
Reference Model Based RTL Verification: An Integrated Approach

William N. N. Hung∗

Synplicity Inc.
Sunnyvale, CA 94086

whung@synplicity.com

Naren Narasimhan
Intel Corporation

Hillsboro, OR 97124
naren.narasimhan@intel.com

Abstract

We present an approach that makes reference model
based formal verification both complete and practical in an
industrial setting. This paper describes a novel approach
to conduct this exercise, by seamlessly integrating formal
equivalence verification (FEV) techniques within a verifi-
cation flow suited to formal property verification (FPV).
This enables us to take full advantage of the rich expressive
power of temporal specification languages and help guide
the FEV tools so as to enable reference model verification
to an extent that was never attempted before. We have suc-
cessfully applied our approach to challenging verification
problems at Intel R©.

1 Introduction

Formal property verification (FPV) is assuming growing
importance as digital designs get more complex and tradi-
tional validation techniques struggle to keep pace. Formal
methods introduce mathematical rigor in their analysis of
digital designs thereby guaranteeing exhaustive state space
coverage. Within this framework, one can employ sound
design abstraction techniques to rein in complexity. We will
describe one such usage model in this paper and present a
technique that facilitates its use in an industrial setting.

Reference model based verification attempts to address
the two classes of problems that we routinely face when
performing formal property verification on RTL designs:
design complexity and verification re-use. It is common
knowledge that most RTL designs are rendered compli-
cated, primarily because they model complex functional be-
havior while accommodating tight performance constraints.
Formal property verification is concerned with establish-
ing the correctness of design functionality with respect to
a high-level temporal specification. By developing a refer-
ence model that purely embodies the functional aspect of

∗This work was originally performed while at Intel Corporation.

RTL Implementation

RTL Reference Model

Step 1

High Level Spec

Step 2

Figure 1. reference model for RTL verification

the original design without the performance considerations,
it is often possible to mitigate the complexity issue.

The exercise of reference model based verification may
be viewed as a two step process and is illustrated in Fig-
ure 1. The first step is to verify that the reference model
satisfies a higher-level specification. This problem is ad-
dressed by mainstream FV and is documented in a rich col-
lection of papers both from academia and industry [1, 2, 7,
8, 12, 13, 15, 16]. The second step is to verify that the ref-
erence model, in the presence of environmental constraints,
does imply the RTL design implementation. An important
aspect of this step in the verification process is that it is di-
rected towards a specific goal - to validate the result from
Step 1 in Figure 1. Typically the reference model tends to
be very close to the actual RTL and is simplified in areas that
actually matter to the correctness of the high-level specifica-
tion in Step 1. The differences in both the models therefore,
tend to be localized and therefore far more amenable to au-
tomatated verification.

In the context of environmental assumptions E and tem-
poral specification S, establishing the implication relation
in step 2 is similar to the sequential equivalence verifica-
tion problem. FEV tools are particularly adept at exploiting
symmetry between models when establishing equivalence.
Unfortunately FEV tool infrastructures provide little sup-
port for specifying E and S, especially when they are tem-



poral and arbitrarily complicated. FPV tools on the other
hand, provide good support for specifying protocol with
complex timing, by way of incorporating expressive tem-
poral specification languages within their flow. However,
FEV tools and FPV tools have historically worked in isola-
tion, never trying to exploit each other’s strengths to further
their impact on a given verification problem.

The Integrated Verification (IntVer) approach attempts to
synergize the strengths of FEV tools with the rich expres-
siveness of FPV specification languages to engineer a sys-
tem that enables reference model based verification. There
has been some work done in academia in attempting to inte-
grate equivalence checking within a more expressive spec-
ification framework like process algebra [5]. But our ap-
proach is probably the first attempt to effect such an inte-
gration so as to enable verification of large and complex
RTL design systems.

Furthermore, reference model based verification sup-
ports verification re-use. In an industrial setting, designs are
continually refined during the life of a project, either to ac-
commodate functional changes or more likely performance
constraints. In the case of the latter, the cost of re-proving
the new design against the high-level specification becomes
prohibitive. In a reference model based approach, since
functionality is preserved, the re-proving task involves veri-
fying the second verification step which is usually tractable
and a more automatable problem.

