
UC Irvine
ICS Technical Reports

Title
A model checking approach to evaluating system level dynamic power management policies
for embedded systems

Permalink
https://escholarship.org/uc/item/5973p2ct

Authors
Shukla, Sandeep K.
Gupta, Rajesh K.

Publication Date
2001-09-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5973p2ct
https://escholarship.org
http://www.cdlib.org/

A Model Checking Approach to Evaluating
System Level Dynamic Power Management

Policies for Embedded Systems

Sandeep K. Shukla Rajesh K. Gupta

ICS
TECHNICAL REPORT

Technical Report# 01-49
(September 17, 2001)

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Information and Computer Science

University of California, Irvine

A Model Checking Approach to Evaluating System Level Dynamic
Power Management Policies for Embedded Systems

Sandeep K. Shukla Rajesh K. Gupta

Department of Information and Computer Science,
University of California at Irvine,

Irvine, CA 92697
E-mail:{skshukla,rgupta}@ics.uci.edu

1

1 5 2002

Contents

1. Introduction

2. Dynamic Power Management Strategies
2.1 Dynamic Power Management as a Game .

3. A Model Checking Approach
3 .1 An Example of a Multiple Power down states

4. Conclusions, Limitations, and Future Work

5. Acknowledgement

List of Figures

1
2

Single Sleep State Case
Multiple Sleep States Example

List of Tables

2

2

2
3

4
7

8

9

5
8

Abstract

System Level Power Management policies are typically based on moving the systemto various power
management states, in order to achieve minimum wastage of power. The major challenge in devising
such strategies is that the input task affival rates to a system is usually unpredictable, and hence the
power management strategies have to be designed as on-line algorithms. These algorithms are aimed
at optimizing wasted power in the face of nondeterministic task affivals. Previous works on evaluating
power management strategies for optimality, have used trace driven simulations, and competitive anal­
ysis. In this work, we build upon the competitive analysis based paradigm. Our work views a power
management strategy as a winning strategy in a two player game, between the power management al­
gorithm, and a non-deterministic adversary. With the power of non-determinism, we can generate the
worst possible scenarios in terms of possible traces of tasks. Such scenarios not only disprove conjec­
tured bounds on the optimality of a power management strategy, but also guides the designer towards
a better policy. One could also prove such bounds automatically. To achieve these, we exploit model
checkers used in formal verification. However, specific tools which are focused mainly on this kind of
power management strategies are under development, which would alleviate some of the state explosion
problems inherent in model checking techniques.

1

1. Introduction

For a range of embedded systems, as well as conventional systems such as servers, work stations, and

laptops, controlling power dissipation is an important system design issue [2]. This is either because

of limited energy supply in portable devices, or excessive power consumption due to ever increasing

micro-electronic integration that has adverse cost implications. Over the past few years, various meth­

ods to estimate and minimize the power in the design of systems, at various levels of design abstractions

have been proposed. However, in this work, we concentrate on the system-level power management

only. In the early stages of system design, one needs to be able to evaluate and estimate impacts of

power management policies enforced at the system level. In [3], a system modeling approach for dy­

namic power management strategy evaluation has been proposed. Their approach is based on creating

finite state models, with power states, and state transitions, with a cumulative power dissipation model.

However, as stated in [3], assessing the impact in a quantitative manner, of various alternative power

management policies on power and performance, is still an open problem. For example, the system level

power models in [3] are geared towards a stochastic simulation based evaluation of the power manage­

ment strategies. As a result, no analytical bounds are obtained, and also due to the usage of stochastic

simulations, the quantitative assessments, are as valid as the assumptions made on the probablity distri­

bution of arrival times and durations of systems tasks. In this work, we take a more formal approach,

which is amenable to algorithmic analysis using a model checking techniques [5], by modeling systems

under design as finite state Kripke structures [5].

2. Dynamic Power Management Strategies

One widely used approach to designing low power embedded systems, is dynamic power management

[3]. However, building a system with Dynamic power management is difficult and error prone [3].

Simulations based on system traces, are time consuming, and often slow, especially when there is a

demand for fast time to market. Recent works in system level dynamic power management [4,.11, 14,

19], have mostly used predictive techniques for deciding system shutdown policies, or voltage scaling

policies. In order to evaluate a predictive strategy, one has to do extensive stochastic simulation to

predict the proximity of the strategy to a theoretically optimal strategy, and predict the effects on system

performance. A more analytical approach based on Competitive Analysis [l] was taken in [15, 17, 16].

2

In this approach, no assumptions were made about the probability distribution of the task arrival rate,

or duration of the tasks. Worst case competitive analysis was used to evaluate the policy optimization

strategies, to obtain competitive bounds on the optimality of the strategies. In other words, this approach

could provide a factor f, such that the energy dissipated when using a specific policy, is no worse than f

times the energy dissipated had there been an oracle to know the task arrival and durations before hand.

