POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automating the IEEE std. 1500 compliance verification for embedded cores

Original

Automating the IEEE std. 1500 compliance verification for embedded cores / Benso, Alfredo; DI CARLO, Stefano;
Prinetto, Paolo Ernesto; Bosio, Alberto. - STAMPA. - (2007), pp. 171-178. (Intervento presentato al convegno IEEE
International High Level Design Validation and Test Workshop (HLDVT) tenutosi a Irvine (CA), USA nel 7-9 Nov. 2007)
[10.1109/HLDVT.2007.4392810].

Availability:
This version is available at: 11583/1845214 since:

Publisher:
IEEE

Published
DOI:10.1109/HLDVT.2007.4392810

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

01 May 2024



Automating the IEEE std. 1500 Compliance
Verification for Embedded Cores

A. Benso, S. Di Carlo, P. Prinetto
Politecnico di Torino
Dipartimento di Automatica e Informatica
Torino, Italy.

Email: {alfredo.benso, stefano.dicarlo,
paolo.prinetto } @polito.it

Abstract—The IEEE 1500 Standard for Embedded Core Test-
ing proposes a very effective solution for testing modern System-
On-Chip (SoC). It proposes a flexible hardware test wrapper
architecture, together with a Core Test Language (CTL) used
to describe the implemented wrapper functionalities. Already
several IP providers have announced compliance in both existing
and future design blocks. In this paper we address the challenge
of guaranteeing the compliance of a wrapper architecture and
its CTL description to the IEEE std. 1500. This is a mandatory
step to fully trust the wrapper functionalities in applying the
test sequences to the core. The proposed solution aims at
implementing a verification framework allowing core providers
and/or integrators to automatically verify the compliancy of their
products (sold or purchased) to the standard.

I. INTRODUCTION

The race to market high-volume quality products demands
a shorter design-to-manufacturing cycle, forcing System-on-
Chip (SoC) designers to strongly rely on Intellectual Property
(IP) cores from multiple sources [1]. The shorter time-to-
volume requires faster silicon bring-up with a high degree
of diagnosability [2]. This means being able to isolate each
embedded core during test and debug activities. The adoption
of adequate test and diagnosis strategies is therefore a major
challenge in modern SoCs production.

The IEEE Standard Testability Method for Embedded Core-
Based Integrated Circuits (IEEE std. 1500 [3]) addresses the
specific challenges that come with testing deeply embedded
reusable cores supplied by different providers, who often use
different hardware description levels and mixed technologies
[2] [4] [5]. It defines a comprehensive set of guidelines for
building the core test infrastructure. It includes:

o A Core Test Wrapper: a wrapper placed around the
boundaries of the core that allows accessing its testing
functionalities using a standard interface and protocol
(Figure 1). The wrapper is completely transparent when
the core is not in test mode;

o An Information Model: a formal description of the IEEE
std. 1500 functionalities implemented by the Core Test
Wrapper. The standard supports many functionalities,
some mandatory and some optional. The Information
Model is the bridge between core providers and core
users and facilitates the automation of test data transfer

1-4244-1480-6/07/$25.00 ©2007 IEEE

A. Bosio
Laboratoire d’Informatique, de Robotique
et de Microelectronique de Montpellier
Universit de Montpellier I / CNRS
Montpellier Cedex 5, France.
E-mail: alberto.bosio@lirmm.fr

and reuse between these two entities. The Information
Model is described using the IEEE std. 1450.6 Core Test
Language (CTL) [6] and includes:

— The set of wrapper’s signals;
— The wrapper communication protocol;
— Information about test patterns.

JTTTHI-IIHI || ||T$'1:."1- T

Wrapper /Wrapper
Cells R EIX IR LI L
S S TTTTTTT T T T A
— —1 =% —
— ) [ —
— C | —
—_ La s —
—E Core B
Wrapper p— [ -
Instruction —aa e v;;apﬂ';zr
Register (WIH)\ —fo-ta [ _/ Register
Wrapper Serlal--{t_—,. pRmERRARRARE -I—___r__ Wrapper Serial
— e
Input (WSI) T Output (WSO)
Wrapper Interface
Port (WIP)
Fig. 1. 1EEE std. 1500 Core Test Wrapper Architecture

Some literature presents solutions to build SoCs with IEEE
std. 1500 testability features [7] [8]; nevertheless, by analyzing
the standard, it is clear that implementing a fully compliant
core is not a trivial task. The need to support as wide a range
of embedded core test applications as possible has led to a very
flexible solution. As described in [4], although a mandatory
minimal set of hardware support is defined, a designer can
extend the test infrastructure by creating virtually unlimited
sets of registers and instruction extensions [9]. An IEEE std.
1500 compliant design is therefore exposed to a range of
possible design errors that require to be early identified and
fixed. A comprehensive approach to thoroughly verify the
functionality of IEEE std. 1500 wrappers and wrapped cores
in a SoC environment is therefore mandatory.