2 IntVer: An Overview

IntVer combines the specification power of temporal
logic with a state-of-the-art sequential formal equivalence
verification tool suite to address the problem of perform-
ing reference model verification. This integrated approach
offers certain important advantages over a strictly FEV or
FPV approach.

As described in Section 1, we view reference model veri-
fication as a two step process. The first step involves verify-
ing that the RTL reference model R satisfies the high-level
specification S in the presence of temporal environmental
assumptions E and a set of basic constraints B,

ψ, R |= S (1)

Here ψ is a conjunction of the constraints B and E.
We associate B with simple environmental constraints like
clock and reset behavior and signal stability assumptions.
The temporal constraints E tend to be more involved and
specify constraints on protocol. Although semantically they
are handled the same, the reason for making a distinction
between the two types of assumptions will become clear
soon. Establishing the relation in Formula 1 is a classic
model-checking problem and can be presented to a decision

procedure. The second step of the verification problem is to
verify the abstraction relation between the reference model
R and the implementation I . This involves verifying the
relationship specified by the following:

B ∧ E ∧ S ⇒ I (2)

Establishing a relationship between an abstract (reference)
model and its implementation, using an FEV approach
should make intuitive sense. In the absence of E and S,
establishing the above relation reduces to a implication ver-
ification problem. FEV tools are quite adept at detecting
symmetry in the model and using this information to help
simplify their verification task. However, E and S tend to
be fairly complicated and are best described by a specifi-
cation language that supports linear or branching-time tem-
poral logic. Typically, FEV tools do not directly support
the use of such an expressive temporal specification lan-
guage. The IntVer framework engineers a solution that en-
ables such a support and re-constructs the problem in such
a way so as to facilitate the use of FEV technology to prove
the relation in Formula 2.

IntVer constructs a model combining the reference
model R and the implementation I in such a way so as to
restrict their behavior by the environment restrictions. The
specification S and the temporal assumptions E are mod-
eled as circuit representations and then used to restrict the
behavior of the combined R-I model. This approach has
the added advantage of re-using the same restrictions and
specifications used in Step 1 of the verification when con-
structing the models for verifying Step 2.

The IntVer framework is independent of the FEV tech-
nology. The implementation outlined in this paper uses a
sequential equivalence checker (with dual rail modeling)
similar to the one described in [10], with satisfiability [13],
and a rich specification logic that is LTL based. Like many
sequential FEV predecessors [14], the checker exploits the
symmetry between the two models to simplify the verifica-
tion task. It uses a 3-valued logic (which is implemented
through dual rail) to encode 3 possible values (X, 0, 1) for
each circuit signal.

Verification of present day digital designs routinely
stretch the FV technology to their limits. As a means to
reining in complexity, typically an abstracted view of the
design is presented to the verification tools and environmen-
tal assumptions (presented formally as a part of the over-
all specification) serve to constrain the design to all legal
behaviors of interest. This has the net effect of restrict-
ing the initial state space of the design thereby leading to
fewer state transitions and consequently a restricted reach-
able state space. Most verification approaches are fairly
poor in integrating the benefits from a smaller initial state
space with the actual verification effort. In order to remedy
this, A class of techniques at Intel [9, 10] attempts to de-



couple the initialization process from the actual verification
flow. The environmental assumptions originally formulated
in temporal logic have to be restated in a form amenable
to the initialization tools. It is often a non-trivial task to
re-specify complex assumptions as waveform relationships.
Furthermore, it raises the question of maintenance, since
changes made to the temporal formulas describing the as-
sumptions have to be reflected in the inputs to the initializa-
tion tools as well.

In contrast, IntVer’s initialization technique imposes no
such requirement on the translation process. IntVer uses
mainstream formal verification tools in a novel way to help
determine the initial states of the design, and can therefore
take direct advantage of their capability to handle formally
specified environmental assumptions. IntVer automatically
extracts the relevant information from these constraints and
uses this information to guide the verification flow to deter-
mine an initial state that satisfies these constraints. Once
complete, the formal specification along with the initial
state information is then passed on to the rest of the veri-
fication tool flow.

