
Dynamic Guiding of Bounded Property Checking
Prakash M. Peranandam, Roland J. Weiss, Jürgen Ruf, Thomas Kropf, and Wolfgang Rosenstiel

University of Tübingen
Department of Computer Engineering

Email: {prakash,weissr,ruf,kropf,rosenstiel}@informatik.uni-tuebingen.de
Category: Formal Verification Methods

Abstract— Current statistics attribute up to 75% of the overall
design costs of digital hardware and embedded system devel-
opment to the verification task. In recent years, the trend to
augment functional with formal verification tries to alleviate this
problem. Efficient property checking algorithms allow automatic
verification of middle-sized designs nowadays. However, the
steadily increasing design sizes still leave verification the major
bottleneck, because formal methodologies do not yet scale to very
large designs.

In this paper we present the formal verification tool SymC
based on forward state space traversal and so-called AR-
automata for property checking, both internally represented
with BDDs. Furthermore, we introduce a new methodology
called dynamic guiding. This methodology best suits multi-module
concurrent Finite State Machine (FSM) designs. The aim of
guiding is to reduce the intermediate and final BDD size, which
in turn makes this verification technique applicable to larger
designs. Our approach exploits abstract information of the design
in the form of regular expressions and effectively guides the
symbolic traversal depending on the verified property.

I. INTRODUCTION

Gaining confidence on the correctness of digital designs is
one of the major tasks in the system design flow. Steadily
increasing design sizes make verification a bottleneck in mod-
ern design flows of digital hardware and embedded software
systems. State of the art verification techniques include tradi-
tional simulation on the one end of the spectrum and model
checking on the other end. Simulation is applicable to large
designs, whereas model checking provides full error coverage
of the design with an automatic process. The most noteworthy
contribution in this area is bounded model checking (BMC)
[1], which is well suited for finding shallow errors in large
designs. All these techniques have their own advantages and
disadvantages. State space explosion is the major problem in
all formal verification tools.

In this paper we deal with invariant checking and its
improvement. For invariant checking, all reachable states of
the system are calculated and the desired property is checked
to hold. In case of failure a counterexample is generated.
The computational complexity of property checking is dis-
closed when large systems are analyzed. Even utilization of
BDD based symbolic techniques does not allow the complete
analysis of the state space. Though BMC and BDD based
bounded property checking reduce this problem considerably

This work is sponsored by the German Research Grant (DFG projects
KOMFORT and GRASP).

by restricting the state space with in a bound, sometimes
intermediate steps are too huge to handle.

Our approach can be clearly separated into two parts,
first, bounded property checking using symbolic state space
traversal and second, dynamic guiding for providing infor-
mation used during symbolic execution of the system model.
The target designs of dynamic guiding are concurrent, multi-
module, control intensive protocol FSM designs. In contrast
to a classical model checker, our bounded property checker
SymC performs one forward image computation at a time,
i.e. the current set of states is replaced by the set of states
reachable from the current set within one transition. This
results in an efficient verification for properties with large time
bounds by avoiding fixpoint iterations and reachable state set
computations [2].

With dynamic guiding we attempt to reduce the BDD
size during symbolic state space traversal. Current guiding
techniques are static by nature, i.e. the whole verification
environment is specialized for a given property. In [3], [4] the
authors either constrain the input or remove the uninteresting
parts of the design. In contrast, our approach first extracts
structural information from every module of the system design.
These individual information of modules are then used to
generate the guiding sequence for the whole product machine
for a given property. Thus, the system model is left untouched
and can be used for different properties. Only during symbolic
execution the guiding information steers traversal into paths
that are more likely to satisfy the checked property. This im-
plies that given the structural information, a guiding sequence
can be generated for any property and used during symbolic
execution, hence the name dynamic guiding. In [5] a similar
concept is used, but in a totally different verification approach
in comparison to our work.

The main features of our approach are:
• We present a combination of bounded property checking

with dynamic guiding. This combination results in an
efficient verification of properties by avoiding fixpoint
iterations and reachable state set computations. We ex-
amine states reachable up to a given time bound that is
given explicitly or implicitly by the property.

• Symbolic forward traversal of the design allows steering
the simulation in certain directions, thus avoiding unin-
teresting parts of the state space. Structural information
captured with regular expressions enable creation of
guiding sequences tailored for the checked properties.

The rest of the paper is structured as follows: In the next
section we describe our bounded property checker. Thereafter,
we detail the dynamic guiding approach. Finally, we conclude
and point to ongoing and future work.

