
1

Dynamic Analysis of Constraint-Variable Dependencies to Guide SAT Diagnosis
by

Vijay Durairaj and Priyank Kalla
Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT-84112
{durairaj, kalla}@ece.utah.edu

Submitted to HLDVT 2004

Topic Category: Boolean Satisfiability Tools, Design Validation and Formal Verification Methods

Designated Contact Author: Vijay Durairaj
Department of Electrical and Computer Engineering

50 S. Central Campus Drive, MEB 3280
University of Utah

Salt Lake City, UT-84112
Ph: (801)-864-9306
Fax: (801)-581-5281

Email: durairaj@ece.utah.edu



Dynamic Analysis of Constraint-Variable
Dependencies to Guide SAT Diagnosis

Abstract: An important aspect of the Boolean Satisfiability
problem is to derive an ordering of variables such that branch-
ing on that order results in a faster, more efficient search. Con-
temporary techniques employ either variable-activity or clause-
connectivity based heuristics, but not both, to guide the search.
This paper advocates for simultaneous analysis of variable-
activity and clause-connectivity to derive an order for SAT
search. Preliminary results demonstrate that the variableorder
derived by our approach can significantly expedite the search.

As the search proceeds, clause database is updated due to
added conflict clauses. Therefore, the variable activity and con-
nectivity information changes dynamically. Our techniqueana-
lyzes this information and re-computes the variable order when-
ever the search is restarted. Preliminary experiments showthat
such a dynamic analysis of constraint-variable relationships sig-
nificantly improves the performance of the SAT solvers. Our
technique is very fast and this analysis time is a negligible(in
milliseconds) even for instances that contain a large number of
variables and constraints. This paper presents preliminary ex-
periments, analyzes the results and comments upon future re-
search directions.

I. I NTRODUCTION

The Boolean Satisfiability problem (henceforth called SAT)
is one of the pivotal problems in the Electronic Design Automa-
tion (EDA) arena. SAT is the problem of finding a solution (if
one exists) to the equationf = 1, wheref is a Boolean formula
to be satisfied. Classical approaches to CNF-SAT are based on
variations of the well known Davis-Putnam (DP) [1] and Davis-
Logemann-Loveland (DLL) [2] procedures. Recent approaches
[3] [4] [5] etc., employ sophisticated methods such as constraint
propagation and simplification, conflict analysis, learning and
non-chronological backtracks to efficiently analyze and prune
the search space. This paper proposes a new decision heuris-
tic that analyzes constraint-variable dependencies to guide SAT
diagnosis. Branching on the variable order derived by our ap-
proach significantly improves the performance of SAT solvers.

A. Related Work:

Over the years, a lot of effort has been invested inderiv-
ing an ordering of variablessuch that branching on that order
results in a faster, more efficient search for solutions.Vari-
able activity andclause connectivitystatistics are exploited as
qualitative and quantitative metrics to guide the search. Activ-
ity of a variable (or literal) is defined as the number of its oc-
currence among all the clauses of a given SAT problem. SAT
solvers compute the activity of variables and perform the search
by case-splitting on variables of high activity. Contemporary

tools such as zCHAFF, BerkMin, etc. dynamically update the
activity of the variables as and when conflict clauses are added
to the original constraints. For a comprehensive review of the
effect of activity-based branching strategies on SAT solver per-
formance, reviewers are referred to [6].

Loosely speaking, two clauses are said to be ”connected” if
one or more variables are common to their support. Clause
connectivity can be modeled by representing CNF-SAT con-
straints as (hyper-) graphs and, subsequently, analyzing the
graph’s topological structure. Tree decomposition techniques
have been proposed in literature [7] [8] for analyzing connec-
tivity of constraints in constraint satisfaction programs(CSP).
Such techniques have also found application in Boolean satis-
fiability problems. It has been shown [9] [10] that identifying
minimum tree-width for the decomposed tree structures results
in partitioning the overall problem into a chain of connected
constraints. MINCE [11] employs CAPO placer’s mechanism
[12] to find a variable order such that the clauses are resolved
according to their chain of connectivity. Our recent work [13]
employs hypergraph partitioning methods to derive a tree de-
composition. Various other approaches operate on such parti-
tioned tree structures by deriving an order in which the parti-
tioned set of constraints are resolved [14] [15] [10].