However, in that approach the correctness of bounds were proven by combinatorial arguments, and there

was no automatic method for generating scenarios that would falsify conjectured bounds. Automated

proof of bounds, and automated generation of scenarios that disproves conjectured bound, would help

designers to evaluate new strategies, for their effectiveness, or change the algorithms to meet the required

bounds.

2.1 Dynamic Power Management as a Game

In this work, the problem we want to tackle is as follows: We view the dynamic power management

problem as a two player game between a power management policy and a malicious adversary. The

system under design is modeled as a finite state system, that receives service requests, and request

arrival times are unknown a priori. We do not assume any probability distribution of the inter-arrival

time, because, usually such distributions need to be validated using simulation, and test of hypothesis,

and even validated assumptions are only specific to particular work loads. The first player, being the

power management strategy, takes the system into various power states (modes), in order to save or

reduce power dissipation, based on system idle time, and other parameters. The other player in the

game is a malicious adversary that generates service requests, at the most inopportune manner for the

power management policy. The adversary, being the generator of the requests, can take the system

to appropriate power states, and hence represents the theoretically optimal power managemet policy.

We want to optimize our power management policy so that the adversary can never make the system

dissipate more than a required multiple of the power dissipated by the theoretically optimal policy.

If we do not make any assumptions on the behavior of the adversary, we obtain generic quantitative

bounds on the ratio of power dissipated by a particular management policy with respect to a theoretically

optimal policy. However, if we want, we could make assumptions of various kinds, including probability

distribution on the request inter-arrival time, on the adversary, and obtain more specific kind of bounds.

3

However, in this paper we only concentrate on the generic bounds, to show the power of our techniques.

In the high level design context, we might also need to automatically construct scenarios which lead

to more power dissipation than expected by a required bound fixed apriori. Ability to generate such

scenarios will give feed back, in improving the policy, and once a policy is improved, we want to

prove that the required bound still holds. A natural extension of this problem is to introduce resource

constraints (such as latency constraints), and by modeling those, we can obtain similar bounds on power

dissipation, which maintains the required constraints.

3. A Model Checking Approach

In this work, we approach this problem of evaluating the strategies, using a formal verification like

approach using a model checker. For proof of concept, we used a off-the-shelf model checker [6],

namely SMV [10]. However, since our models are of a specific kind, an off-the-shelf model checker

soon gets into the well known state explosion problem [6], which may be avoided if we design a model

checker that can handle this class of models more efficiently without exploding in space complexity.

However, for the sake of introducing the techniques, we consider an example of a simple threshold

based non-adaptive dynamic power management strategy [15]. In this example, there are three power

management states of a system. When the system is active on a task, it is said to be in busy state. Since,

we do not consider, voltage scaling, we assume that at busy state, all management policies will have to

dissipate the same amount of energy, and hence, it does not contribute to wasted idle energy, which is

our major concern. We also model a discrete time view of the system, and when a syst~m is busy with

activity, we assume that event tsk, is detected. When the system has no task to execute, we assume that

an event ntsk is detected by the power manager. As a result, the sequence of job arrivals and executions,

are modeled as a sequence over the event set {tsk. ntsk}. When the system has no task to work on, it

immediately transitions into an idle state. The energy dissipated from this state to come back to busy

state, upon arrival of a task is small. However, to stay in this state, the system has to dissipate, and

hence waste energy. The third state, is a sleep state, which the system transitions to, if it does not want

to dissipate any power. However, transitioning too early to a sleep state, may lead to wastage of power,

because the energy required to come back to busy state from sleep state is usually high. As a result,

a threshold based power management strategy, usually waits at the idle state for a threshold amount

4

of clock cycles, after which it decides to go to a sleep state. Figure 1, shows the state diagram of the

system, showing the transitions taken by our power management policy (as given in [15]), shown using

solid arrows. The assumption in [15], is that, the ratio of the energy dissipated to move from sleep to

busy state, to the energy dissipated per cycle at idle state is k, which is a fixed constant. The power

management policy, hence uses a stopwatch, every time, it starts idling. When the stopwatch ticks k,

the system is taken to sleep state. The transition shown by dashed arrows, are the transitions that an

adversary would take. Notice that, the adversary can only differ from the policy, as to when to transition

from the idle to sleep state, because, the adversary, being all powerful, knows when the next task will

arrive. So, if the adversary knows that the next task is imminent, it would stay in the idle state, rather than

moving to sleep state, just because the clock ticks at k. The way to model, this power of the adversary,

is by nondeterministically choosing this transition, with the help of a nondeterministic variable random.