II. BOUNDED PROPERTY CHECKING

In [2] we proposed a formal verification technique for time
bounded property checking. The technique performs forward
image computation for state traversal, a characteristic shared
by forward model checking [6]. Experimental results [2]
show that this approach outperforms other property checking
methods for certain classes of systems and properties.

The input to SymC is a system description given either as
Verilog gatelist or in a simple SMV-like finite state description
language. Properties are specified with FLTL [7] or PSL [8]
formulas, therefore a tight integration with other property
checking tools is provided. The temporal logic formulas are
converted to special FSMs, so-called AR-automata [7], which
can then be used in the symbolic execution phase. The system
description is translated into a finite state system encoded
with BDDs. During the symbolic execution we observe the
state of our properties and we report success or failure to
the user. Figure 1 shows the structure of SymC. The dashed
components constitute the new guiding unit and will be
described in Section III.

����

���������

	�
�������

����

���
�����

������������

���
�����

���

���
�����

���������

������������

���
���	���

�������

���

��������

������ ��!���

���������

��������

�����

��

��������

��������

��
����

��	��

Fig. 1. Overview of SymC, including the optional guiding unit.

The following algorithm sketches the core of the execution
engine for one AR-automaton. The algorithm can be extended
to multiple AR-automata.
// Build product state of the system and the AR-Automaton.
current = start ∧ AR.start;
for (t = 0 ... k)

// Compute image of AR-Automaton.
current = imageAR(current);
if (check universally)

if (current ∧ AR.reject 6= false) reportFailure();
if (current ∧ AR.accept = current) reportAcceptance();

if (check existentially)
if (current ∧ AR.accept 6= false) reportAcceptance();
if (current ∧ AR.reject = current) reportFailure();

// Guide the symbolic state traversal into a certain direction.
current = current ∧ goIntoDirection();
current = imageT (current);

The tool includes a number of optimization techniques. One
of them partitions the current state set upon reaching a thresh-
old size. Then, the partition sets are explored sequentially. If
a property’s AR-automaton reaches either the accept or reject
state, exploration of the remaining sets can be skipped, saving
time and space. The first version of SymC partitions the state
set randomly. At this point, we introduce dynamic guiding
in order to select partitions that will make termination of the
symbolic execution more likely based on information extracted
from both the design and the property. Notice that the guiding
unit does not interfere with other optimizations present in
SymC.

III. DYNAMIC GUIDING

We identify guiding of a symbolic state space traversal
with the information provided for steering the direction of
traversal into the interesting state space. Interesting state in
our context can be defined as a state which satisfies a property
that is expected to hold at least in one path from initial state
(existential). If the property has to hold in all paths from
initial state (universal), then we look for states that falsify the
property. Steering the traversal into interesting state implies
that we aim at reducing the intermediate memory and the
time to verify a property. The goal of our approach is to get an
guiding mechanism for different properties for the same initial
condition of the design, and without changing the verification
setup. These requirements force the guiding mechanism to
have information of the design. The following elaborations
rely on the deterministic FSM (D-FSM) formalism.

Definition 1: A D-FSM A is a 5-tuple A = (S,Σ, T, s, F),
where S = {s1, . . . , sn} is a finite set of states, Σ is a finite
alphabet, T : S×Σ → S is a transition function, s ∈ S is the
initial state, F ⊆ S is a set of final states.

A short example should illustrate the notion of guiding a
FSM. We write si

a
→ sj to express that there is a transition

from si to sj labeled with a. Consider a FSM which includes
the transitions s1

a
→ s2 and s1

b
→ s3, where s1, s2, s3 ∈

S and a, b ∈ Σ. Assume that our property involves only
symbol a, which discloses that the transition with symbol b
is not interesting for our verification. So the traversal can be
guided into interesting states by asserting symbol a, which
reduces the possible next states of s1 to s2 only. Asserting
input symbols in a D-FSM means that we are restricting the
next state possibilities to one defined state. This restriction
of image computation is the key point of guiding in our
approach. In order to realize this guiding mechanism, we have
to decide on the exact time step for guiding and the specific
assertions at that time point. For effective guiding of arbitrary
properties, the guiding mechanism should generate assertions
to be applied at all time steps during image computation.

Typically, SymC traverses the FSM of the system model
from the initial state at time point zero and continues until the

maximum time bound of the property is reached. This unveils
that the guiding mechanism needs a sequence of input symbols
from time point zero until the maximum bound in the property
in order to guide the tool to the interesting state.

Definition 2: Let A = (S,Σ, T, s, F) be a D-FSM, w a
string over Σ. A accepts language L(A) = {w | δ(s, w) ∈ F},
where δ(q, w) : S×w → S is an extended transition function
that returns the state that is reached when A starts from q and
processes w.