We present an efficient and automatic approach to initial-
izing digital systems that takes full advantage of the design
topology and the environmental restrictions. This dramat-
ically reduces verification run times, lowers tool complex-
ity, and opens an avenue to address verification of designs
larger than what was possible in the past. Our approach
improves on existing initialization approaches that are lim-
ited by the degree to which they can handle formally stated
temporal environmental constraints. Furthermore, out tech-
nique presents a flexible and extensible approach that can be
easily incorporated within diverse formal verification flows
- be it formal property verification, formal equivalence ver-
ification or dynamic simulation exercises.

As a first step, IntVer analyzes the combined RTL model
and determines its initial state. In our experience, this has
a significant effect on improving the performance of the ac-
tual verification performed in Step 2 (Figure 1).

Our initialization technique, determines the legal set of
initial states under the constraints specified by B and E.
The problem of determining the initial state of the com-
bined model is formulated as a satisfiability constraint and
we present it to a bounded model checker (BMC) [3, 4, 6].
We specify a pair of mutually contradicting invariant con-
straints for each state element in the combined model and
attempt to falsify each of them at the end of a certain pre-
determined bound,b. If a state element is indeed initializ-
able to a constant value, one of the invariants for this piece
of logic will hold while the other will fail.

The invariant pair for each state element i in the model

Inv T Inv F Rule
fail fail Latch is uninitialized
pass fail Initialized to TRUE
fail pass Initialized to FALSE
pass pass Conflict detected

Table 1. BMC pass/fail outcomes per latch

is constructed in the following form:

Inv T: Signal i ≡ T

Inv F: Signal i ≡ F

Thus initialization approach allows us to take a snapshot
of the initial machine state by determining all initializable
state elements in the model using the resolution scheme
shown in Table 1.

These properties are created for every state element i in
the machine. There are four possible outcomes for every
invariant pair associated with a state element. Table 1 de-
scribes the resolution to deduce the initialization values. A
“pass”’ in Table 1 denotes that the invariant holds within the
user supplied bound. Clearly both properties cannot “pass”
(last entry of Table 1), and that would indicate the presence
of contradicting environmental assumptions.

Our technique lends itself naturally to coarse-grained
parallelism. Initialization of a model with n state elements
requires running BMC to falsify 2n properties. Our initial-
ization tool partitions and groups these properties into sep-
arate BMC sessions through a distributed computing net-
work.

IntVer, after running through the initialization step,
presents a composite model of the hardware that has been
correctly initialized with the basic and temporal constraints.
This model is packaged in an appropriate form to the FEV
tool flow. This generalized property verification problem is
then analyzed by the FEV tool flow to determine the cor-
rectness of the reference model abstraction.

3 Case Study

We have used IntVer to solve quite a few challenging ver-
ification problems pertaining to designs of next generation
Intel processors. We will briefly present a case study on the
register renaming logic to illustrate the effectiveness of this
integrated approach.

The purpose of the RAT (Register Alias Table) is to re-
name logical registers (visible in the instruction architec-
ture) to physical registers (in the micro-architecture) as de-
scribed in [11]. It can be viewed as a big array (table) of data
storage. At every cycle, we are given an index (address).
Using this index, the machine should first read the data that
was stored in the indexed array entry, and then write new



Array

index

Write

Read

tmp

Array

index

=

Read

Write

(a) Reference Model (b) Implementation

Figure 2. RAT models

data to that entry. We have developed a STE proof that ev-
ery array entry is being updated (or not updated) based on
the index (address) and the write port, and also checks that
read port is getting the correct data from the indexed array
entry. The proof also handles microarchitectural features
such as pipelining, superscalar and hyper-threading.