The problem of verifying the compliance of an IP core to
the IEEE std. 1500 has been poorly addressed in literature. In
[10] the authors presented an approach based on a dynamic
constrained-random coverage driven verification methodology
to verify the functionalities of the complete test infrastructure
within a given SoC. The authors present a strategy based on
a single verification module performing the full verification.

171



The main drawbacks of the proposed solution are that, for
each core, the verification module must be configured by hand
and that the verification strategy, i.e. the order used to verify
each aspect (rule) of the standard, is fixed. Moreover, the
authors verify the SoC and wrapper functionalities without
systematically addressing every single aspect (rule) of the
standard.

To overcome these problems, in [11], we present a ver-
ification framework based on the use of the UML [12]
language, designed to systematically address the verification
of the standard. Besides providing the actual implementation
of the framework, the paper focuses on the definition of an
abstract model of the standard enabling core providers and/or
integrators to build their custom verification environments.

This paper aims at showing how, starting from the abstract
model proposed in [11], it is possible to build a verifi-
cation environment for the IEEE std. 1500. In particular
we will show how the functionalities provided by Specman
Elite™(Cadence) [13], a commercial functional verification
EDA can be used to implement such a verification environ-
ment.

We suppose the reader familiar with the basic aspects of
the IEEE std. 1500. If needed, a complete description of the
standard can be found in the IEEE std. 1500 official document
[3].

The paper is organized as follow: Section II introduces the
proposed verification environment and its architecture. Section
IIT presents the functional verification issues related to the
IEEE std. 1500, while Section IV details the adopeted solu-
tion related to the functional verification. Finally, Section V
provides some experimental results and Section VI concludes
the paper.

II. ARCHITECTURE OVERVIEW

Figure 2 shows the overall architecture of our IEEE std.
1500 Verification Environment. The verification process con-
sists of two distinct phases named static and dynamic check,

respectively.
CTL
file

IEEE 1500
wrapped core
HDL file

Failure
Report
(static)

failure

Static
Check

Intermediate

description failure Failure
b T Report
v (dynamic)
Dynamic
Plan Check Pass
1500

cc
Fig. 2. 1IEEE std. 1500 Verification Environment Architecture Overview

The static check phase aims at verifying the correctness of
the Information Model provided together with an IEEE std.

1500 compliant core (see Section I). This model is expressed
using a standard language (CTL [6]) and, for this reason,
verifying its correctness consists in verifying the correctness
of the syntax of the CTL description. This is a well known
problem in the field of programming languages and compilers.
It is usually solved using special programs called lexers and
parsers [14].

Several technologies allow the automatic implementation of
parsers starting from the description of a formal grammar. We
successfully implemented a CTL syntax analyzer by using two
open-source tools: JFLEX [15] by Vern Paxson together with
the parser generator CUP [16] by Scott Hudson. The resulting
analyzer is able to automatically perform a syntax analysis
on any type of Information Model provided together with an
IEEE std. 1500 compliant core.

A failure in the static check phase means that either the
CTL or HDL model of the wrapped core are affected by
syntax errors. The Failure Report (Figure 2) is the list of
these errors. In case of a positive check, the output of this
phase is a collection of information extracted from the CTL
and HDL code of the Core Test Wrapper (i.e., information
about signals naming conventions, etc...) represented using a
so called Intermediate Description (Figure 2), and used as
input for the next verification phases. Since the static check
phase is not complex, we will not provide additional details
on its implementation while in the remaining of the paper
we will focus on the more interesting dynamic aspects of the
verification.

