
Automated Debugging with High Level
Abstraction and Refinement

Sean Safarpour1 Andreas Veneris2,3

Abstract— Design debugging is a manual and time consuming
task which takes as much as 60% of the verification effort. To
alleviate the debugging pain automated debuggers must tackle
industrial problems by increasing their capacity and improving
their performance. This work introduces an abstraction and
refinement methodology for debugging that leverages the high
level information inherent to RTL designs. Function abstraction
uses the modular nature of designs to simplify the debugging
problem. If required, refinement re-introduces the necessary
circuitry back into the design in order to find all error locat ions.
The abstraction and refinement process is applied throughout the
design’s hierarchy allowing for a divide and conquer methodol-
ogy. The proposed technique is shown to reduce the memory
requirement by as much as 27× and reduce the run-time by two
orders of magnitude over a conventional debugger.

I. I NTRODUCTION

The continuous increase in design size and complexity has
led to a significant escalation in the verification cost and
effort. This trend is confirmed in the industry as the number
of verification engineers has quadrupled with respect design
engineers over the last decade [1]. As a result, functional
verification has received much attention from the academic
and industrial communities to alleviate this pain [2], [3],[4].
In contrast relatively little attention is paid to the task of
debugging, or locating the error source, once verification fails.

Today, debugging is predominantly performed manually by
verification engineers with no more than waveform viewers
and navigation tools at their disposal. The debug process
is comprised of manually collecting information from the
failed simulation trace (or counter-examples) and back-tracing
with “what-if” analysis until the error source is identified.
As typical design block sizes today exceed the half million
synthesized gates mark and traces range from a few hundred
to a few thousand of clock cycles, debugging has grown to
take as much as 60% of the verification effort [5]. As a
result, scalable automated debugging techniques have become
an urgent necessity to alleviate this pain [1].

Broadly speaking, there are two factors that influence the
effectiveness of automated debugging. The first factor is the
design size that impacts the solution space. As designs are
implemented at higher levels of abstraction and the gate count
increases, the number of suspect error locations that needsto
be examined also increases. In turn, a debugger’s performance
can dramatically slow down [6], [7]. Secondly, the length of
the error trace, that is, the number of clock cycles from the
beginning of simulation until the design fails, increases the

01 Vennsa Technologies Inc., Toronto, ON M5V 3B1 (sean@vennsa.com)
02 University of Toronto, ECE Department, Toronto, ON M5S 3G4

(veneris@eecg.toronto.edu)
03 Athens University of Economics and Business, CS Department, Athens,

10434

solution space one must examine. Modern debugging solutions
must cope with the complexity introduced by these factors to
be adopted by the industry.

This work aims to bridge this gap between current debug-
ging capabilities and contemporary industrial needs. It does
so by introducing the concepts of abstraction and refinement
for automated debuggers using high level information. More
specifically, the modular and hierarchical nature of a design
at the RTL is leveraged to develop an efficient abstraction and
refinement methodology. In the past, similar techniques have
led to dramatic improvements in the scalability and applica-
bility of model checking methodologies [8], [9], [10]. More
recently, results from abstraction/refinement at the gate level
demonstrated significant performance gains for debugging as
well [11].

The proposed functional abstraction-based debugging
methodology operates iteratively on the design hierarchy.At
the topmost level, it begins by abstracting or “simplifying”
high level components. Next, a conventional debugger [12],
[7], [6] is applied to the abstracted model to identify all error
locations. Since the debugging problem is much smaller than
the original, it can be solved much more efficiently. If the
debugger fails to identify all error locations, refinement is
performed to systematically re-introduce the abstracted design
components back into the design.

This pairing sequence of debugging and refinement is
repeated until all solutions are found at the given hierarchy
level. Next, the process is repeated at the next lower level
to improve the granularity of the solutions. The methodology
terminates once all the error locations are found at the lowest
hierarchy level (i.e. gate level). It is important to notice that
the proposed theory is not tied to any particular debugging
technique and applies to SAT, simulation, and BDD based
methods [12], [6]. Extensive experiments on large industrial
problems demonstrate a drastic memory reduction of over 27×
and run time reductions of over two orders of magnitude. This
work demonstrates that abstraction and refinement has a sig-
nificant impact on the performance of automated debugging.