We inherited the verification strategy for the register al-
location logic, from the work developed for an earlier Intel
microprocessor. The micro-architectural design of this logic
had changed in certain key areas to improve overall perfor-
mance. As a result, the original proof strategy could not
be applied directly to the new design. For example, the de-
signers had introduced bypass logic to improve array access
throughput (see Figure 2(b)). Data from the write port of the
array was now stored in the bypass logic. In the succeeding
cycle, the temporary data is written into the entry originally
pointed to by the index (address). This temporary register
introduced added complexity for the read logic since since
data that came in the previous cycle was not present in the
array entry in the current cycle, it was put in the temporary
register. So for the read logic, it was required that we com-
pare the indices of both in the current cycle and the previous
cycle. If they were the same, the logic read from the bypass
logic. Otherwise, data was indexed from the array.

The changes in no way affected the functionality of the
logic. It just made array reads faster with the introduction of
the bypass logic. However, the original verification strategy
cannot be used in the face of these design changes.

There were many complications introduced by this sim-
ple logic change, primarily because of the superscalar mi-
croarchitecture and special IA-32 instructions that cause
concurrent read/write operations. To handle these changes,
we needed to introduce an environmental constraint - an in-
variant that relates the temporary register with the lookup
table. At a high level, this invariant ensures that the data
in the current cycle’s temporary register is same as the data
stored in the current cycle’s array entry pointed to by last
instruction’s index.

Design State Elem IntVer (CPU sec)
R1 3512 82966
R2 2834 22333
R3 1849 1748
S1 331 92
S2 233 360
S3 244 969

Table 2. Performance Results

entry(index(t− 1), t) = tmp(t)

The above invariant was then used to constrain the veri-
fication flow. We were then left with the obligation to prove
this invariant separately. However, a careful look at this in-
variant reveals a bigger problem: The index can point to any
array entry. Therefore the index is purely symbolic and, on
account of the superscalar nature of the design, can poten-
tially assume values from multiple sources. All these make
it extremely hard to incorporate such an invariant within a
verification strategy, be it BDD or SAT based.

As a first step to address this problem, we create an ap-
propriate reference model for the RTL, that consists just
the right amount of detail to preserve functionality but to
abstract away the microarchitectural details that contribute
solely to performance issues. In this case, the reference
model is designed without the temporary register. It uses a
direct writing and reading scheme as shown in Figure 2(a).
We model-checked the reference model and ensured that it
satisfies the high-level specification, without imposing the
invariant restriction. We then used IntVer to verify that the
reference model is a sound abstraction of the optimized im-
plementation.

Furthermore, due to some environmental constraints
(e.g. microcode restrictions), some primary inputs may con-
tain the same information as the index (input to lookup ta-
ble). The original RTL uses these inputs to update the tem-
porary register under certain conditions. By removing the
temporary register, our simplified RTL does not use these
alternative primary inputs anymore. We specified an as-
sumption (based on the microcode restriction) in formal
specification to enable IntVer to prove the implication re-
lation between the two RTL models. The behavior of the
original RTL was undefined for invalid indices. Therefore,
output values from the lookup table for invalid indices are
ignored by the downstream logic since they do not per-
form any useful operation in that case. The reference model
only captures the behavior of the RTL when instructions
are valid. We were able to thus use these don’t care condi-
tions to further simplify the model. Furthermore, the rela-
tion holds only for the valid state-space of the RTL behavior.

Table 2 presents some results on performing verifica-
tion on a collection of challenging RTL test cases from a



leading-edge Intel microprocessor design. We first used
the the state-of-the-art model checkers to verify the high
level specifications directly on the complicated RTL design.
None of the verification runs completed. Using the two step
approach, IntVer helped improve the capacity and the verifi-
cation time taken to complete the verification . The number
of state elements gives an indication of the size of the design
state space.

4 Summary

We have powerful FPV and FEV tools at our disposal
but they do not interact well. In this paper, we presented a
novel approach that harnesses the strengths of existing for-
mal verification techniques to enable verification of designs
previously considered too large/complex for any one FPV
technology. The approach described in this paper enables
us to specify design abstractions in order to enable FPV.
We then use the IntVer approach to bridge the abstraction
gap between the reference model and the actual RTL de-
sign. The two step verification approach described in the
paper could be easily generalized to a multi-step approach,
should the reference model and the implementation be sep-
arated by an abstraction not directly amenable to be bridged
by the FEV tools.