B. Limitations:

Contemporary methods that guide SAT diagnosis have the
following limitations:
• Conventional SAT solvers [4] [5] [3] employ variable
activity-based branching heuristics (DLIS, VSIDS, etc.) to
resolve the constraints. On the other hand, partitioning/tree-
decomposition based approaches [16] [10] [15] [11] employ
clause-connectivity based branching heuristics. None of these
techniques utilize both activity and connectivity information si-
multaneouslyfor SAT diagnosis.
• The high computational complexity of the tree decompo-
sition/partitioning based approaches results in large compute
times to search for the variable order. As a result, these tech-
niques are somewhat impractical for solving large and hard
CNF-SAT problems [10] as often encountered in design and
validation problems in VLSI-CAD.
• Other approaches rely on the sophistication of hypergraph
partitioning [17] [13] and place-and-route mechanisms [11] to
derive a variable order for SAT search.
• As the search proceeds, conflicts are encountered and
conflict-induced clauses are added to the constraint database.
Thus, the activity-connectivity information changes dynami-
cally. While activity based heuristics update this information
(VSIDS, DLIS, etc.), connectivity based variable orders are de-



2

rived only statically.
• Contemporary partitioning based methods are not suitable to
be employed dynamically, mostly because of their time com-
plexity1. The problem is exacerbated due to a significant in-
crease in the clause database due to added conflict clauses.

C. Contributions of this research:

Efficient CNF-SAT decision heuristics should analyze both
variable activity and clause connectivity simultaneouslyso as to
exploit constraint-variable relationships for faster constraint res-
olution. Moreover, the updated (due to conflict clauses) variable
activity and clause connectivity information should be utilized
dynamically during the search process. Furthermore, the time
to analyze constraint-variable relationships should be a small
fraction of the overall solving time. This paper proposes anef-
ficient technique to guide SAT diagnosis that attempts to fulfill
the above criteria/requirements.

Before proceeding into the search, our approach analyzes
high activity variables and identifies the clauses in which
they appear. These clauses contain other variables that “con-
nect/link” to these high activity variables. This connectivity
information is extracted, indecreasing order of variable activ-
ity, from the entire clause-variable database. Iterative applica-
tion of the above procedure produces an order for SAT search.
This analysis is repeated and a new order is derived every time
the search isrestarted. Our variable order generation proce-
dure is generic and can be implemented within any SAT solver.
Moreover, the time to compute the order is negligible, even for
large instances. Furthermore, our technique improves the per-
formance of SAT engines by orders of magnitude.

II. A NALYZING CONSTRAINT-VARIABLE DEPENDENCIES

It is our desire to derive a variable order for SAT search by
analyzing clause-variable relationships. To achieve this, we pro-
pose a constraint decomposition scheme by simultaneously an-
alyzing variable-activity as well as clause connectivity.We be-
gin the search for such an order by first selecting the highest
active variable and store it in a list (var ord list). The SAT tool
should branch on this variable first. Now, we need to identify
the set of variables related (connected/dependent) to thishigh-
est active variable. This information can be obtained by analyz-
ing all the clauses in which the highest active variable appears.
Such clauses are identified and marked. These clauses act as
a chain connecting the highest active and its related variables.
These related variables are termed as Level-1 connectivityvari-
ables. Subsequently, level-1 connectivity variables are ordered
according to their activity in the remaining problem (unmarked
clauses) and appended to thevar ord list. The reason for or-
dering level-1 connectivity variables according to their activity
in the remaining problem (as opposed to their overall activity)
is because they might be implicated due to any decision on the
highest active variable.

1Minimum tree width decomposition algorithms[7] [9] are known to be time
exponential in the tree width.