This paper is organized as follows. Section II provides
background material while the main contribution is introduced
in Section III. Section IV and V present the experimental
results and the conclusion, respectively.

II. PRELIMINARIES

A circuit C (combinational or sequential) at the RTL can be
hierarchically composed of modules or functions. In this work,
a function is said to generate a Boolean value for a variable
y based onm input variablesx1, x2, ..., xm and zero or more
state variables. In this work, we are primarily concerned with
the structural connectivity between the input variables and the

output variabley of a function. As a result, we label the
function of y as f(x1, x2, ..., xm) and omit its dependence
on any state variables. The terms modules, components and
functions are used interchangeably to refer to entities imple-
menting functions as defined above. For example, a Verilog
function or a collection of logic gates and flip-flops can define
a module. Each module implements a multi-output function
F = {f1(X), f2(X), ..., fp(X)} where each single-output
functionfi is defined on input variablesX = {x1, x2, ..., xq}.
In the remaining paper, single output functions and multi-
output functions are not distinguished unless explicitly stated
otherwise.

Modules can also contain sub-modules thus resulting in
a hierarchy treeH for the design [13]. A hierarchy treeH
contains nodes representing modules and edges representing
parent and child (sub-module) relationships. The hierarchy tree
H can contain many levels, each function is tagged with a
superscript that indicates its level and a subscript to uniquely
label the function. For example a functionF i

j is at leveli of the
tree and it can have sub-functionsF i+1

k andF i+1

l at the next
level i + 1. The output of the entire designC is represented
by F 0

1 at root level 0.

A. Debugging Background

Error traces (or counter-examples) returned by simulation
or formal verification tools along with a corresponding set
of correct output vector sequences comprise the set of di-
agnosis vectorsV . Given an erroneous designC with the
corresponding set of diagnosis vectorsV , design debugging
identifies components (gates, modules, etc.) responsible for
the erroneous behavior. We assume that the reference (golden)
model can only be simulated to provide the correct output
values forV . For instance, the golden model can be in some
high level language (C/C++, Matlab, etc) and provide no
structural similarity to the RTL. It has been shown in [14]
that the lack of similarity increases the debugging problem
complexity exponentially with respect to theerror cardinality
N .

In this paper, a user-defined numbermaxN denotes the
maximum number of errors the debugger is limited to find. If
maxN is smaller than the actual number of errors, then not
all error locations are found. A debugger begins withN = 1
and increases its value when it does not return with a solution
until maxN is reached. In this process, the tool returns all
equivalenterror locations responsible for the failure under a
vector setV [6]. These locations are callederror suspects. For
a debugging methodology to remain complete and return the
actual error site, all equivalent error locations must be returned
by the debugger for a givenmaxN [6].

B. Abstraction/Refinement in Model Checking and Debugging

Abstraction and refinement techniques are used readily in
model checking to mitigate the exponential nature of the state
space [8], [9], [10]. Roughly speaking, anabstract modelis
derived by removing some state elements from theconcrete
design using some abstraction functionh̄. If model checking
determines that a universal property holds in an existentially
abstracted model, then it must also hold in the concrete
design [8]. However, if a property does not hold in the

abstract model, then the corresponding counter-example must
be validated in the concrete design. If the counter-example
does not expose a failure of the property in the concrete design
it is said to bespurious[9]. In this case, the abstract model
is refined by reverting some of the abstracted components and
continuing the model checking process.

Recently, the concept of abstraction/refinement was utilized
to improve performance in conventional debuggers [11]. Under
this new framework, an abstract model of the gate level design
is first created to undergo debugging by removing state a set
of state elements. Since this representation contains lesslogic
than the original one, the size of the problem may be reduced
considerably, in favor of debugging. Debugging an abstract
model can sometimes return abstracted state elements as error
sources. In these cases, a refinement procedure replaces some
of the abstracted variables with the original state elements.
Note that this technique does not leverage any high level
information when performing abstraction and thus cannot
iterate over the different hierarchy levels.

III. D EBUGGING WITH FUNCTION ABSTRACTION

The abstraction/refinement method introduced in [11] op-
erates on the circuit’s state elements. Although powerful,
deciding which states to abstraction is not a trivial task. In
contrast, function abstraction, presented in this paper, utilizes
the high level information contained in the circuit RTL and
operates on functions and modules providing a natural way to
structure the debugging problem. Furthermore, the hierarchical
composition of designs can be leveraged to apply abstraction
in a systematic and iterative manner.

