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Dynamic Analysis of Constraint-Variable
Dependencies to Guide SAT Diagnhosis

Abstract: An important aspect of the Boolean Satisfiabilitytools such as zCHAFF, BerkMin, etc. dynamically update the

problem is to derive an ordering of variables such that drancactivity of the variables as and when conflict clauses areddd
ing on that order results in a faster, more efficient searan-C to the original constraints. For a comprehensive reviewhef t
temporary techniques employ either variable-activitylause- effect of activity-based branching strategies on SAT sgbeg-
connectivity based heuristics, but not both, to guide tleede formance, reviewers are referred to [6].
This paper advocates for simultaneous analysis of variable Loosely speaking, two clauses are said to be "connected” if
activity and clause-connectivity to derive an order for SATone or more variables are common to their support. Clause
search. Preliminary results demonstrate that the var@toler connectivity can be modeled by representing CNF-SAT con-
derived by our approach can significantly expedite the $earc straints as (hyper-) graphs and, subsequently, analyhiag t

As the search proceeds, clause database is updated dugriph’s topological structure. Tree decomposition teghes
added conflict clauses. Therefore, the variable activity@n- have been proposed in literature [7] [8] for analyzing canne
nectivity information changes dynamically. Our technigme- tivity of constraints in constraint satisfaction progra(@SP).
lyzes this information and re-computes the variable ordegrwy  Such techniques have also found application in Booleas-sati
ever the search is restarted. Preliminary experiments shatv fiability problems. It has been shown [9] [10] that identifgi
such a dynamic analysis of constraint-variable relatigpsssig-  minimum tree-width for the decomposed tree structures results
nificantly improves the performance of the SAT solvers. Ouin partitioning the overall problem into a chain of connecte
technique is very fast and this analysis time is a negliglisle constraints. MINCE [11] employs CAPO placer’s mechanism
milliseconds) even for instances that contain a large numbe [12] to find a variable order such that the clauses are redolve
variables and constraints. This paper presents prelimi@ar according to their chain of connectivity. Our recent worB][1
periments, analyzes the results and comments upon future eenploys hypergraph partitioning methods to derive a tree de
search directions. composition. Various other approaches operate on such part

tioned tree structures by deriving an order in which theipart
. INTRODUCTION tioned set of constraints are resolved [14] [15] [10].

The Boolean Satisfiability problem (henceforth called SAT
is one of the pivotal problems in the Electronic Design Auéem
tion (EDA) arena. SAT is the problem of finding a solution (if Contemporary methods that guide SAT diagnosis have the
one exists) to the equatigh= 1, wheref is a Boolean formula following limitations:
to be satisfied. Classical approaches to CNF-SAT are basedoiConventional SAT solvers [4] [5] [3] employ variable
variations of the well known Davis-Putnam (DP) [1] and Davis activity-based branching heuristics (DLIS, VSIDS, etc.p t
Logemann-Loveland (DLL) [2] procedures. Recent approacheesolve the constraints. On the other hand, partitionieg#

[3] [4] [5] etc., employ sophisticated methods such as cairst  decomposition based approaches [16] [10] [15] [11] employ
propagation and simplification, conflict analysis, leagnamd clause-connectivity based branching heuristics. Nonhede
non-chronological backtracks to efficiently analyze andngr techniques utilize both activity and connectivity infortiaa si-

the search space. This paper proposes a new decision heumigitaneouslyor SAT diagnosis.

tic that analyzes constraint-variable dependencies egBAT « The high computational complexity of the tree decompo-
diagnosis. Branching on the variable order derived by our agition/partitioning based approaches results in large pragen
proach significantly improves the performance of SAT saver times to search for the variable order. As a result, thede tec
nigues are somewhat impractical for solving large and hard
CNF-SAT problems [10] as often encountered in design and