In order to understand the tasks to perform during the
dynamic check phase we have first to recall the structure of
the IEEE std. 1500 itself. The IEEE std. 1500 is composed
of a set of different rules that define how an IEEE std. 1500
compliant Core Test Wrapper has to be designed [3]. The rules
identify two different classes of aspects to be verified:

o Semantic aspects: they concern the Information Model
(CTL) and can be verified without any interaction with
the actual core/wrapper implementation (i.e. without the
need of core/wrapper simulations);

e Behavioral aspects: they target the communication pro-
tocols and the behavior of the Core Test Wrapper. In
general, the verification of these aspects, requires a func-
tional simulation of the wrapper.

Semantic aspects mainly aim at identify the correct defini-
tion of the following structures in the Information Model:

e Scan structures;
e Macro definitions;
o Environments.

They can be verified by analyzing the content of the Infor-
mation Model provided with the Core Test Wrapper. This is a
fast and powerful way to verify at least part of the IEEE std.
1500 compliancy since it does not require any simulation of
the wrapper/core itself. Although simple and fast, this analysis
is not enough to guarantee the compliance w.r.t. the standard.
First of all, semantic aspects are only a relatively small subset
of the whole set of rules to verify. Moreover, the semantic

172



analysis is performed on data contained in an information
model supplied by the core provider; there is no guarantee
that the CTL description perfectly matches the actual hardware
implementation.

Semantic aspects can be verified by resorting to the infor-
mation stored in the Intermediate Description obtained as the
output of the static check phase (see Figure 2). An efficient
way to implement the semantic aspects verification is to store
the Intermediate Description into a relational database. In this
situation the verification tasks can be easily translated into a
set of queries performed on the database.

Behavioral aspects are the most complex part of the standard
and are the most difficult to verify. Their verification requires
the simulation of the core/wrapper functionalities. Being the
most important part of the verification flow, a detailed descrip-
tion of how behavioral aspects can be verified will be provided
in the next paragraphs.

III. DYNAMIC FUNCTIONAL VERIFICATION TO VERIFY
IEEE sTD. 1500 BEHAVIORAL ASPECTS

The verification of behavioral aspects is based on the
functional simulation of the Core Test Wrapper and of the
core itself. Simulation is the only effective approach to verify
the compliancy of time-related rules, protocols, signal connec-
tions, and correct instructions implementation.

A well-known approach to perform this type of verifica-
tion is the so-called “dynamic coverage-driven constrained-
random simulation functional verification”. The term “dy-
namic” refers to the fact that the verification patterns/stimulus
are generated and applied to the design by simulating/exe-
cuting the design model, and the corresponding results are
collected and compared against a reference/golden model. An
EDA simulator is used both to compute the values of the
signals during the simulation, and to compare the expected
values with the reference ones.

Simple dynamic verification has a main drawback: only a
subset of the possible behaviors can be verified in a time-
bound simulation run. Testing all possible behaviors under
every possible combination of input stimuli is, in most of the
cases, an unfeasible task since the test space is too large to be
fully covered in a reasonable amount of time.

To overcome this problem, the number of verification pat-
terns applied to the wrapper has to be statistically significant
but not complete. To do this, verification input patterns are
generated randomly under a set of constraints, expressed
as mathematical expressions limiting the set of legal values
on the input signals that drive the design. In this way the
simulator generates random values and constraints ensure that
the generated scenarios are valid and plausible.

To further optimize this constrained-random generation,
coverage-driven verification is used. Functional coverage met-
rics are automatically and in real-time stored in order to as-
certain whether (and how effectively) a particular test verifies
a given feature. This information can then be fed back into
the generation process in order to drive additional verification
effort towards the required goal. The coverage metrics are

evaluated on coverage monitoring points defined by the user
and specified in the verification plan.

The market offers a number of tools able to support
this dynamic (or functional) verification methodology. The
most used ones are Specman Elite™(Cadence) [13] and
Vera™ (Synopsys) [17]. Besides the different verification and
pattern generation engines, all of them apply the verification
patterns to the target design using a verification component
placed around the core under analysis. The verification compo-
nent, a behavioral-level module described using a proprietary
verification language (e for Specman Elite™, OpenVera for
Vera™, and SystemVerilog for SystemVerilog™), performs
the constrained-random generation of the verification patterns,
applies the patterns, and is directly controlled by the verifi-
cation engine monitoring the current coverage reached in the
verification process.

In the following paragraph we will show how to verify IEEE
std. 1500 behavioral aspects using Specman Elite™and and its
verification language e.