A. Formulating the Problem

At any hierarchy level, the original designC can undergo
function abstractionbased on the functions available at that
level. The abstraction function is given by

C′ = h̄f (C, i),

whereC is the original circuit andi is a given hierarchy level.
The mapping of̄hf is a designC′ which contains a set of
functionsAbsi = {Fj , Fk, ...} abstracted at hierarchy leveli.
In other words, the circuitry corresponding toAbsi is removed
from C and hierarchyH , resulting in C′ and H ′. In our
methodology, determining which functions to abstract is found
through heuristics outlined in Section IV. After removingAbsi

from C, the functions{Fj , Fk, ...} are replaced with new
primary input{XFj

, XFk
, ...} in C′.

Example 1 Figure 1 (a) and (b) show a design with its
corresponding hierarchy tree. The functions of the design
are F 1

1 , F 1
2 , F 1

3 , F 1
4 at level 1 andF 2

5 , F 2
6 at level 2. By

abstracting functionsF 1
1 andF 1

3 the resulting designC′ with
the new primary inputXF 1

1
, XF 1

3
is shown in Figure 1 (c).

The corresponding hierarchy treeH ′ for the new abstracted
design is shown in Figure 1 (d). Notice that the sub-module
of F 1

1 , F 2
5 is also abstracted inC′.

As a consequence of the abstraction operation, some of the
transitive fanin of the abstracted functions may be dangling,
that is, at leveli, fanin circuitry ofAbsi may not be connected

Y1

X2

X1

Y2

F
2

5

F
1

3

F
1

1

F
2

6

F
1

4

F
1

2

F
1

2
F

1

3
F

1

4

F 2

6

F
1

1

F
2

5

C
′

(a) (b)

F
2

6

F
1

4

F
1

2

Y2XF 1

3

XF 1

1

Y1

C
′

F
1

2
F

1

4

F
2

6

(c) (d)

Fig. 1. Circuit and its hierarchy before and after abstracting F 1

1
andF 1

3

to other circuit components onceAbsi are removed. This dan-
gling circuitry can be deleted with a logic removal algorithm
to further simplifyC′.

Since the abstracted design is less complex than the concrete
one, it can be used to formulate an easier debugging problem.
However, as demonstrated in [11] with theorems and exam-
ples, the abstract modelC′ contains the set of newly added
primary input, which are unconstrained in the vectorsV . As
a result, a debugging engine may assign arbitrary logic values
to these variables while operating on the problem. Such logic
value assignments traditionally made by debuggers may be
unjustifiablein the concrete designC where these variables
are constrained by their original fanin logic. Consequently the
solutions returned by the debugger in this formulation cannot
be trusted and may be incorrect.

To resolve this situation, the logic values of the abstracted
functionsAbsi = {F1, F2, ...} must be captured and used to
constrain the primary input{XF1

, XF2
, ...}. The constraints

can be captured by storing the values of the output{F1, F2, ..}
of the functions to be abstracted during the simulation ofC
with the stimulus input sequence inV . These values must be
amended toV to create a new stimulusV ′ to constrain the
primary input{XF1

, XF2
, ...} of C′.

The amended stimulusV ′ and the abstracted designC′

can be provided to an automated debugger to find the error
suspects or the error sources. The debugger can determine
the location of errors inC′ but it can miss errors residing
within the abstracted circuitry. To find all equivalent locations,
a mechanism is required to identify when suspects may be
missed. This is accomplished by adding correction models on
the added primary inputXF for each abstracted functionF .
In the context of SAT-based debugging acorrection model,
as defined [11], [6], is a multiplexer that allows the debugger
to identify any gate as suspects (including primary inputs).
Similar models exist for other debugging techniques [13].
Figure 2 shows the correction models as black dots on the
example of Figure 1 at level 1. Notice that suspects are
added for each of the functions at level 1 in addition to the

F
2

6

F
1

4

F
1

2

Y2XF 1

3

XF 1

1

Y1

Fig. 2. Abstract circuit with black circles representing correction models

primary inputsX1
F1

andX1
F3

. If any of the new primary inputs
are found as suspects, then the error in the concrete design
may be encapsulated inside the abstracted functions. These
solutions are calledspuriousbecause they do not correspond
to components in the concrete design.