Over the years, a lot of effort has been investediémiv-  validation problems in VLSI-CAD.
ing an ordering of variables such that branching on that ordere Other approaches rely on the sophistication of hypergraph
results in a faster, more efficient search for solutioMari-  partitioning [17] [13] and place-and-route mechanismg fbl
able activity andclause connectivitystatistics are exploited as derive a variable order for SAT search.
qualitative and quantitative metrics to guide the searcttivA « As the search proceeds, conflicts are encountered and
ity of a variable (or literal) is defined as the number of its occonflict-induced clauses are added to the constraint deg¢aba
currence among all the clauses of a given SAT problem. SAThus, the activity-connectivity information changes dyia
solvers compute the activity of variables and perform tlagade cally. While activity based heuristics update this infotioa
by case-splitting on variables of high activity. Contenagr (VSIDS, DLIS, etc.), connectivity based variable ordeies ée-

E. Limitations:

A. Related Work:



rived only statically. Variables related to the level-1 connectivity variables &r

« Contemporary partitioning based methods are not suitable be identified next. For this purpose, the clauses correspgnd

be employed dynamically, mostly because of their time conte level-1 connectivity variables are analyzed and theligve

plexity!. The problem is exacerbated due to a significant inconnectivity variables are extracted. These level-2 cotine

crease in the clause database due to added conflict clauses. ity variables are also ordered according to their activityhie
remaining problem and appended to tle_ord_list. This pro-

C. Contributions of this research: cedure is applied iteratively until all the variables ardeved.

Efficient CNF-SAT decision heuristics should analyze botf his order is used by the SAT engine to resolve the consgaint
variable activity and clause connectivity simultaneosslyas to  This procedure can be visualized as shown in Fig. 1.
exploit constraint-variable relationships for faster siaint res-

olution. Moreover, the updated (due to conflict clausesplde TOP

activity and clause connectivity information should beizeid PARTITION ”""‘;‘f\f‘-‘;: ;‘LCETS""E
dynamically during the search process. Furthermore, the ti CONNECT

to analyze constraint-variable relationships should benalls viTy ﬂ

fraction of the overall solving time. This paper proposegfn

ficient technique to guide SAT diagnosis that attempts tllful
LEVEL-1 CONNECTIVITY

the above criteria/requirements. LEVEL -1 VARIABLES
Before proceeding into the search, our approach analyzes PARTITION

high activity variables and identifies the clauses in which <_A£TI =

they appear. These clauses contain other variables that “co

nect/link” to these high activity variables. This conneiti T \\CONNECTING

information is extracted, idecreasing order of variable activ- LEVEL -2 CLAUSES

. . . L. PARTITION >} P

ity, from the entire clause-variable database. Iterativeiegpl ﬂ

tion of the above procedure produces an order for SAT search. W
This analysis is repeated and a new order is derived evegy tim L

the search igestarted Our variable order generation proce- | |
dure is generic and can be implemented within any SAT solver. LEVEL | |
Moreover, the time to compute the order is negligible, exeen f PARTITIO

large instances. Furthermore, our technique improveséhe p y
formance of SAT engines by orders of magnitude.

Il. ANALYZING CONSTRAINT-VARIABLE DEPENDENCIES Fig. 1. Constraint Decomposition analyzing constraintalge relationship

It is our desire to derive a variable order for SAT search by
analyzing clause-variable relationships. To achieve téspro- In general, there might be more than one variables that have
pose a constraint decomposition scheme by simultaneonsly dhe same highest activity measure. In such cases, we need to d
alyzing variable-activity as well as clause connectivitye be- cide whether to select just one of them, all of them, or a sdfse
gin the search for such an order by first selecting the highe§€ highest active variables as the top-level partitions diffi-
active variable and store it in a listdr_ord_list). The SAT tool ~CUlt to answer this question analytically; however, thisisien
should branch on this variable first. Now, we need to identifif€cts the variable order inasmuch as it affects the geaityl
the set of variables related (connected/dependent) tditis of the decomposition. To elaborate this issue further, $etin-
est active variable. This information can be obtained byyana alyZe the application of our algorithm for the circuit shoian
ing all the clauses in which the highest active variable appe the Fig. 2.
Such clauses are identified and marked. These clauses act as

a chain connecting the highest active and its related Viasab Zg;—

These related variables are termed as Level-1 connectizity

ables. Subsequently, level-1 connectivity variables ademrd c(3)

according to their activity in the remaining problem (unket

clauses) and appended to thar_ord_list. The reason for or-

dering level-1 connectivity variables according to theitiaty

in the remaining problem (as opposed to their overall agbivi d (4)