Variables related to the level-1 connectivity variables are to
be identified next. For this purpose, the clauses corresponding
to level-1 connectivity variables are analyzed and the level-2
connectivity variables are extracted. These level-2 connectiv-
ity variables are also ordered according to their activity in the
remaining problem and appended to thevar ord list. This pro-
cedure is applied iteratively until all the variables are ordered.
This order is used by the SAT engine to resolve the constraints.
This procedure can be visualized as shown in Fig. 1.

Fig. 1. Constraint Decomposition analyzing constraint-variable relationship

In general, there might be more than one variables that have
the same highest activity measure. In such cases, we need to de-
cide whether to select just one of them, all of them, or a subset of
the highest active variables as the top-level partition. Itis diffi-
cult to answer this question analytically; however, this decision
affects the variable order inasmuch as it affects the granularity
of the decomposition. To elaborate this issue further, let us an-
alyze the application of our algorithm for the circuit shownin
the Fig. 2.

Fig. 2. An Example Circuit : The integer values next to the variable names
correspond to the mapped literal in the CNF file.

Suppose that it is required to solve the satisfiability problem



3

for the above circuit. This circuit-SAT problem can be formu-
lated as CNF-SAT by generating clauses for the gates. It can
be observed from the circuit that the activity of variables{7,
5, 6, 8} is the highest. If we select only the variable 7 as the
top-level variable, then the resulting decomposition would look
like as shown in Fig. 3(a). The generated variable order would
be {7, 6, 5, 8, 3, 4, 9, 1, 2}. Note that variables{4, 9} have
the lowest activity in the overall problem, however, they are or-
dered before{1, 2}. This is because our procedure orders the
variables according to their activity in the unmarked clauses. If
we select two of the highest active variables, say 7 and 5, then
the decomposition changes as shown in Fig. 3(b). The result-
ing variable order would be{7, 5, 6, 8, 1, 2, 3, 4, 9}; this is a
different order than the previous one.

Fig. 3. Constraint-Variable relationship and SAT search order

To come back to our question of how many top variables
to select, we ran experiments with different threshold values
for the number of top-level variables. In particular, we experi-
mented with: 1) just one top variable; 2) 5% of total variables;
3) 7%; 4) 10%; 5) 12%; and 6) all the variables with the highest
activity. Results were inconclusive for all cases except when 5%
and 7% of the total variables are selected for the top-level parti-
tion. Only in these cases, we found that the derived variable
provided consistent improvement in performance of the SAT
engine. For the other cases, the results were mixed. Now we
present the results for these two cases (5% and 7% top-level
threshold) and analyze them further.

III. PRELIMINARY EXPERIMENTAL RESULTS AND

ANALYSIS

The proposed algorithm has been implemented within the di-
agnosis engine of the MiniSAT solver [18]. The choice for Min-
iSAT was dictated by its open source code, efficient resolution
procedures (it outperforms zCHAFF and GRASP on many large
instances) and also because it implements intelligent mecha-
nisms to invokesearch re-starts. Our implementation modifies
the variable ordering scheme of MiniSAT. Using our modifi-
cations, we ran experiments on satisfiable and unsatisfiablein-
stances selected from a range of applications. There are a large

number of CNF-SAT instances that are easily solved by Min-
iSAT - in less than a minute. We wanted to analyze the robust-
ness of our approach by experimenting with problems of large
size and difficult nature. Therefore, the benchmarks selected for
experiments are those which take a long time to solve - where
there exists enough scope for improvements. These experiments
are depicted in Table I.

In the table, the run times of original MiniSAT solver are
compared with those obtained by the modified version of our
decision heuristics. Threshold values of 5% and 7% corre-
spond to the order derived by selecting 5 or 7 percent of the
total variables in the top-level partition. At every searchre-
start, we re-analyze the updated clause-variable dependencies
to recompute the variable order. The CPU times reported for
our procedure include both the time to compute the variable or-
der, as well as the time to resolve the constraints. It can be ob-
served that our modifications significantly outperform the orig-
inal MiniSAT implementation.