The sequence that is to be generated by the guiding
mechanism has to be always one of the words w that is
accepted by the L(A). Such a sequence can be generated using
abstract information from the design. In our context abstract
information means the regular structure of the language L(A).
This regular structure is represented in the form of regular
expressions (REs) as it is the standard and compact way of
representing languages. A RE is a string that describes a
language, according to certain syntax rules.

Definition 3: A RE consists of constants and operators
that denote sets of strings and operations over these sets,
respectively. Given a finite alphabet Σ the following constants
are defined:

• (empty set) φ denoting the set φ,
• (empty string) ε denoting the set {ε} and
• (literal character) a ∈ Σ denoting the set {a};

as well as the following operations:
• (concatenation) RS denoting the set {αβ | α ∈ R and
β ∈ S},

• (set union) R ∪ S denoting the set union of R and S,
• (Kleene star) R∗ denoting the smallest superset of R that

contains ε and is closed under string concatenation.

IV. EXTRACTION OF REGULAR EXPRESSIONS AND
GUIDING SEQUENCES

We will now describe how REs are generated from the input
FSMs, and how these are used to generate guiding sequences
for the automatic guiding process.

A. Extraction of Regular Expressions

The state elimination method is a standard algorithm in
automata theory to convert a D-FSM into a RE [9]. The actual
state elimination method generates a RE that is equivalent
to a given FSM. This RE represents all words accepted by
L(A) (see definition 2). But we are interested only in the
regular structure of the accepted language. So we use a variant
of the state elimination method. Figure 2 depicts the basic
construction of REs.

RE construction starts from the initial state and collects the
symbols along the transistions to next states until it reaches the
termination condition as shown in figure 2. The termination
conditions of RE construction are that either one reaches an
initial state, or a state that is not an initial state and has no
further transistions to other new states.

Because we want to deal with system descriptions that can
provide multiple initial states si, we apply the state elimination

�

�
�

�

�
�

�
�

�

�

�
�

�
�

�
�

�

� ��

����

Fig. 2. Examples of FSM to RE translations, where s1, s2, s3 are states,
and a, b, c are symbols.

method for all initial states to the given FSM and union the
resulting REs in one RE R:
R = ∀i :

⋃
Ri | si ∈ SI , where SI ⊆ S is a set of inital

states.
In other words, if we have more than one initial states, the

procedure has to loop for every single initial state and join
them by union. R is then used to extract the sequence for the
property. The REs extracted from the small example in Figure
3 with s1 as initial state is shown below:

(¬req)∗ ∪ req (wait)∗ ¬wait ack

B. Extraction of Guiding Sequences

This section focuses on the extraction of a guiding sequence
from the system’s RE R tailored for the given properties.
Presently we handle only FLTL formulas of the form A and
A→ B, where A and B are FLTL formulas.

Definition 4: Let A = (S,Σ, T, s, F) be a D-FSM. Then
syntax of FLTL is recursively defined over the input alphabet
Σ:
φ := a | ¬φ | φ∧ψ| X[m] φ | F[m,n] φ | G[m,n] φ, with a ∈ Σ,
m ∈ N and n ∈ N ∪ {∞}.

The FLTL property that is to be verified can be viewed as
a discrete representation of the guiding sequence in a special
syntax. In principle, verification of a FLTL formula is finding a
sequence (word) accepted by the design’s FSM that can satisfy
the discrete conditions. Such a word is the guiding sequence
in our case. For obvious reasons we do bottom-up searching
to form the guiding sequence out of REs for the property.
The REs resemble all the possible regular structures of the
language accepted by the FSM. This is the key point in our
sequence generation approach. With a bottom-up search the
symbols of the commitment formula B are first located in R.
Then, all possible predecessor symbols from that particular
RE are collected at each time point.

This process should be carried out from the maximum time
bound until time point zero. The ordered collection of symbols
from the maximum time bound until time point zero are the
possible guiding sequences. The sequence that is generated
can be restricted to the condition of the assumption and the
temporal operators of FLTL.

The following algorithm sketches the core of the sequence
generation engine. Here k is the maximal time bound in the
property, c is the commitment signal, a is the assumption
signal, and bound is the time bound of the property.
// Collect list of commitment symbols.
list-of-symbols.insert(c);

for (t = 0 ... k)
while (¬list-of-symbols.empty())

// Get all prev. symbols before c from RE.
c = list-of-symbols.back();
list-of-symbols.pop-back();
new-list-of-symbols = get-previous-symbols(c);
// Update it in the map to produce the sequence.
M[c] = new-list-of-symbols;
// Append it to temp list for next loop.
T = append(T, new-list-of-symbols);

list-of-symbols = T;
// gen-sequence builds all ordered collections of symbols.
// Map M stores all involved symbols.
gen-sequence(M, a, bound);

To illustrate the above algorithm we use a small arbitration
example (see figure 3), where the FLTL property is req →
F [2] ack:

����

�
�

�
�

����

�
�

���

�������	

Fig. 3. Simple FSM example.