is because they might be implicated due to any decision on the

highest active variable. Fig. 2. An Example Circuit : The integer values next to theialle names

o ) B ) ) correspond to the mapped literal in the CNF file.
IMinimum tree width decomposition algorithms[7] [9] are kwoto be time

exponential in the tree width. Suppose that it is required to solve the satisfiability peabl



for the above circuit. This circuit-SAT problem can be formu number of CNF-SAT instances that are easily solved by Min-
lated as CNF-SAT by generating clauses for the gates. It c#AT - in less than a minute. We wanted to analyze the robust-
be observed from the circuit that the activity of variab{@s ness of our approach by experimenting with problems of large
5, 6, 8 is the highest. If we select only the variable 7 as thaize and difficult nature. Therefore, the benchmarks sedifotr
top-level variable, then the resulting decomposition widabk  experiments are those which take a long time to solve - where
like as shown in Fig. 3(a). The generated variable order dvouthere exists enough scope forimprovements. These expgsme
be{7,6,5, 8, 3, 4,9, 1, 2 Note that variable§4, 9} have are depicted in Table I.

the lowest activity in the overall problem, however, theg ar- In the table, the run times of original MiniSAT solver are
dered beforg1, 2}. This is because our procedure orders theompared with those obtained by the modified version of our
variables according to their activity in the unmarked cémudf  decision heuristics. Threshold values of 5% and 7% corre-
we select two of the highest active variables, say 7 and 8, thgpond to the order derived by selecting 5 or 7 percent of the
the decomposition changes as shown in Fig. 3(b). The resulbtal variables in the top-level partition. At every seareh

ing variable order would b¢7, 5, 6, 8, 1, 2, 3, 4, R thisis a  start, we re-analyze the updated clause-variable depeiggen
different order than the previous one. to recompute the variable order. The CPU times reported for
our procedure include both the time to compute the variable o
der, as well as the time to resolve the constraints. It carbbe o
served that our modifications significantly outperform thig-o

inal MiniSAT implementation.

LEVEL-0 PARTITION

TABLE |
RUN-TIME COMPARISON OF OUR PROPOSED APPROACH WITM INI SAT
Modified MiniSAT
Bench- Vars/ MiniSAT 5% 7%
mark Clauses Time(sec) || Time(s) | Time(s)
Urg3.5 43 /334 184.13 130.46 154.2
hanoi5 1931/14468 40.65 18.69 49.77
color.10_3 300/ 6475 81.63 8.72 4.11
clussetll 1200 /4800 242.73 11.37 170.64
(b) c53150pt 4992 /14151 56.65 19.52 32.96
4pipe 5237 /80213 139.57 42.76 155.11
. _ _ o 4pipek 5095 / 79489 186.91 92.7 | 218.81
Fig. 3. Constraint-Variable relationship and SAT searateor Apipeqok 5380/ 69072 28.04 7956 53.21
engine4 6944 / 66654 62.59 53.32 48.3
To come back to our question of how many top variables| 5pipe 94717195452 || 68.29 40.8 63.11
: ; : 5pipek 9330/189109 1362.06 956.16 | 397.15
to select, we ran experiments with different threshold ealu Epipeq0k | 100267 154400] 653,62 S5 327

for the number of top-level variables. In particular, we esp
mented with: 1) just one top variable; 2) 5% of total varigble  Let us now comment on the selection of threshold values. It
3) 7%; 4) 10%); 5) 12%; and 6) all the variables with the highestan be observed from the table that for instances that haes fe
activity. Results were inconclusive for all cases excem®% than 7000 variables, a threshold value of 5% results in bette
and 7% of the total variables are selected for the top-leadlp performance. Whereas for instances with larger than 7000 va
tion. Only in these cases, we found that the derived variablghles, a larger threshold value of 7% provides better r@sult
provided consistent improvement in performance of the SAThis result is intuitive and not surprising. For smallertgems,
engine. For the other cases, the results were mixed. Now wi@nore fine-grained decomposition provides a better variab|
present the results for these two cases (5% and 7% top-lei@gdr. On the other hand, for large problems, the performaaice g
threshold) and analyze them further. might be offset due to larger computational overheads when t
same fine-granularity decomposition is employed. Based on
these observations, we conjecture that perhaps a low thicesh
value is better suited for smaller size problems and a higher
The proposed algorithm has been implemented within the dier larger problems. This suggests that our variable ongeri
agnosis engine of the MiniSAT solver [18]. The choice for Min scheme should be adaptive to the problem size. Based on the
iSAT was dictated by its open source code, efficient resmiuti number of variables, we should automatically decide on what
procedures (it outperforms zCHAFF and GRASP on many largreshold to choose.
instances) and also because it implements intelligent eaxech Amir's approach [16] tries to resolve a similar problem by
nisms to invokesearch re-startsOur implementation modifies analyzing clause-to-variable ratio. Unfortunately, far @x-
the variable ordering scheme of MiniSAT. Using our modifi-periments we are not able to derive any conclusions regardin
cations, we ran experiments on satisfiable and unsatisfiable the threshold value based on the clause-to-variable reto:-
stances selected from a range of applications. There arge laever, this work is currently in progress and this issue nexgui