Since the FV proofs are on the reference model and not
the actual RTL design, our approach is also fairly stable
under the face of micro-architecture changes. Often these
changes are made for performance reasons and since our
reference model is a functional embodiment of the logic
they remain stable even if the actual RTL implementation
is modified. As a result, there is no need to redo the actual
FPV proof. Verifying that the modified RTL design contin-
ues to match the reference model is sufficient and this can
be easily done using the IntVer approach described in this
paper.

Our approach is practical and less prone to design com-
plexity problems, particularly because we are not using the
FEV engine to do full abstraction verification. The verifica-
tion is always performed in the context of a particular tem-
poral behavior of interest. Therefore, only a small subset
of output signals participate in the verification effort. This
makes the overall exercise both practical and relatively less
complicated than solving a generic FEV problem.

5 Acknowledgment

The authors would particularly like to thank team mem-
bers Tom Schubert and Roope Kaivola for their guidance
in developing IntVer, and folks at the Intel Israel CAD team
for their support in debugging issues with the FEV tool flow.

References

[1] I. Beer et al. Rulebase: Model Checking at IBM. In Com-
puter Aided Verification, pages 480–483, 1997.

[2] B. Bentley and R. Gray. Validating the Intel R©Pentium R©4
Processor. Intel Technology Journal, 5(1), February 2001.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic Model Checking using SAT procedures instead of
BDDs. In Proc. Design Automation Conf., 1999.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Sym-
bolic Model Checking without BDDs. In Proc. Tools and
Algorithms for the Analysis and Construction of Systems
(TACAS’99), volume 1579 of LNCS. Springer-Verlag, 1999.

[5] R. Cleaveland and S. Sim. The NCSU Concurrency Work-
bench. In R. Alur and T. Henzinger, editors, Computer Aided
Verification, volume 1102, pages 394–397. Lecture Notes in
Computer Science, Springer-Verlag, 1996.

[6] F. Copty et al. Benefits of Bounded Model Checking at an
Industrial Setting. In Proc. Computer Aided Verification,
2001.

[7] R. Fraer et al. Prioritized Traversal: Efficient Reachabil-
ity Analysis for Verification and Falsification. In Computer
Aided Verification, pages 389–402, 2000.

[8] S. Hazelhurst and C.-J. H. Seger. Symbolic trajectory eval-
uation. In T. Kropf, editor, Formal Hardware Verifica-
tion: Methods and Systems in Comparison, volume 1287
of LNCS. Springer-Verlag, 1997.

[9] S. Hazelhurst, O. Weissberg, G. Kamhi, and L. Fix. A hy-
brid verification approach: Getting deep into the design. In
Design Automation Conference, June 2002.

[10] Z. Khasidashvili and Z. Hanna. SAT-based methods for
sequential hardware equivalence verification without syn-
chronization. In Proc. International Workshop on Bounded
Model Checking, 2003.

[11] D. T. Marr et al. Hyper-Threading Technology Architec-
ture and Microarchitecture. Intel Technology Journal, 6(1),
February 2002.

[12] K. L. McMillan. Symbolic model checking - an approach to
the state explosion problem. PhD thesis, Carnegie Mellon
University, 1992.

[13] M. Sheeran, S. Singh, and G. Stlmarck. Checking safety
properties using induction and a SAT-solver. In Proc. For-
mal Methods in Computer Aided Design, 2000.

[14] C. A. J. van Eijk. Sequential equivalence checking based on
structural similarities. IEEE Trans. CAD, 19(7):814–819,
July 2000.

[15] G. Yang, J. Yang, W. N. N. Hung, and X. Song. Implication
of Assertion Graphs in GSTE. In Proc. IEEE/ACM Asia
South Pacific Design Automation Conference (ASP-DAC),
January 2005. Accepted for publication.

[16] J. Yang and C.-J. Seger. Introduction to Generalized Sym-
bolic Trajectory Evaluation. In Proc. International Conf.
Computer Design (ICCD), September 2001.