IV. IEEE STD. 1500 BEHAVIORAL ASPECTS
VERIFICATION USING SPECMAN ELITE™

Specman Elite™ [13] is a comprehensive environment able
to manage the different aspects of the verification flow of an
integrated circuit: automatic generation of functional tests, data
and temporal checking, functional coverage analysis, and HDL
simulation control. Figure 3 sketches the overall architecture
of Specman Elite™.

Interface Spec. &
Functional Test
Plane - e

Legacy Code (C, HDL)
Verification Environment
Reference Model + Test

Il

Data & Temporal
Checking

{}

SPECMAN ELITE

Functional
Coverage Analysis

{}

Constraint-Driven
Test Generation

‘ HDL Simulator |
1T
‘ HDL |
Fig. 3.  Specman Overall Architecture

Specman Elite™uses the IEEE Standard e Functional Ver-
ification Language [18] (e for short) to capture behaviors
defined into the specifications as well as to automatically
generate tests. Powerful temporal constructs enable to cap-
ture the aspects of complex protocols for checking. The e
language allows writing “e Verification Cores” (eVCs). eVCs
are software modules modeling the functional behavior of the
environment surrounding the target system. Specman Elite™is
able to interface with HDL simulators in order to have full
controllability and observability of internal signals of the
device under verification. Moreover, by means of an executable

173



functional test plan, it automatically measures the progress of
the verification identifying holes in the test coverage. In this
way, the verification schedule becomes more predictable since
the functional coverage is a meaningful and direct measure of
the completeness of the verification.

The use of eVCs and the full internal signals controlla-
bility/observability are key elements to efficiently verify IEEE
std. 1500 behavioral aspects. To efficiently apply the Specman
Elite™ verification approach to the dynamic verification of
IEEE std. 1500 it is necessary to:

o Create a rule verification component for each IEEE std.
1500 behavioral rule. The component is in charge of
generating the verification patterns applied during the
simulation and checking that all the architectural and
behavioral aspects of the rule are correctly implemented
in the design;

o Identify the rule coverage points for the given rule. A
coverage point is a Core Test Wrapper signal/register to
be monitored in order to evaluate the coverage reached
during the verification process.

The concept of rule coverage is very important. As stated
in Section III, to reduce the complexity of the verification, the
verification engine resorts to the constrained-random pattern
generation. This leads to the application of a subset of the
possible patterns to the system under verification and therefore
to a rule coverage or compliancy level possibly lower than
100%. The challenge in verifying behavioral aspects of the
IEEE std. 1500 is to write rule verification components and
to identify rule coverage points that are independent from the
specific core or wrapper under analysis.

Another very important issue to be considered at this point is
the level of controllability and observability on the core/wrap-
per design. Mainly, we can distinguish between two situations:
black-box design and white-box design. The difference is
in the amount of available information on the core/wrapper
internal structure. In a black-box approach the only available
information is the I/O interface of the wrapper/core. For
Intellectual Property (IP) protection the internal structure of a
black-box core is unknown. A core integrator, who buys cores
from different vendors, usually deals with black-box designs.
On the other hand, a core designer has complete access to
the core/wrapper design, and therefore deals with white-box
designs.

From the IEEE std.1500 compliancy verification point of
view, the difference between black-box and white-box design
directly impacts the level of verification compliancy that can
be achieved. In a white-box design, the internal signals of
the core/wrapper can be fully controlled and/or observed and
therefore all IEEE std. 1500 rules can be fully verified. On the
other hand, in a black-box design, only rules (or the portions of
them) that do not require direct controllability or observability
of core/wrapper internal signals can be fully verified. Full
IEEE std.1500 verification compliancy can only be achieved
when dealing with white-box cores or with black-box cores
implementing only the basic requirements of the standard.

The implemented verification environment is structured as a
single eVC (e Verification Component) architecture under the
recommendations of eERM™ (e Reuse Methodology) [13]. The
verification component is able to deal with a generic wrapped
core without any additional modification. Core depended infor-
mation are directly provided to the verification component by
a set of e configuration files automatically generated starting
from the information stored in the Intermidiate Descritption
(see Section II). The following subsections will detail the
implementation of the proposed verification environment using
the e language.