This is where, the state space exploration based tools, present their power. In a simulation environment,

this activity of an adversary has to be modeled programmatically, by setting a random number, using

randomization. Here, that is not necessary, because a state space exploration tool, explores all possible

paths through the state space, and therefore perfectly models the most arbitrary behavior of the adversary.

elk:= 0
elk< k

tsk
I

\._ . .,,.·"" 1 '·,., ntsk) random= 0
I ·,., /

\ · _/ or
I

I elk< k
I

I

ntsk/
// random = l & elk = k

tsk

/

/
/ I

i. ntsk /
\ I

\ /
' ·

Figure 1. Single Sleep State Case

5

Now, suppose, we want to prove a bound on the amount of energy dissipated while idling, by the pol­

icy, with respect to an all knowing adversary, we have to model the power dissipation, as extra variables

in the system, which is not known in the figure. If we call them policy_power, and adversary_power,

then we would ask a model checker to prove the following property:

assert(G(policy_power <= f * adversary_power))

. However, if the property, holds, then we have proven a competitive bound, fully automatically. Note,

that this property is a simple safety [6] property, in Linear Time Temporal Logic. However, more inter­

esting is the case, when the bound does not hold. Then we obtain a trace of a counter example, which

shows exactly the steps the adversary will take, to falsify the bound. This allows for a debugging by the

system designer to tune the policy to make the pre-specified bounds.

However, the finite state model checker SMV used in our first experiments, had to be also bounded on

the number of steps, that one needs to explore, before, the bound is proven or falsified. The soundness of

such a proof crucially depends on a small model theorem, which says that if there is a counter example,

there is a small enough one, so that bounding the number of steps of the system is not unsound.

We do not have a generic small model theorem for dynamic power management, but for the given

example, we have a small model theorem stated below. Due to lack of space, we are not giving de­

tailed proof, but since this example is small and straight forward, we expect, astute readers to see the

correctness of the theorem.

Theorem 1 Let

• nij, and mij, where i. j E {busy, idle. sleep}, and subscript ij refers to a transition from state i, to

state j, be the number of i, to j transitions by the policy, and the adversary respectively,

• k be the ratio of the energy dissipation in moving from sleep state to busy state, to the power

dissipation per cycle while remaining idle,

• the power dissipation in sleep state be 0, and power dissipation in busy state be counted as 0,

• f be a desired bound on the ratio of energy dissipation by the policy, to that by the adversary.

6

If the bound f does not hold for all sequences of {t sk. nt sk}, then there are constants Cij(f k) dependent

on f and k, such that a sequence of {tsk, ntsk} exists for which 11ij :=::; Cij(f, k), and f is falsified on that

sequence.

Theorem 1 shows, that by making an assumption on the number of steps of the system, we do not

necessarily compromise the soundness. How to compute this bound for this case, can be expressed in

another theorem, omitted due to lack of space. However, it must be mentioned, that we do not yet have

any generic bounds, or methods to find bounds for all dynamic power management policies. Theorem 1

applies to this specific power management algorithm.

In summary, the novelty of our approach lies in two aspects of this technique:

1. Simulation based techniques can be avoided, and more generic optimizations can be achieved, in

place of workload specific bounds

2. We can construct worst case traces, automatically, which can guide us better in policy optimiza­

tion.

For the second aspect, we use counter example generation capability of model checkers [6, 18].

3.1 An Example of a Multiple Power down states

Figure 2, illustrates a case with multiple sleep states, each having different power dissipation rate, and

different latency and energy consumption to go back to the busy state. The power management strategy,

fixes multiple threshold values for the clock, such that the system is taken through the subsequent sleep

states, when the idle time reaches the subsequent threshold values. Figure 2 shows an abstract view

of how we model such a system within our framework, and the proof of the competitive bound related

properties is very similar to the previous example. In Figure 2, we only show the actions of the power

management policy, and not that of the adversary. Also, there is a similar small model theorem, provable

in this case.

We also have proven competitive bounds on examples of adaptive algorithms for power management.

However, the modeling of such algorithm is very similar, except, that, adaptive algorithms are history

based. In such algorithms, the past inter-arrival times for tasks, are remembered, and according to some

7

ntsk

ntsk
elk= kl

elk <kl

ntsk elk< k2

elk< k3

Figure 2. Multiple Sleep States Example

functions of that history, the next threshold is set. Since a regular model checker gets easily into state­

explosion problem, we cannot model very deep history, however, clever encoding could be used to model

the recording of shallow history of past few intervals.

4. Conclusions, Limitations, and Future Work

The results reported in this paper, are very preliminary, and we need to extend this framework, to

experiment with other existing dynamic power management policies. We also, plan to carry out experi­

ments with other hybrid [8], and probabilistic [12] model checkers. We plan to experiment with theorem

provers such as PVS [13], as well. We believe that, our approach will create a uniform framework for

the design and evaluation of dynamic power management policies, which can encompass all kinds of
I

techniques, including probabilistic modeling techniques.