B. Spurious Solutions

Abstract modules corresponding to spurious solutions must
be refined to determine where the error location is with respect
to the concrete design. The refinement process re-introduces
the abstracted modules corresponding to spurious solutions
into the designC′. That is, if one of the suspects found is
a primary inputXFj

, then the functionFj is added toC′ with
its output connected to the fanin of the removedXFj

. Once
the original functions are re-introduced, all its transitive fanin
must also be added to the abstract designC′.

After performing refinement, the debugger must be called
again to determine the error location corresponding to the
previously found spurious solution. The steps of debugging
and refinement are repeated until no spurious solutions are
found. Algorithm 1 presents the described abstraction and
refinement flow at a given hierarchical level. Lines 2, 4, and 5
perform module abstraction, constrain the input and perform
modular debugging. Refinement is performed on line 8 if
spurious solutions are found. As explained in [11],maxN
can be increased to guarantee correctness and completeness.

Theorem 1 states that the designC′ resulting from Algo-
rithm 1 contains the modules/functions necessary to find all
the equivalent error locations. Lemma 1 below is useful to
prove Theorem 1 and other results in this section.

Algorithm 1 Module Abstraction and Refinement Debugging

1: Solutions = ∅, N = 1
2: C′ = h̄f (C, level)
3: while (1) do

4: V ′= extract constraint(C, C′, V)
5: New sols = debug(C′, V ′, N, level)
6: for all Sol ∈ New sols do

7: if (spurious solutions(Sol, C′)) then

8: C′ =refine(Sol, C′, level)
9: N = 0

10: else

11: Solutions = Solutions ∪ Sol

12: end if

13: end for

14: N = N + 1
15: if (N > maxN) then

16: return {Solutions, C′}
17: end if

18: end while

X1

X2

Y1

Y2

F
1

1

Bug
F

2

2

F
2

3

Fig. 3. FunctionF 1

1
is composed of functionsF 2

2
andF 2

3

Lemma 1 Assuming that an erroneous behavior is only ob-
served at the primary output of a design, a modulemc

demonstrates an erroneous behavior only if its parent module
mp demonstrates an erroneous behavior.

Proof: Take any parent modulemp of modulemc from a
hierarchical design. All paths from any set of output of module
mc to the primary output of the circuit will contain the output
of modulesmp. Thus, the outputs ofmp dominate any set of
output ofmc. As a result, the parent module demonstrates an
erroneous behavior if an error behavior frommc is observed
at the primary output.

Theorem 1 The debugging technique presented in
Algorithm 1 finds all equivalent error modules at a
given hierarchy level.

Proof: Based on Lemma 1, error modules demonstrate an
erroneous behavior only if their parent modules demonstrate
an erroneous behavior. This means that if a child module at
level i is erroneous, then the debugger will find the parent
modules erroneous at levelsj < i. At any hierarchy level,
if the erroneous module or its parents are abstracted, the
corresponding spurious solutions will be found. Refinement
ensures that the content of the abstracted modules are re-
introduced into the design thus allowing the erroneous module
to be identified. Since all equivalent error locations cannot be
distinguished for a given set of vectors, all equivalent error
modules will be found.

C. Hierarchical abstraction

This function abstraction scheme introduced in the previous
section is most effective when it is used in a hierarchical
manner, where module-based debugging can be applied at each
hierarchy level [13], [15]. At each leveli of the hierarchy, the
design can be represented by a set of functions{F i

1, F
i
2 , ...}.

As discussed in the previous section, the iterative sequence
of abstraction, debugging and refinement is applied until no
spurious solutions are found. Thus at each level the abstracted
functions inC′ and their children in the hierarchy treeH are
not required for debugging. In other words, it is not necessary
to consider the internal logic of abstracted functions inC′

at level i when debugging at the leveli + 1 as presented in
Theorem 2.

Theorem 2 After applying Algorithm 1, only the modules at
level i present in designC′ are necessary for debugging at
level j ≥ i + 1.