A. IEEE std. 1500 Verification Environmente eVC Structure

This section overviews the eVC structure required to verify
behavioral aspects of the IEEE std. 1500. Each aspect will be
identified using the corresponding rule number contained in
the standard specification document [3]. Figure 4 shows the
main elements composing this verification component.

sys

ieee_env

lieee_hierarchy| [ieee_input| lieee_output] [ieee_constant]

lieee_scoreboard_rulename)]

lieee_rule_rulename] ieee_rule_rulename] ieee_rule_rulename]

‘ieeeﬁcheckerﬁrulename| ‘ieeeﬁcheckerﬁrulename| ‘ieeeﬁcheckerfrulename‘

Fig. 4. 1EEE std. 1500 eVC structure

Each box in Figure 4 corresponds to a Specman
Elite™ structure [13] implemented as an e file. The remaining
of this section will detail the meaning of each block.

The ieee_env block is the highest level in the hierarchy; it
extends the predefined Specman Elite™ structure sys, in order
to instantiate the verification framework, and it is in charge of
defining the events required to perform the actual verification.
In particular, for each rule to verify, it defines a start event
to begin the verification process and an end event required
to control the results of the verification process. An example
of ieee_env.e file is reported in Figure 5. The example
contains a flag checkpoint, used to stop the verification process
if one of the rules under analysis is not respected.

The ieee_input.e, ieee_ouput.e and
ieee_constant.e files contain information related
to the specific Core Test Wrapper under verification. They
are automatically generated during the Static Check phase
(see Figure 2) starting from information contained in the
Information Model and stored in the Intermediate description.
They provide information used to apply the stimuli at the
input signals of the wrapped core, to monitor the output
signals of the wrapped core, and to store wrapped core
specific information as wrapper signals names, registers size
etc.

174



event
event

start_13_1_1_a;
end_13_1_1_a;

event
event

start_7_2_1 c¢;
end_7_2_1_c;

event
event

start_7_2_1 b;

end_7_2_1_b;

checkpoint: bit;
keep soft checkpoint == 0;

Fig. 5. IEEE std. 1500 eVC environment example

The file ieee_hierarchy.e contains the information
about the verification plan. It defines the order in which
the different IEEE std. 1500 rules has to be verified and
the dependencies between the different rules. The verification
plan is really important to highlight dependencies between the
results of the different verification steps. Moreover, being the
verification process one of the main cost factors of a modern
SoC, we have to define optimal verification plans able to
reduce the overall verification time.

An example of a small portion of this file is reported in
Figure 6.

on end_10_3_1_a3 {
emit start_10_3_1_7;
i
on end_10_3_1_7 {

if checkpoint == 1 {
stop_run;

} else {

emit start_7_4_1_a;
i
}i

Fig. 6. 1EEE std. 1500 Verification Plan Example

Each time the verification of a given rule ends i.e., the
end_rulenumber event specified in the environment occurs
(see Figure 5 ), the verification plan identifies the next rule
verification to schedule. In case of rules dependencies, the
result of a specific rule verification may modify the verification
plan. As an example let us consider rule 7_4_1_a. According
to the verification plan of Figure 6 its verification starts
only if rule 10_3_1_7 is correctly verified. In a different
way, according to the same verification plan, rule 10_3_1_j
is verified after rule 10_3_1_a3 without checking if rule
10_3_1_a3 has been violated or not.

To conclude, each IEEE std. 1500 rule has been mapped
to an e¢ module named (ieee_<rulenumber>.e) where
rulenumber is the number of the rule as defined in the
standard. The module always includes two e files:

e leee_scoreboard_<rulenumber>.e;

e ieee_Checker_<rulenumber>.e.
The scoreboard aims at checking the correctness of the rule by
comparing the values observed at the output of the wrapped
core with the expected one. The checker aims at checking the
correctness of the timing protocol of the wrapped core.

B. IEEE std. 1500 Rules Verification Strategy

As stated in Section IV-A the most critical element of
the proposed verification environment is the instantiation of
the verification modules in charge of verifying the differ-
ent IEEE std. 1500 rules. This task is performed by a so
called agent implementing the verification plan defined by the
ieee_hierarchy.e file (Figure 7). For each rule the agent
instantiates two different modules:

o Bus Functional Model (BFM): it generates the input stim-
uli and drives the signals of the wrapped core required
to verify the corresponding rule;

e Monitor: this module comprises the Scoreboard and the
Checker already defined in Section IV-A.

Finally, for each rule a set of coverage items are defined.
Specman Elite™allows the definition of three types of cover-
age items to cover all the possible coverage events:

e basic: how many times an event occurs;

e transition: how many times an item changes state from a

range of values to another;

e cross: how many times an event occurs relative to how
many times other events occur.

