes dynamically, but health-related readings are correlated [43][44]. Therefore, finding 

trends and associations of patients’ data can help to reduce the number of tasks, decide the 

order of tasks, and even enable to provide early adaptive alarms to prevent emergency 

situations.

In WANDA, rules are derived using previously collected data to help predict the status and 

behavior of a patient. The WANDA implementation uses data collected within a dynamic 

sliding window w determined by the algorithm in Figure 5 before the current or future 

measurement. Association rule mining and its feedback are used for reducing the number of 

tasks required by patients while increasing information gain. In the data preprocessing step, 

the developed algorithm performs data cleaning and discretization for removing erroneous 

data and discretizing timestamp and indexing data (see section above). The system also 

indexes blood glucose and questionnaire response data as multiple measurements and 

system non-use. Additionally, information on whether a caregiver contacted the patient for 

each day is used.

The developed algorithm applies the Apriori algorithm [45] to derive first order logic rules, 

after preprocessing the data (Figure 5). The discretized and categorized data are used in the 

algorithm as inputs and rules are derived by looking back a variable number of days (time 

window). The time window is increased by one day for each iteration. The algorithm 

calculates the support and confidence of each implication and chooses implications 

qualifying threshold limits. In each subsequent pass, the large item sets found in the previous 

step are used to generate the candidate sets (the largest item sets). The results of each step 

are large item sets of qualifying minimum support and confidence in the given time window.
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Let I = {i1,i2,…imbe a superset of all possible task outputs. Let D be a set of events such that 

D⊂I. An association rule is an implication of A⇒B where A⊂I, B⊂I and A∩B= Ø. 

Confidence c means that c% of events in D contain A and B. Support s indicates s% of 

events in D contain A or B. Conditional probability p indicates p% of events in D contain B 
when A happens. The developed algorithm requires generating association rules that have 

support, confidence and conditional probability greater than the user-defined thresholds, 

minimum support(smin), confidence (cmin) and conditional probability (pmin).

When Apriori returns first order logic rules, A⇒B, the algorithm calculates the 

contrapositive rules, ¬B⇒¬A. If the timestamp of the consequent in either implication 

(original rule or contrapositive rule) is larger than the timestamp of the antecedent and the 

implication is not a subset of any existing rules, the generated rule is added to the rule set. 

However, if a subset of the existing rule has a higher conditional probability, the algorithm 

updates the existing rule with a new conditional probability value. The process stops when 

there is no new rule and the algorithm returns the final rule set (Figure 5).

The generated rules in Rule are prioritized based on the conditional probability values and 

applied to the remote health monitoring system. Using the implication rules, the system can 

reduce user tasks by monitoring necessary tasks and predicting unperformed tasks. As the 

Apriori algorithm has excellent scale-up properties, the developed algorithm can be applied 

to the system for dynamically arranging daily patient tasks depending on the size of dataset 

[45].

V. RESULT

A. Subjects and Data Sets

This study was approved by the UCLA Institutional Review Board (IRB) and patients were 

randomized to either intervention or control groups starting June 1st, 2011. Participants 

eligible for recruitment were adults with Type 2 Diabetes, HbA1c≥7.5 who were recently 

hospitalized. Patients with active malignancy or those unable to provide informed consent 

were excluded.

In this analysis, we used data from 21 study participants assigned to the intervention arm 

(see Table I) and the average participation duration is 52.23 days. Patients in the intervention 

arm are required to measure their blood sugar up to three times a day (morning, afternoon 

and evening) and answer four questions per day (see Table II). The defined acceptable 

ranges for blood glucose are between 80 and 200 mg/dL [3]. Acceptable ranges of 

questionnaire values are denoted in Table II.

The timestamps are discretized into three different categories and blood glucose data in each 

time category were discretized into three levels. Collected data are also indexed if there are 

any missing data or multiple measurements. Existence of call logs between a patient and 

caregivers are labeled. The pre-defined threshold for smin and cmin in APRIORI are both 

0.95 and pmin is 0.85 in MAIN LOOP in Figure 5. The total number of instances used in 

this study is 1117 and each data has 54 attributes per day including patients’ profile.

Suh et al. Page 8

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Data Discretization Methods and Result

To find the best discretization method, we applied different discretization approaches using: 

1) the experts’ knowledge utilized in Hanefeld and Malherbe’s studies ([3][38]), on blood 

glucose and timestamp accordingly; 2) the EM algorithm ; and 3) the combination of 

experts’ knowledge and the EM algorithm.