Y1

X2

X1

Y2

F
2

5

F
1

1

F
2

6

F
1

4

F
1

2

Bug
F

1

3

Y1

Y2

XF 1

2

XF 1

4

Fig. 4. Before and after abstracting functionsF 1

2
andF 1

4
with bug in F 1

3

Proof: By the contrapositive of Lemma 1, no errors can
be encapsulated in child modules if the parent modules are
not refined at leveli. Thus, to debug errors at levelj ≥ i + 1,
it is not necessary to consider abstracted modules at leveli.

Apart from the functions abstracted at leveli, more func-
tions can be abstracted at leveli + 1. Intuitively, at each level
of the hierarchy, functions are comprised of one or more sub-
functions. This allows for sub-functions to be abstracted at
lower levels of hierarchy even though their collection cannot
be abstracted at a higher level. For example, consider Figure 3
where an error resides inF 2

2 . At level 1, functionF 1
1 cannot be

abstracted since it contains the error, however, at level2 sub-
function F 2

3 may be abstracted since it is independent from
F 2

2 and its output.

D. Multiple Errors

The module-based abstraction and refinement methodology
described above is capable of debugging multiple error loca-
tions. The process for finding multiple error locations is similar
to that in [11]. In that process, the cardinality used to find
the errors starts at one and increases as the error location
is not found. However, when spurious solutions are found
and the corresponding module is refined, the error cardinality
must be reset to 1. For function abstraction, the same process
must be followed since resetting the cardinality is crucialfor
maintaining correctness.

Consider the example in Figure 4 where the modules
Abs1 = {F 1

2 , F 1
4 } are abstracted at level 1. The abstraction

results in the removal of modulesF 1
1 andF 1

3 as well because
they fan-in toAbs1. The pre- and post- abstraction circuits
are shown in Figure 4 (a) and (b), respectively. Assuming that
the error is in moduleF 1

3 , the error effect can propagate to
the output ofY1 andY2. Under those conditions, the debugger
will not identify a single error module, but will find the error
pair of XF 1

2
andXF 1

4
. Through refinement, these modules and

their fanin circuitry will be re-introduced in the circuit.At this
point, the number of error modules the debugger seeks must
be reset to 1, otherwise, the single error source insideF 1

3 will
be missed.

E. Overall algorithm

Hierarchical debugging and function abstraction can be
combined to give further gains when debugging a design.
Hierarchy-based debugging can identify erroneous modulesin
a divide and conquer approach while abstraction simplifies
each step of the problem. The overall proposed technique
for function abstraction is shown in Algorithm 2. Here the

Algorithm 2 Hierarchical Debugging
1: Solutions = ∅, level = 0, N = 1, C′ = C

2: while (1) do

3: level = level + 1
4: {New sols, C′} = Module debug(C′, level, N)
5: if New sols = ∅ then

6: return Solutions

7: else

8: Solutions = Solutions ∪ New sols

9: end if

10: end while

debugging problem is solved iteratively by descending the
hierarchy while the details of abstraction and refinement are
performed as require at each level byModuledebugaccording
to Algorithm 1.

IV. EXPERIMENTS

This section presents experimental results for the proposed
high level abstraction and refinement methodology. All the
circuits used are Verilog designs from the OpenCores.org
website [16] except for an industrial communication design
(comm). Each circuit contains a functional level error such
as an incorrect statement, incorrect module instantiation, bad
wiring between modules, etc. These RTL errors typically rep-
resent tens or hundreds of gate-level errors. The debugger used
in all experiments is the module-aware SAT-based automated
debugger of [13]. This set of experiments is conducted on a
64 bit Intel Core 2 Quad processor with 2.66 GHz and 8GB
of memory.

Table I presents a summary of the circuits and the statistics
using SAT-based debugging [13]. Columns one, two, and three
show the name of the debugging problem based on the design,
and its size in terms of gates and state elements (DFFs),
respectively. Column four presents the length of the erroneous
trace in terms of clock cycles required to observe the erroneous
behavior from an initial state. When the trace is too long for
the debugger, the trace is reduced to only contain the last
25 or 40 transitions in order to make automated debugging
feasible. The number of clock cycle traces used to formulate
the debugging problem are presented in the parentheses in
column four. The column# literals presents the total number
of literals generated in the CNF of the debugging problem [13].
Finally, columnstime (s)andmem (M)show the total run-time,
in seconds, required to solve the problem and the required
memory, in MB, respectively. Notice that problemcomm2
requires more than 8GB to formulate the problem and thus
runs out memory.