Agent

j Monitor-1
1) Monitor-2

BFM Rule-1

=z

BFM Rule-2

Wrapped Core

|l

BFM Rule-n[—[

Fig. 7. Rule Verifier Architecture

To better understand the proposed verification strategy let
us consider the following IEEE std. 1500 rule:

While the WS_BYPASS instruction is selected, all wrapper
boundary cells that can operate in either system or test
modes shall perform their system function.

To verify this rule the following operations are required:
o Fetch the Bypass instruction;

175



o Check that the control signals of the WBR (Wrapper
Boundary of Figure 1) cells are set to work in normal
mode.

The static check phase provides information about the wrap-
per control signals, the code of the bypass instruction and the
configuration of the boundary cells needed to understand their
operation mode (i.e., if the cells work in normal or test mode).
The BFM and the monitor needed to verify the proposed rule
are reported in Figure 8 and Figure 9 respectively. Since this
rule does not require any timing check, only the scoreboard is
implemented.

<
rule_7_4_1_d () @sys.ieee_env.start_7_4_1_d is {
— — Perform WS_BYPASS instruction fetch

start sys.ieee_env.ieee_input.instruction_fetch

(pack (packing .low, sys.icee_env.icee_constant . WS_BYPASS));

emit sys.ieee_env.ieee_input.instruction_fetch_e:

wait delay (sys.ieee_env.ieee_constant.time_instruction_fetch):

— — Here all the signals checked in this rule aren’t
— — released because the instruction fetch releases all
— — the signals that it forces

for each in sys.ieee_env.ieee_constant.cell_mode do {
mode_tmp = sys.ieee_env.ieee_output.get_value
sys.ieece_env.icee_constant.cell_mode[index]);
— Read the mode signals value
dut_mode . add (mode_tmp )

— Release all the forced design signals
sys.ieee_env.ieee_input.release_all_signals ();
—  wait delay (1);

dut_mode. clear ();
emit sys.ieee_env.end_7_4_1_d;

i

extend ieee_env_u {

unit_7_4_1_d: unit_7

run() is also {
— Start TCM implementing rule 7.4.1.d
start unit_7_4_1_d.rule_7_4_1_d():

}s

}:
>

Fig. 8. Rule BFM

<
unit ieee_scoreboard_7_4_1_d {

check_value () is {

—— Check that WS_BYPASS set the WBR cells in normal mode
if (sys.ieee_env.unit_7_4_1_d.dut_mode !=
sys.ieee_env.ieee_constant.cell_normal) {
dut_error("Rule 7.4.1.d failed.”);
} else {
out(”Rule 7.4.1.d passed.”);
¥

}s
}:

extend ieee_output_u {

scoreboard_7_4_1_d : icee_scoreboard_7_4_1_d is instance;
}:

on check_7_4_1_d {
sys.ieee_env.ieee_output.scoreboard_7_4_1_d.check_value ();

vV

Fig. 9. Rule Monitor

V. EXPERIMENTAL RESULTS

This section reports the experimental results obtained by
using the proposed verification environment to verify the IEEE

std. 1500 compliance of a core implementing a four bit counter
with the following characteristics:

o A CLOCK input used as counting clock;

o A RESET input to reset the counting state;

o A LOAD input to force a new start value for the counting;

o A 4 bit input DIN that indicates the start value used when
LOAD is high;

o A 4 bit output COUNT that indicates the actual counting
value.

This core has been wrapped with a IEEE std. 1500 core test
wrapper having the following characteristics:

« An instruction register (WIR), 3 bit length;

o A bypass register (WBY), 1 bit length;

o A boundary register (WBR), 8 bit length;

o An optional TransferDR wrapper serial control;

o Four implemented instructions: WS_BYPASS,
WS_PRELOAD, WS_INTEST, WS_EXTEST.

After a complete analysis of the IEEE std. 1500 specifica-
tion [3] we have been able to identify a set of 165 mandatory
rules and 27 optional rules. In our prototype implementation
we have been able to deal with the verification of 138
mandatory rules summarized as follows:

o Semantic Rules (they include semantic aspects only): 40;

« Behavioral Rules (they include behavioral aspects only):
25;

o Mixed Rules (they include both semantic and behavioral
aspects): 73.