For experts’ knowledge-based discretzation (EKTBD), timestamps are categorized into three 

different time periods (Ti) and each timestamp period is T1 : 7:30:00–12:00:00, T2: 

12:00:00–16:30:00 and T3: 16:30:00–21:00:00, and blood glucose readings are categorized 

into three different level (Bi) and each blood glucose level is B1: <80 mg/dl, B2: 80–200 

mg/dl and B3:> 200 mg/dl.

For discretizing timestamps only (EMTD), we applied the EM algorithm on collected 

timestamps of blood glucose measurements and applied experts’ knowledge on blood 

glucose readings. Timestamps are discretized as T1: 0:00:00–8:29:59, T2: 8:29:59–15:09:45 

and T3: 15:09:45–23:59:59 and blood glucose readings are discretized as B1: < 80 mg/dl, 

B2: 80–200 mg/dl and B3: > 200 mg/dl.

For discretizing blood glucose only (EMBD), we utilize the EM algorithm on collected 

blood glucose readings and applied experts’ knowledge on timestamps. Each timestamp 

period is T1 : 7:30:00–12:00:00, T2: 12:00:00–16:30:00 and T3: 16:30:00–21:00:00, and 

blood glucose readings are categorized as B1: < 170.8 mg/dl, B2: 170.8–274.0 mg/dl and B3: 

> 274.0 mg/dl (Figure 6).

For quantizing both timestamps and blood glucose readings (EMTBD), we utilized EM 

algorithm on collected timestamps of blood glucose measurements to discretize data into 

three bins and readings collected in each time period is also discretized into three levels. In 

other words, each time interval has different standards of categorizing blood glucose data in 

three different levels. Each discretized timestamp period and mean and standard deviation 

values of its three different blood glucose levels are in Table III. We assume that the readings 

are a mixture of Gaussian distribution and find intersection of Gaussian curves. The obtained 

B1, B2, B3 ranges of T1 (B11, B12, B13) are <166, 166–372, and >372and B21, B22, B23, B31, 
B32, B33are < 169, 169–265, > 265, < 185, 185–318, > 318 mg/dl accordingly.

The experimental results show that the maximum sliding window size to make the 

conditional probabilities of ten best Apriori first order logic rules 1.00 is 4 days in EMTBD, 

while other methods require 5 days (Figure 7). Therefore, the developed algorithm can 

reduce the required time windows to 4 days to reach the maximum conditional probability, 

while utilizing experts’ knowledge requires 5 days. Furthermore, discretizing timestamp and 

quantizing blood glucose data of each time frame using the EM algorithm yields less 

computational power and maximizes information gain in a shorter period of time compared 

to using experts’ knowledge-based methods.
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C. Data Asoociation Rule Mining Result

The proposed algorithm had optimal results with a look-back window of 5 days. The 

minimum confidence peaks at 1.00 at 2 to 5 days. Compared to our earlier study [37] which 

only utilizes experts’ knowledge, the combination of EM algorithm-based discretization and 

Apriori algorithm shows improvement in 1.292% of minimum confidence.

Figure 8 shows the number of new rules added or updated with increasing window size. A 

total of 7 rules were added with a window size of one day and a total of 19 rules in Table IV 

were updated with a window size of 5 days. No rules were added or updated with a look-

back window of more than 5 days. Compared with earlier study results in [37], a larger 

amount of data (546 data in [37] and 1117 data in this study after data cleaning) and the EM 

algorithm-based discretization yields more rules with larger size of sliding window from the 

Apriori algorithm.

The total number of patient tasks was reduced by up to 76.19% with negligible information 

loss. The reduction in patient tasks allows the system to generate additional tasks for patients 

to increase information gain. For example, as shown in Table IV, it was found that responses 

to Q3 and Q4 can be inferred from each other. This allows the system to generate a new 

unrelated question to replace Q3 to learn additional information about this patient (with no 

added work by the patient).

Compared with the algorithm in [46], the developed algorithm shows higher efficiency. 

However, since Flach’s algorithm finds new rules that the developed algorithm doesn’t 

generate, they can be used for generating helpful tips or reminders.

VI. CONCLUSION

The WANDA system was developed in conjunction with the University of California Los 

Angeles Computer Science and the UCLA Ronald Regan Medical Center. WANDA 

monitors health-related readings such as blood glucose, weight, blood pressure, etc. and 

analyzes sensor readings and patient profile data for improving the quality of care and 

preventing emergency situations.

In this study, we developed WANDA, a three tier remote health monitoring system and 

focused on increasing ease of use in order to improve patients’ system adherence. The 

developed system applies EM-based data discretization and Apriori rule learning algorithms 

and finds association rules using collected sensor readings with dynamic sliding windows. 

We assumed that sensor readings from patients are Gaussian mixture and quantize 

continuous features and applied Apriori algorithm which efficiently finds related data using 

support values. The designed algorithm minimizes the number of action items and 

reorganizes series of tasks for maximizing information gain.