Table II presents the result of the proposed technique where
initially all functions are abstracted. In other words, we rely on
refinement to re-introduce all the circuitry required to debug
the design. Column one shows the names of the problems,
while column two shows the maximum error cardinality
(maxN) required to solve the debugging problem. As discussed
in Section III-D the cardinality required to locate the bug using
an abstracted design can be larger than required to solve the
original problem. Even though the problems shown here have
a single functional-level (RTL) error, for the problemcomm1
andcomm3 a higher cardinality of 2 is used by the algorithm
to find the error site.

TABLE I

SUMMARY OF PROBLEMS FOR FUNCTION ABSTRACTION

design Problem statistics Debugger engine [13]
size # DFF # cyc (used) # literal time (s) mem (M)

wb con1 81K 818 19 (19) 519K 58.74 619
wb con3 81K 818 1387 (40) 1273K 205.16 1250
fdct1 264K 5461 189 (40) 1705K 555.37 4400
mem ctrl1 39K 1145 1318 (40) 3888K 55.13 850
vga1 147K 17102 16100 (40) 8680K 1635.78 4700
vga2 147K 17102 141 (40) 213K 236.16 1350
comm1 450K 30339 19 (25) 1912K 1575.67 5080
comm2 454K 26852 88 (25) N/A N/A Mem out
comm3 454K 26852 1387 (25) 278K 809.31 4831

In Table II, the column labeled# itr states the number
of refinement and debugging iterations required to find all
equivalent locations (number of times line 5 of Algorithm 1
is run). The columnmod refined / totalpresents the number
of modules refined out of the total number of modules in the
concrete design. These modules are the only ones required
to diagnose the error. The smaller this number is, the more
effective is the abstraction technique. The next three columns,
literals, time (s), andpeak mem (M)present the benefit of the
proposed technique in terms of the number of literals required
in the problem formulation, the total run time in seconds and
peak memory requirement by the entire algorithm.

The improvement provided by the proposed technique when
compared to a state-of-the-art method such as this of [13]
is shown in the last columns of Table II. Its effectiveness
is attributed to reducing the problem size which is directly
related to the number of literals. For example, invga1 where
5 / 14 modules are used, it leads to 630.48× reduction in
literals which results in a 260.89× improvement in run time
and 27.17× reduction in overall memory requirement. For all
problems, the number of refinement and debugging iterations
performed is larger than one. Therefore, it is clear that each
iteration is much easier and faster when abstraction is used,
thus it is more advantageous to run more iterations on easier
problem than fewer iterations on harder problems.

In Table II there are two problems that experience a slow-
down. For problemfdct1, six iterations are required to solve
the problem, at which stage all 5 modules are used. Thus
in this case, the extra iterations simply add overhead as the
entire circuit is needed in order to solve the problem. The
problemvga2, also experiences a slow down, but in this case,
a 2.26× reduction in memory is observed. In this case, unlike
the overall trend, the simpler and faster debugging problems
cannot compensate for the extra iterations performed.

Figure 5 (a), (b) and (c) provide detail into the numbers of
Table II for vga2, fdct1 and comm1, respectively. These
figures illustrate the relationship between the run time shown
in solid line and the number of literals shown in dashed line
against the refinement and debugging iterations. Notice the
general trend where both run time and number of literals
appear to increase exponentially with the increase in the
number of iterations. For the majority of cases where the
proposed technique is effective, abstraction allows the problem
to be solved with a fraction of its size thus leading to smaller
memory requirements and run times. Considering problem
vga2, notice that for iterations 3,4,5 the solve time is quite
high thus not providing any run time benefit.

TABLE II

RESULTS OF PROPOSED FUNCTION ABSTRACTION AND REFINEMENT TECHNIQUE

design name abstracted problem stats comparison to original
maxN # itr mod refined/total # literals time (s) peak mem (M) lit reduced (×) speed up (×) mem reduced (×)

wb con1 1 3 3 / 8 116K 25.55 253 4.49 2.30 2.45
wb con2 1 4 4 / 8 141K 149.12 469 9.05 1.38 2.67
fdct1 1 6 5 / 5 1705K 638.78 4400 1.00 0.87 1.00
mem ctrl1 1 4 12 / 14 113K 12.02 200 34.53 4.59 4.25
vga1 1 2 5 / 14 14K 6.27 173 630.48 260.89 27.17
vga2 1 5 6 / 14 94K 436.38 1052 2.26 0.54 1.28
comm1 2 8 10 / 129 38K 108.32 772 50.37 13.11 6.58
comm2 1 9 10 / 129 25K 1403.47 640 — — > 12.50
comm3 2 8 8 / 129 80K 63.94 317 3.47 12.66 15.24