IIl. PRELIMINARY EXPERIMENTAL RESULTS AND
ANALYSIS



TABLEII

VARIABLE ORDER RE-COMPUTATION AT SEARCH RESTARTS

Static Dynamic
Bench- % Thres- || Rest- | Conf- Deci- Time Rest- | Conf- | Deci- Time
mark hold arts licts sions (sec) arts licts sions (sec)
Urg3.5 5 27 764M | 11.1M | 143.88 26 6.8M | 99M | 130.46
hanoi5 5 16 107K 244 K 18.81 16 98 K 219K | 18.69
color.10_.3 5 14 40 K 57K 4.1 15 70K 96 K 8.72
clussetll 5 23 1.88M | 296 M | 561.59 15 70K 133K | 11.37
c53150pt 5 14 44 K 107 K 12.74 14 57K 185K | 19.52
4pipe 5 15 74 K 257K 76.49 15 65 K 257K | 42.76
4pipek 5 15 66 K 482 K 58.57 15 64 K 334 K 92.7
4pipeq0k 5 16 104 K 346 K 61.2 16 103K | 400K | 49.56
engine4 7 14 41 K 95 K 54.38 14 42 K 121 K 48.3
Spipe 7 15 69 K 514 K 89.93 14 57K 777K | 63.11
5pipek 7 — - - >1000 18 204K | 885K | 397.15
5pipe.q0k 7 19 364K | 1.29M | 405.77 17 179K | 790K | 123.27

further research.
[1]

A. Search Restarts: Re-computation of the Variable Order 2]

We now highlight the importance dfynamicallyupdating/re- 3]
computing the variable order. MiniSAT automatically inesk
search restarts after a certain number of conflicts are encou¥l
tered. As and when conflicts are encountered, conflict-iaduc
clauses are added to the database. This, in turn, chandes het
variable activity and clause connectivity. Thereforesthp-
dated information should be re-analyzed as and when thetseal!
is re-started. Table Il depicts the performance improvetmenm
when the clause-variable relationship is analyzed andérpl
dynamically. The columns under the “Static” heading cargai [&]
run-time statistics when the order is computed only oncheat t 9
beginning of search and not re-computed during restartsh®©n
other hand the columns under the “Dynamic” heading show run-
time statistics when the variable order is recomputed athea [10]
restarts. Note that this dynamic clause-variable anabfsigst
always improves the performance of the solver. [11]

IV. CONCLUSIONS ANDRESEARCHSTATUS [12]

This paper has advocated for the need to analyze constraiis]
variable relationship to derive a variable order to guidd A
agnosis. For this purpose, we have proposed a algorithm tﬁ%ﬁj
decomposes the constraints by analyzing variable actigity
gether with clause connectivity to derive a variable ord@ar  [15]
approach is very fast, scalable and improves the perforenainc
the SAT engine. Preliminary results have been promising and
encourage further research. [16]

Status of our work: Clearly, a missing piece of the puzzle
is to identify a definitive threshold value, along with an pda [17]
tive strategy, to derive a variable order according to thodofam
size and/or constraindness. This issue is under inveistigand 18]
we would value reviewers recommendations. We are also inH—
plementing a dynamic variable order update strategy to be em
ployed when conflict clauses are added to the database. Note
that this is as opposed to the variable order re-computation
search re-starts.
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