In this work, we applied the developed algorithms to 1117 data sets from 21 patients with 

diabetes enrolled in the intervention arm. Patients are required to measure their blood sugar 

up to three times a day and answer four questionnaires daily. The experimental results show 

that the developed algorithm can reduce the number of tasks by up to 76.19% with minimum 
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support 0.95, minimum confidence 0.95, minimum conditional probability 0.85 and 

maximum time window size of 5 days. Compared to our earlier study [37], the EM-based 

discretization helps improve confidence levels of first order logics and predict further events. 

As the Apriori algorithm has excellent scale-up properties [45], the developed algorithm can 

be applied to the remote patient with low complexity.

Future studies will investigate and validate the significance of the obtained first order logic 

rules in this paper. To make the first-order logic richer to reduce required patient tasks 

dynamically, more data association rule mining techniques will be exploited and maximize 

the conditional probability and confirmation. In addition, patient survey data will be 

combined to predict adherence rate in advance, based on their perception and experience of 

remote health monitoring technologies.
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Figure 1. 
Huang’s research structure [27]. Note: perceived ease of use (PEOU), perceived usefulness 

and benefits (PUB), perceived disease threat (PDT), perceived barriers of taking action 

(PBTA), external cues to action (ECUE), internal signs (IS), attitude toward using (ATT), 

and behavioral intention to use (BI).
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Figure 2. 
System Architecture of WANDA.

Suh et al. Page 15

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
WANDA Monitoring Applications.
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Figure 4. 
Association Rule Learning Workflow in WANDA.
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Figure 5. 
Association Rule Learning Algorithm in WANDA.
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Figure 6. 
Gaussian Mixture of Blood Glucose in EMBD
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Figure 7. 
Required Window Size (Days) to Reach Maximum Conditional Probability, 1.
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Figure 8. 
Number of First Order Logics Added or Updated per Iteration.
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TABLE I

PATIENT POPULATION INFORMATION

Group Total Male Female Avg. Age

Intervention 21 18 3 48.13

Control 24 16 8 65.25
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TABLE II

Wanda Monitored Items and Acceptable Ranges

Items Values

Blood Glucose 80 – 200 mg/dl

Q1. Have you had any blood sugar readings < 80 or > 200? No

Q2. Have you missed doses of your medication? No

Q3. Today, is your health, good, fair or poor? Good, Fair

Q4. Compared to yesterday, are you feeling better, about same, or worse? Better, About same
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TABLE IV

Results of Data Association Rule Mining

IF THEN Conditional Probability

Answer of Q3 on Day 1 is Good/Fair AND 
Answer of Q4 on Day 2 is Better/About Same Answer of Q3 on Day 2 is Good/Fair 0.9970

Answer of Q3 on Day 1 is Good/Fair AND 
Answer of Q4 on Day 2 is Better/About Same 
AND Answer of Q4 on Day 3 is Good/Fair Answer of Q3 on Day 3 is Good/Fair

0.9990

Answer of Q3 on Day 1 is Poor

Answer of Q3 on Day 2 is Poor
Answer of Q3 on Day 3 is Poor
Answer of Q4 on Day 1 is Worse
Answer of Q4 on Day 2 is Worse
Blood glucose is above 372 before 8:30 am on Day 1
Blood glucose is above 372 before 8:30 am on Day 2
Blood glucose is above 372 before 8:30 am on Day 3

0.8889

Answer of Q4 on Day 1 is Better/About Same Answer of Q3 on Day 1 is Good/Fair 0.9961

Answer of Q4 on Day 1 is Better/About same 
AND Answer of Q4 on Day 2 is Better/About 
same Answer of Q3 on Day 2 is Good/Fair

0.9980

Blood glucose is less than 372 before 8:30 am on 
Day 1 AND Answer of Q4 on Day 2 is Better/
About Same AND Answer of Q4 on Day 3 is 
Better/About Same Answer of Q3 on Day 3 is Good/Fair

0.9990

Blood glucose is not below 166 AND not above 
372 before 8:30 am on Day 1 No Multiple measurement before 8:30 am on Day 1 0.9964

Multiple measurement before 8:30 am on Day 1

Blood glucose is above 372 before 8:30 am on Day 1
Blood glucose is below 166 before 8:30 am on Day 1
Blood glucose is above 265 between 8:29:59am and 
15:09:45 pm on Day 1
Multiple measurement between 8:29:59 am and 15:09:45 
pm on Day 1
Blood glucose is above 318 after 15:09:45 on Day 1
Multiple measurement after 15:09:45 pm on Day 1

0.9333
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