Automated Debugging with High Level
Abstraction and Refinement

Sean Safarpour Andreas Veneris?

Abstract— Design debugging is a manual and time consuming solution space one must examine. Modern debugging sofution
task which takes as much as 60% of the verification effort. To must cope with the complexity introduced by these factors to
alleviate the debugging pain automated debuggers must tatk be adopted by the industry.

industrial problems by increasing their capacity and improving - - . .
their performance. This work introduces an abstraction and This work aims to bridge this gap between current debug-

refinement methodology for debugging that leverages the hig 9ing capabilities and contemporary industrial needs. ksdo
level information inherent to RTL designs. Function abstraction so by introducing the concepts of abstraction and refinement
uses the modular nature of designs to simplify the debugging for automated debuggers using high level information. More
problem. If required, refinement re-introduces the necessy gnecifically, the modular and hierarchical nature of a desig

circuitry back into the design in order to find all error locat ions. . o .
The abstraction and refinement process is applied throughauthe &t the RTL is leveraged to develop an efficient abstractiah an

design's hierarchy allowing for a divide and conquer methoal- refinement methodology. In the past, similar techniqueshav
ogy. The proposed technique is shown to reduce the memory led to dramatic improvements in the scalability and applica

requirement by as much as 2% and reduce the run-time by two pjlity of model checking methodologies [8], [9], [10]. More
orders of magnitude over a conventional debugger. recently, results from abstraction/refinement at the gatell
demonstrated significant performance gains for debugging a
well [11].

The continuous increase in design size and complexity hasThe proposed functional abstraction-based debugging
led to a significant escalation in the verification cost anghethodology operates iteratively on the design hierarghy.
effort. This trend is confirmed in the industry as the numbefie topmost level, it begins by abstracting or “simplifying
of verification engineers has quadrupled with respect desigigh level components. Next, a conventional debugger [12],
engineers over the last decade [1]. As a result, functiongl, [6] is applied to the abstracted model to identify altar
verification has received much attention from the academiscations. Since the debugging problem is much smaller than
and industrial communities to alleviate this pain [2], [Bl]. the original, it can be solved much more efficiently. If the
In contrast relatively little attention is paid to the task odebugger fails to identify all error locations, refinemest i
debugging, or locating the error source, once verificat@dis f performed to systematically re-introduce the abstractesigh

Today, debugging is predominantly performed manually lsbmponents back into the design.
verification engineers with no more than waveform viewers This pairing sequence of debugging and refinement is
and navigation tools at their disposal. The debug procagpeated until all solutions are found at the given hienarch
is comprised of manually collecting information from thaevel. Next, the process is repeated at the next lower level
failed simulation trace (or counter-examples) and baakitig to improve the granularity of the solutions. The methodglog
with “what-if” analysis until the error source is identified terminates once all the error locations are found at the sowe
As typical design block sizes today exceed the half milliopierarchy level i(e. gate level). It is important to notice that
synthesized gates mark and traces range from a few hundiigsl proposed theory is not tied to any particular debugging
to a few thousand of clock cycles, debugging has grown fechnique and applies to SAT, simulation, and BDD based
take as much as 60% of the verification effort [5]. As @nethods [12], [6]. Extensive experiments on large indabtri
result, scalable automated debugging techniques havergecgroblems demonstrate a drastic memory reduction of over 27
an urgent necessity to alleviate this pain [1]. and run time reductions of over two orders of magnitude. This

Broadly speaking, there are two factors that influence thgrk demonstrates that abstraction and refinement has a sig-
effectiveness of automated debugging. The first factor és thificant impact on the performance of automated debugging.
design size that impacts the solution space. As designs ar@his paper is organized as follows. Section Il provides
implemented at higher levels of abstraction and the gatetcobackground material while the main contribution is introdd
increases, the number of suspect error locations that rteedf Section 1. Section IV and V present the experimental
be examined also increases. In turn, a debugger’s perf@@naresults and the conclusion, respectively.
can dramatically slow down [6], [7]. Secondly, the length of
the error trace, that is, the number of clock cycles from the Il. PRELIMINARIES
beginning of simulation until the design fails, increaske t A circuit C' (combinational or sequential) at the RTL can be

hierarchically composed of modules or functions. In thigkyo

g; \ﬁn_nsa _Tech?orgiest lnCECTéJFOStQ ?N Mt5VT3Bl t(seaggvﬂgﬂsﬂa)ge a function is said to generate a Boolean value for a variable
(Veneris%’ggsc'gtoc;ontg.’g(;‘u;" epartment, - foronto, 4 based onn input variableszy, s, ...,z and zero or more

03 Athens University of Economics and Business, CS Departfghens, state variables. In thIS_ \{VOI’k, we are pnmanly Co_ncemethw'
10434 the structural connectivity between the input variabled ée