TABLE I

RUN-TIME COMPARISON OF OUR PROPOSED APPROACH WITHM INI SAT

Modified MiniSAT
Bench- Vars/ MiniSAT 5% 7%
mark Clauses Time(sec) Time(s) Time(s)
Urq3 5 43 / 334 184.13 130.46 154.2
hanoi5 1931 / 14468 40.65 18.69 49.77
color 10 3 300 / 6475 81.63 8.72 4.11
clus set11 1200 /4800 242.73 11.37 170.64
c5315opt 4992 / 14151 56.65 19.52 32.96
4pipe 5237 / 80213 139.57 42.76 155.11
4pipe k 5095 / 79489 186.91 92.7 218.81
4pipe q0 k 5380 / 69072 48.04 49.56 53.21

engine4 6944 / 66654 62.59 53.32 48.3
5pipe 9471 / 195452 68.29 40.8 63.11
5pipe k 9330 / 189109 1362.06 956.16 397.15
5pipe q0 k 10026 / 154409 653.82 618.37 123.27

Let us now comment on the selection of threshold values. It
can be observed from the table that for instances that have fewer
than 7000 variables, a threshold value of 5% results in better
performance. Whereas for instances with larger than 7000 vari-
ables, a larger threshold value of 7% provides better results.
This result is intuitive and not surprising. For smaller problems,
a more fine-grained decomposition provides a better variable or-
der. On the other hand, for large problems, the performance gain
might be offset due to larger computational overheads when the
same fine-granularity decomposition is employed. Based on
these observations, we conjecture that perhaps a low threshold
value is better suited for smaller size problems and a higherone
for larger problems. This suggests that our variable ordering
scheme should be adaptive to the problem size. Based on the
number of variables, we should automatically decide on what
threshold to choose.

Amir’s approach [16] tries to resolve a similar problem by
analyzing clause-to-variable ratio. Unfortunately, for our ex-
periments we are not able to derive any conclusions regarding
the threshold value based on the clause-to-variable ratio.How-
ever, this work is currently in progress and this issue requires



4

TABLE II

VARIABLE ORDER RE-COMPUTATION AT SEARCH RESTARTS

Static Dynamic
Bench- % Thres- Rest- Conf- Deci- Time Rest- Conf- Deci- Time
mark hold arts licts sions (sec) arts licts sions (sec)
Urq3 5 5 27 7.64 M 11.1 M 143.88 26 6.8 M 9.9 M 130.46
hanoi5 5 16 107K 244 K 18.81 16 98 K 219 K 18.69
color 10 3 5 14 40 K 57 K 4.1 15 70 K 96 K 8.72
clus set11 5 23 1.88 M 2.96 M 561.59 15 70 K 133 K 11.37
c5315opt 5 14 44 K 107 K 12.74 14 57 K 185 K 19.52
4pipe 5 15 74 K 257 K 76.49 15 65 K 257 K 42.76
4pipe k 5 15 66 K 482 K 58.57 15 64 K 334 K 92.7
4pipe q0 k 5 16 104 K 346 K 61.2 16 103 K 400 K 49.56

engine4 7 14 41 K 95 K 54.38 14 42 K 121 K 48.3
5pipe 7 15 69 K 514 K 89.93 14 57 K 777 K 63.11
5pipe k 7 – – – >1000 18 204 K 885 K 397.15
5pipe q0 k 7 19 364 K 1.29 M 405.77 17 179 K 790 K 123.27

further research.

A. Search Restarts: Re-computation of the Variable Order

We now highlight the importance ofdynamicallyupdating/re-
computing the variable order. MiniSAT automatically invokes
search restarts after a certain number of conflicts are encoun-
tered. As and when conflicts are encountered, conflict-induced
clauses are added to the database. This, in turn, changes both
variable activity and clause connectivity. Therefore, this up-
dated information should be re-analyzed as and when the search
is re-started. Table II depicts the performance improvements
when the clause-variable relationship is analyzed and exploited
dynamically. The columns under the “Static” heading contains
run-time statistics when the order is computed only once at the
beginning of search and not re-computed during restarts. Onthe
other hand the columns under the “Dynamic” heading show run-
time statistics when the variable order is recomputed at search
restarts. Note that this dynamic clause-variable analysisalmost
always improves the performance of the solver.