For each behavioral and mixed rule a Specman
Elitt™component implementing the rule verifier has
been designed according to the guidelines introduced in
Section IV-B.

Figure 10 provides an example of the report provided to the
user in case of a compliant core. For each rule the verification
result (i.e. passed or failed) is reported. Moreover, the user
can select the desired rule(s) and display the corresponding
simulation waveforms to deeply investigate the signals driven
and controlled during the simulation.

At the end of the behavioral verification, the tool provides
the coverage measure reached during the simulation (Figure
11). The coverage is useful in order to understand the rules that
passed the verification and the level of verification accuracy.

In order to carefully validate the verification capabilities of
the proposed environment we designed a set of different Core
Test Wrappers, systematically violating different rules of the
standard. Figure 12 shows the result of the behavioral verifica-
tion in case of a non compliant wrapper. In the example, rule
number 10.2.1.c fails. The verification environment highlights
this violation and also provides the waveform obtained by the
simulation to provide a better understanding of the reasons
that led to the rule violation. On going work is focusing on
creating a violation-programmable wrapper, where different
violations can be enabled or disabled in order to verify the
efficiency of the verification framework also in presence of
multiple violations in the same wrapper.

176



EEE std, 1500 conpliancy rules reporl: ERROR DETECTED!

ule 10.3.1.¢ passed.

ulemlldnﬂurulemllur
ving garbage collection: currani Ve’ is 49892152 b
one - new size is 16340516 bytes

wxx Dut error at kine 152778
Checked ot line 70 in fisee c
isea_scorsboord_L0_2_1_c-01.chel :k w.\lue!() Gnit:

us. 1808 orw 1896, SuEpu scorabond 10 9

scoreboard 10 2 1

ule 10.2.1.c Failed.
i11 continua ewecution (check eFfect is ERROR_CONTINUE)

ule 14.1.1.a passed.
ule 10.3.1.i passed.
ule 10.3.1.h passed.
ast specnan tick =

ornal st -hstgn run() ls cnnnle{.nd |

hecking
hecking is mmllate = 1 DUT errors, O

[

kest ]

Fig. 12.  Error report

VI. CONCLUSION

In this paper we presented a verification environment for
IEEE std. 1500 compliant cores. The environment aims at
verifying if the implementation of the Core Test Wrapper
provided with an IP core correctly follows the architectural
and behavioral rules defined in the standard.

The proposed environment targets different users, from the
core designer to the core integrator. It is therefore able to guar-
antee various level of compliancy depending on the amount of
information about the internal core structure available to the
user. We believe that in the near future, with the introduction
of IEEE std. 1500 compliant wrappers in all IP cores on the
market, a verification environment as the one proposed in this
paper will be able to increase productivity, reduce design time,
and optimize the test plan of very complex SoCs.

REFERENCES
[1] R. Gupta and Y. Zorian, “Introducing core-based system design,” IEEE
Des. Test. Comput., vol. 14, no. 2, pp. 15-25, Oct. 1997.
Y. Zorian, “Test requirements for embedded core-based systems and
ieee pl1500,” in Proc. IEEE International Test Conference, (ITC’97).
Washington, DC, USA: IEEE Computer Society, Nov.1-6, 1997, pp.
191-199.
IEEE Standard Testability Method for Embedded Core-based Integrated
Circuits, IEEE Std. 1500, 2005.
Y. Zorian, E. Marinissen, and S. Dey, “Testing embedded-core-based
system chips,” IEEE Computer, vol. 32, no. 6, pp. 52-60, Jun. 1999.
L. Jin-Fu, H. Hsin-Jung, C. Jeng-Bin, S. Chih-Pin, W. Cheng-Wen, S.-
I. C. Chuang Cheng, H. Chi-Yi, and L. Hsiao-Ping, “A hierarchical test
methodology for systems on chip,” IEEE Micro, vol. 22, no. 5, pp. 69—
81, Sep. 2002.
IEEE Core Test Language, IEEE Std. 1450.6, 2005.
T. McLaurin and S. Ghosh, “Etm10 incorporates hardware segment of
ieee p1500,” IEEE Des. Test. Comput., vol. 19, no. 3, pp. 6-11, May
2002.
S. Picchiotino, M. Diaz-Nava, B. Forest, S. Engels, and R. Wilson,
“Platform to validate soc designs and methodologies targeting nanometer
cmos technologies,” in Proc. IP-SOC’04, Grenoble, France, Dec.8-9,
2004, pp. 39-44.
D. Appello, F. Corno, G. M., R. M., and M. Sonza Reorda M.Zorian,
“A p1500 compliant bist-based approach to embedded ram diagnosis,”
in 10th IEEE Asian Test Symposium, 2001.
1. Diamantidis, T. Oikonomou, and S. Diamantidis, “Towards an ieee
p1500 verification infrastructure a comprehensive approach,” in Proc.
ClubV. Grenoble, France: IEEE Computer Society, Mar. 2005.