Limitations: In the current implementations, we have proven a number of theoretically proven

bounds for Adaptive and Non-Adpative policies described in [15], using the SMV model checker. How­

ever, these policies are parameterized with respect to certain algorithm parameters, such as the constant

8

k in the first example in Section 3. We have proven bounds for specific values of k, but we need an

induction scheme [9] that would prove these bounds for all values of these parameters.

We also assumed a small model theonn that states, that depending on the parameters of the policies, if

there are counter examples to a conjectured bound, the size of the smallest counter example is suitably

small. We have proven such small model theorems for the examples presented here. However, we need

a generic small model theorem, to make this approach even more legitimate. Since the model checkers _

often get into state explosion problems, we have to limit the number of system steps, we run the proof

on.

Current Status and Future work: We have been pushing the model checker SMV to limits. How­

ever, unfortunately, some of the arithmetic that we use in the model to accumulate power statistics, for

example, enters in an SMV model as a part of the state variables. In a more custom made model checker

tailored for this particular kind of models, we would have arithmetic built into the system, and express­

ible as rewards/penalties on transitions, rather than on states. We are planning on building such a tool.

We also need model checkers that would be able to express probability distribution on the inputs, in

order to extend this work to evaluating policies that assumes a specific probability distribution on the in­

puts. In our on going work, we have modeled and proved some of the policies using a hybrid automaton

based model checker HyTech [8], which can model the power dissipation as an analog variable, and the

model checking uses polyhedral techniques [7] to handle such analog variables. We also have modeled a

probabilistic power management policy using a probabilistic modeling framework, called PRISM [12].

We will report the results of these modeling and verification activities in a future paper.

5. Acknowledgement

This work was supported by SRC, and DARPA/ITO supported PADS project under the PAC/C pro-

gramme.

References

[l] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management. In
Proceedings of the 24th Symposium on Theory of Computation, pages 39-48, 1992.

[2] L. Benini, G. De Micheli, and E. Macii. Designing low-power circuits: practical recipes. IEEE
Circuits and Systems Magazine, 1(1):6-25, Mar. 2001.

9

[3] L. Benini and G. D. Micheli. Dynamic Power Management: Design Techniques and CAD Tools.
Kluwer Publications, 1998.

[4] Chi-Hong Hwang, C. Allen and H. Wu. A Predictive System Shutdown Method For Energy Saving
of Event-Driven Computation. In Proceedings of the IEEE/ACM Intemational Conference on
Computer Aided Design, pages 28-32, Nov. 1997.

[5] E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic. In D. Kozen, editor, Proceedings of the Workshop on Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52-71, Yorktown Heights, New York,
May 1981. Springer-Verlag.

[6] E. Clarke, 0. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

[7] N. Halbwachs, P. Raymond, and Y. E. Proy. Verification of linear hybrid systems by means of
convex approximation. In Proceedings of the SAS94: Static Analysis Symposium, LNCS 864,
pages223-237, 1994.

[8] T. Henzinger. A user guide for hytech. In http://www.eecs.berkeley.edu/ tah. 2001.

[9] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[10] K. L. McMillan. Cadence smv website. In http://www-cad.eecs.berkeley.edu!kenmcmil/smvl. 2000.

[ll] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli. Policy Optimization for Dynamic
Power Management. In Proceedings of the 35th Design Automation Conference, pages 182-187,
June 1998.

[12] PRISM. Probabilistic symbolic model checker: Prism. In http://www.cs.bham.ac.uk!dxp/prism.
2001.

[13] PVS. Pvs theorem procer website. In http://pvs.csl.sri.com. 1996.

[14] Q. Qiu and M. Pedram. Dynamic Power Management Based on Continuous-Time Markov Deci­
sion Processes. In Proceedings of the Design Automation Conference, pages 555-561, June 1999.

[15] D. Ramanathan. High-Level Tinzing and Power Analysis for Embedded Systems. PhD thesis,
University of California at Irvine, Sept. 2000.

[16] D. Ramanathan and R. Gupta. System Level Online Power Management Algorithms. In Proceed­
ings of the Design Automation and Test in Europe Conference, Mar. 2000.

[17] D. Ramanathan, S. Irani, and R. Gupta. Latency Effects of System Level Power Management
Algorithms. In Proceedings of the Intemational Conference on Computer Aided Design, Nov.
2000.

[18] S. K. Shukla, H. B. Hunt III, and D. J. Rosenkrantz. Homsat, model checking, verification and
games. In Proceedings of CAV'96, LNCS 1102, pages 99-llO, 1996.

10

[19] M. B. Srivastava, A. P. Chandrakasan, and R. W. Broderson. Predictive Shutdown and Other
Architectural Techniques for Energy Efficient Programmable Computation. IEEE Trans. on VLSI
Systems, 4(1):42-54, Mar. 1996.

11