IV. CONCLUSIONS ANDRESEARCHSTATUS

This paper has advocated for the need to analyze constraint-
variable relationship to derive a variable order to guide SAT di-
agnosis. For this purpose, we have proposed a algorithm that
decomposes the constraints by analyzing variable activityto-
gether with clause connectivity to derive a variable order.Our
approach is very fast, scalable and improves the performance of
the SAT engine. Preliminary results have been promising and
encourage further research.

Status of our work: Clearly, a missing piece of the puzzle
is to identify a definitive threshold value, along with an adap-
tive strategy, to derive a variable order according to the problem
size and/or constraindness. This issue is under investigation and
we would value reviewers recommendations. We are also im-
plementing a dynamic variable order update strategy to be em-
ployed when conflict clauses are added to the database. Note
that this is as opposed to the variable order re-computationat
search re-starts.

REFERENCES

[1] M. Davis and H. Putnam, “A Computing Procedure for Quantification
Theory”, Journal of the ACM, vol. 7, pp. 201–215, 1960.

[2] M. Davis, G. Logemann, and D. Loveland, “A machine program for the-
orem proving”, in Communications of the ACM, 5:394-397, 1962.

[3] J. Marques-Silva and K. A. Sakallah, “GRASP - A New SearchAlgorithm
for Satisfiability”, in ICCAD’96, pp. 220–227, Nov. 1996.

[4] M. Moskewicz, C. Madigan, L. Zhao, and S. Malik, “CHAFF: Engineer-
ing and Efficient SAT Solver”,in In Proc. Design Automation Conference,
pp. 530–535, June 2001.

[5] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust Sat-Solver”,
in DATE, pp 142-149, 2002.

[6] J. P. M. Silva, “The Impact of Branching Heuristics in Propositional Satis-
fiability Algorithms”, in Portuguese Conf. on Artificial Intelligence, 1999.

[7] R. Dechter and J. Pearl, “Network-based Heuristics for Constraint-
Satisfaction Problems”,Artificial Intelligence, vol. 34, pp. 1–38, 1987.

[8] R. Dechter, Constraint Processing, chapter 9, Morgan Kaufmann Pub-
lishers, 2003.

[9] E. Amir, “Efficient Approximation for Triangulation of Minimum
Treewidth”, in 17th Conference on Uncertainty in Artificial Intelligence
(UAI ’01), 2001.

[10] P. Bjesse, J. Kukula, R. Damiano, T. Stanion, and Y. Zhu,“Guiding SAT
Diagnosis with Tree Decompositions”,in Sixth International Conference
on Theory and Applications of Satisfiability Testing (SAT 2003), 2003.

[11] F. Aloul, I. Markov, and K. Sakallah, “Mince: A static global variable-
ordering for sat and bdd”,in International Workshop on Logic and Syn-
thesis. University of Michigan, June 2001.

[12] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for Hyper-
graph Bipartitioning”, in In Proc. Asia-Pacific DAC, 2000.

[13] V. Durairaj and P. Kalla, “Exploiting Hypergraph Partitioning for Efficient
Boolean Satisfiability”,in submitted, in review, HLDVT, 2004.

[14] E. Amir and S. McIlraith, “Partition-Based Logical Reasoning”, in 7th
International Conference on Principles of Knowledge Representation and
Reasoning (KR’2000), 2000.

[15] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Partition-based De-
cision Heuristics for Image Computation using SAT and BDDs”, in Pro-
ceedings of the 2001 IEEE/ACM international conference on Computer-
aided design (ICCAD), pp. 286–292. IEEE Press, 2001.

[16] E. Amir and S. McIlraith, “Solving Satisfiability usingDecomposition
and the Most Constrained Subproblem”,in LICS workshop on Theory
and Applications of Satisfiability Testing (SAT 2001), 2001.

[17] D. Wang, E. Clark, Y. Zhu, and J. Kukula, “Using Cutwidthto Improve
Symbolic Simulation and Boolean Satisfiability”,in In Proc. High-Level
Design Validation and Test Workshop, Nov. 2001.

[18] N. Eén and N. Sörensson, “An Extensible SAT Solver”,in 6th Interna-
tional Conference, SAT, 2003.