[2]

[3]
[4]
[5]

[6]
[71

[8]

[9]

[10]

[11]
[12]
(13]
[14]
[15]
[16]
(171

(18]

177

A. Benso, S. Di Carlo, P. Prinetto, and Y. Zorian, “Ieee std. 1500
compliance verification for embedded cores,” IEEE Trans. VLSI Syst.,
third quarter of 2007.

Uml official website. [Online]. Available: http://www.uml.org/
Specman elite home page. [Online]. Available:
http://www.verisity.com/products/specman.html

N. Wirth, Compiler Construction. Addison-Wesley, 1996.

Jflex home page. [Online]. Available: http:/jflex.de/index.html

Cup home page. [Online]. Available:
http://www2.cs.tum.edu/projects/cup/
Vera web site. [Online]. Available:

http://www.synopsys.com/products/vera/vera.html
IEEE Standard e Functional Verification Language, IEEE Std. 1647,
2006.



Frle Edit Wiew [est ODebig [ools Usar  Help vﬁ.ﬂl vﬁ'u-l rﬁw
® . 2 & d v @ B " )
Ireerrust | Load Relosd Restore Modules | Test | Sus Coverage Soutce Cerflg  Theescs
|IEEE std. 1500 conpllancy rules report: I
|Rule 10.3.1.e passed.
Fule 10.1.1.a and rule 10.1.1.0 passed.
Doing garbage collection: current size is 50779384 bytes ...
Done = new slze 1= 19120444 buyles.
fule 10.2.1.c passed.
Rule 14.1.1.a passed.
Fule 10.3.1.i passod.
Rula 10.3.1.h passad.
Last specnan bick — sbop_run{} was called _l
ornal skop - .l-m..r'untg is conpleted
Checking the test ...
Checking is corplete - O DUT errors, O DUT warnings. £
Srecnan > | |
| teat Hornal |Reody ———

ong 1] 7:0]

st 1

SelectVTR St
Shi R St
TearsfexR st
update_sign || 8 k0
pdatoW st
i stl
week Lid)
TSN

Fig. 10. Compliant wrapper report example

File View Tools Help
e =
O && > 3 & & [0 i ﬁ|§'|£ B = B G 8 =
Hew Hindow Read Hrite Clear Refresh |All Holes Full | Source | - ‘= | Cross | Config | Detalls Report Rank ° ' | Up | Lock | Clos
Location: [Ooeral ([ iees constant u. er chech 10
E0) i ] (o) Dorall
(Gr sce | [teme |Tests  [Hits
[]=emn)| [T 1 T8zt
o Selectil® 1 1824
@[ i f il 1 Hrel
[~} =ra| T e D 1 tLrad
[ ] ] UpdatelR 1 W8
o =3 1 a24
[o] TN HESTH 1 HLrad
- = o [ v 1 1024
:::m“:z:::::" G D] ) cross__Selectillf__Shif iR __URSTH__LRCK_ Updatellf__CaptureiR__IST__Tran 1 1024
_update_T_change
#ea_condtant_u_WIR_update_charge
wee_input_u__instruction_fetch_e
wee_input_u__MRCK cycle e
wee_oukput_u__check_10_1_1 b
e _bn_u__gtaet 18 1 1 b
wee_enu_u__end_16_1_I b
wee_en u__start 18 2 1 ¢
a_enu_u_end_10_3_| e
o_enu_u__start_18_2_1_c
wee_enu_u__end 162 1 ¢
__check_18_2_|_c
tart_check_10_3_1_«
re_checie_18_3_1_s
ral_chaci_10
hift_change
vpdite_changr
check_18_1_1_b
_collect_exp_18_1 1 b
col lect_dut_10_1_1 b
L T
e er—— s T == e T===r
Fig. 11. Coverage report

178