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5
 0

 12000

 24000

 36000

 48000

 60000

 72000

 84000

 96000

S
o
lv

e
 t
im

e
 (

s
)

#
 l
it
e
ra

ls

Number of iterations

solve time
literals

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6
 0

 300000

 600000

 900000

 1.2e+06

 1.5e+06

 1.8e+06

S
o
lv

e
 t
im

e
 (

s
)

#
 l
it
e
ra

ls

Number of iterations

solve time
literals

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8
 4000

 8000

 12000

 16000

 20000

 24000

 28000

 32000

 36000

 40000

S
o
lv

e
 t
im

e
 (

s
)

#
 l
it
e
ra

ls

Number of iterations

solve time
literals

(a) (b) (c)

Fig. 5. Solve time and # literals in problem vs. the # of refinement and debugging iterations forvga2 , fdct1 andcomm1

In general, it is found that more aggressive abstraction
leads to more debugging and refinement steps. However, due
to the simplicity of the design when abstracted aggressively,
the initial debugging and refinement iterations are relatively
much easy problems and thus quicker to solve. This behavior
is observed in Figure 5 where the initial iterations have
a faster run time than later ones. It may be possible to
find an abstraction heuristic that can balance the number of
iterations and the functions abstracted, but this is not a trivial
task. However, in these experiments, it is found that simply
abstracting all functions and modules is quite effective asit
results with the smallest problems possible.

V. CONCLUSION

This work presents abstraction and refinement techniques
for automated debugging that leverage the high level informa-
tion contained in RTL design. More specifically, functions of
the designs are first abstracted resulting in smaller debugging
problems. To ensure that all the equivalent error locationsare
found in the original design, a refinement process is performed.
The performance of the methodology is enhanced as it is
applied hierarchically to the RTL design. The experiments
demonstrate two orders of magnitude of performance improve-
ment over a conventional debugging.

REFERENCES

[1] International Techonology Roadmap for Semiconductors,
“http://www.itrs.net/links/2006update/2006updatefinal.htm,” 2008.

[2] E. Clarke, O. Grumberg, and D. Peled,Model Checking. MIT Press,
1999.

[3] H. Foster, A. Krolnik, and D. Lacey,Assertion-Based Design. Kluwer
Academic Publishers, 2003.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999,
pp. 193–207.

[5] H. Foster, “Assertion-based verification: Industry myths to realities
(invited tutorial),” in CAV, 2008, pp. 5–10.

[6] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,”IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[7] K.-H. Chang, I. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,”IEEE Trans. on Comp., p. to appear, 2008.

[8] E. Clarke, O. Grumberg, and D. Long, “Model checking and abstrac-
tion,” in Symposium on Principles of Programming Languages, 1992,
pp. 342–354.

[9] E. Clarke, A. Gupta, and O. Strichman, “SAT-based counterexample-
guided abstraction refinement,”IEEE Trans. on CAD, vol. 22, no. 7, pp.
1113–1123, 2004.

[10] P. Bjesse and J. Kukula, “Using counter example guided abstraction
refinement to find complex bugs,” inDesign, Automation and Test in
Europe, 2004, pp. 156–161.

[11] S. Safarpour and A. Veneris, “Abstraction and refinement techniques in
automated design debugging,” inDesign, Automation and Test in Europe,
2007, pp. 1182–1187.

[12] S. Huang and K. Cheng,Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[13] M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” inInt’l Conf. on CAD,
2005, pp. 871–876.

[14] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test
vector simulation,”IEEE Trans. on CAD, vol. 18, no. 12, pp. 1803–1816,
1999.

[15] G. Fey, S. Safarpour, A. Veneris, and R. Drechsler, “On the relation
between simulation-based and SAT-based diagnosis,” inDesign, Au-
tomation and Test in Europe, 2006, pp. 1139–1144.

[16] OpenCores.org, “http://www.opencores.org,” 2008.