In a bottom-up search we first locate ack, then we search for
all possible predecessor symbols to ack. In this example only
¬wait can occur. Then, we locate the predecessor symbols
to ¬wait, which are either req or wait, and so on. This
information is stored in a map as follows:
ack 7−→ ¬wait, ¬wait 7−→ wait | req, wait 7−→ wait | req,
req 7−→ ¬req | ack and ¬req 7−→ ¬req | ack.

Finally, function gen-sequence generates all possible valid
sequences as follows. As the commitment signal is ack, it
inserts symbol ack at the front of the list, then the possible
previous symbol ¬wait is added in front of the list. Then the
next possible successor symbols wait or req are inserted in
front of the list. Trivially, there are two possible sequences:
Sequence1 = { req, ¬wait, ack}
Sequence2 = { wait, ¬wait, ack}.

Now the timing condition is checked, where the property
instructs that req should be at time point 0 and ack should be
at time point 2. Considering that the sequence elements start
from time point 0, the valid sequence as per the condition is
Sequence1, which in turn will be used for dynamic guiding.
For example if SymC requires guiding at time point 2, the
dynamic guiding will assert signal ¬wait in order to guide to
the success state.

V. EXPERIMENTAL RESULTS

To examine the benefits and the limitations of our ideas,
we conducted experiments with our prototype tool with single
and multi-module systems. The result was promising for multi
module designs, in which every module is of relatively small
size and blows up when producting it. Apparently, it was

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11

Time step

N
o

rm
a
li

z
e
d

B
D

D
s
iz

e

Without Guiding

Guiding at every time

step

Guiding if threshold

value is reached

Fig. 4. Comparison of Intermediate BDD Size.

not so convincing for large single module design. To show
the benefits of our idea, presently we considered a wireless
protocol design, which is restricted to six modules modeling
only the connection establishment of the priority flows. Figure
4 shows the BDD size difference for three environments: a)
guiding at every time step, b) guiding only if the BDD size
is larger than a threshold value, and c) without guiding. The
BDD size in the graph is normalized to 1. The graph highlights
the fact that our approach reduces the intermediate BDD size,
which in turn helps the verification tool to handle designs more
efficiently.

VI. CONCLUSIONS

We presented a technique for guiding forward state space
traversal in a BDD based bounded property checker. It can
dynamically guide the traversal for any property with similar
initial conditions. This is due to the fact that we extract abstract
guiding information out of the real design in a discrete manner.
Our tool is successfully tested with some examples. Future
work focuses on extending our prototype tool to handle a wider
variety of standard designs.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” in Highly Dependable Software, ser. Advances in
Computers, M. Zelkowitz, Ed. Academic Press, 2003, vol. 58.

[2] J. Ruf, P. M. Peranandam, T. Kropf, and W. Rosenstiel, “Bounded
property checking with symbolic simulation,” in Forum on Specification
and Design Languages, 2003.

[3] A. Casavant, A. Gupta, S. Liu, A. Mukaiyama, K. Wakabayashi, and
P. Ashar, “Property-specific witness graph generation for guided simula-
tion,” in Design Automation and Test in Europe (DATE), March 2001.

[4] L. Pierre and T. Kropf, Eds., Hints to Accelerate Symbolic Traversal, ser.
Lecture Notes in Computer Science, vol. 1703. Springer, 1999.

[5] K. Fisler and P. Kurshan, “Verifying VHDL designs with COSPAN,” in
Formal Hardware Verification, T. Kropf, Ed., 1997, pp. 206–247.

[6] H. Iwashita and T. Nakata, “Forward model checking techniques oriented
to buggy designs,” in Proceedings of the 1997 IEEE/ACM International
Conference on CAD. ACM and IEEE Computer Society Press, 1997,
pp. 400–4004.

[7] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel, “Simulation-guided
property checking based on a multi-valued AR-automata,” in Design,
Automation and Test in Europe, DATE 2001, W. Nebel and A. Jerraya,
Eds. IEEE Press, 2001, pp. 742–748.

[8] Property Specification Language Reference Manual. Accellera, April 25
2003, version 1.01.

[9] J. D. Ullman, “Stanford lecture notes,” http://www-
db.stanford.edu/ ullman/ialc/jdu-slides.html, 2000.