I. INTRODUCTION

output variabley of a function. As a result, we label theabstract model, then the corresponding counter-examp$t mu
function of y as f(z1, zo, ..., z,,) and omit its dependencebe validated in the concrete design. If the counter-example
on any state variables. The terms modules, components aogs not expose a failure of the property in the concretegydesi
functions are used interchangeably to refer to entitiedempit is said to bespurious[9]. In this case, the abstract model
menting functions as defined above. For example, a Veriligrefined by reverting some of the abstracted components and
function or a collection of logic gates and flip-flops can defincontinuing the model checking process.
a module. Each module implements a multi-output function Recently, the concept of abstraction/refinement was atlliz
F = {fi(X), f2(X), ..., fp(X)} where each single-outputto improve performance in conventional debuggers [11].é#nd
function f; is defined on input variable¥ = {z1,z2,...,z,}. this new framework, an abstract model of the gate level desig
In the remaining paper, single output functions and multis first created to undergo debugging by removing state a set
output functions are not distinguished unless explicithtexd of state elements. Since this representation containddgis
otherwise. than the original one, the size of the problem may be reduced
Modules can also contain sub-modules thus resulting @onsiderably, in favor of debugging. Debugging an abstract
a hierarchy treeH for the design [13]. A hierarchy tre&/ model can sometimes return abstracted state elementsoas err
contains nodes representing modules and edges repregergources. In these cases, a refinement procedure replaces som
parent and child (sub-module) relationships. The hierateke of the abstracted variables with the original state elesient
H can contain many levels, each function is tagged with Mote that this technique does not leverage any high level
superscript that indicates its level and a subscript touslig information when performing abstraction and thus cannot
label the function. For example a functidh is at leveli of the iterate over the different hierarchy levels.
tree and it can have sub-functiof$** and F/ ™' at the next

level i + 1. The output of the entire desigfi is represented 1. DEBUGGING WITH FUNCTION ABSTRACTION

by F? atroot level 0. The abstraction/refinement method introduced in [11] op-
. erates on the circuit's state elements. Although powerful,
A. Debugging Background deciding which states to abstraction is not a trivial task. |

Error traces (or counter-examples) returned by simulatiéqnirast, function abstraction, presented in this papéizes
or formal verification tools along with a corresponding séh€ high level information contained in the circuit RTL and
of correct output vector sequences comprise the set of @Rerates on functions and modules providing a natural way to
agnosis vectord/. Given an erroneous desigi with the Structure the debugging problem. Furthermore, the hibreat
corresponding set of diagnosis vectdfs design debugging COMpPosition o_f deS|g.ns can be leveraged to apply abstractio
identifies components (gates, modules, etc.) responsisle ¥ @ Systematic and iterative manner.
the erroneous behavior. We assume that the reference (goldg Formulating the Problem
model can only be simulated to provide the correct output) o .
values forV. For instance, the golden model can be in some At any hierarchy level, the original desigfi can undergo
high level language (C/C++, Matlab, etc) and provide nfinction abstractionbased on the functions available at that

structural similarity to the RTL. It has been shown in [14}€Vel- The abstraction function is given by

that the lack of similarity increases the debugging problem C' = hy(C,i),
complexity exponentially with respect to tleeror cardinality) o o _))
N whereC' is the original circuit and is a given hierarchy level.

In this paper, a user-defined numbemzN denotes the The mapping offi; is a designC” which contains a set of
maximum number of errors the debugger is limited to find. finctions Abs; = {Fj, Fj, ...} abstracted at hierarchy level
mazN is smaller than the actual number of errors, then n#1 other words, the circuitry corresponding4s; is removed
all error locations are found. A debugger begins with=1 from C and hierarchyH, resulting in ¢’ and H'. In our
and increases its value when it does not return with a seiutif?ethodology, determining which functions to abstract isni
until maxzN is reached. In this process, the tool returns alifough heuristics outlined in Section IV. After removiAgs;
equivalenterror locations responsible for the failure under §om C, the functions{F;, Fj, ...} are replaced with new
vector setl/ [6]. These locations are callesror suspectsFor Primary input{Xp,, Xp,,...} in C".

a debugging methodology to remain complete and return the

actual error site, all equivalent error locations must lerreed Example 1 Figure 1 (a) and (b) show a design with its

by the debugger for a givemazN [6]. Corr?f)?f“?ﬁ r}i?rarcrlly trleelz. ThdeFl;ur;%tionsl of Ith2e cljaesign
: - - , are LR} FLFL at level 1 andF2, F2 at level 2. By

B. Abstrac'uon/Refme.ment in Model .Checklng and DEbugglﬁéstralctinzg fugncti%nﬂff and F! the resultiGng desigi” with

Abstractlon and re_fl_nement technlque_s are used readilyt{e new primary inputX i, X1 is shown in Figure 1 (c).
model checking to mitigate the exponential nature of theestarpe corresponding hierarchy treH’ for the new abstracted

space [8], [9], [10]. Roughly speaking, abstract models gesign is shown in Figure 1 (d). Notice that the sub-module
derived by removing some state elements from dbacrete of 11 12 is also abstracted irC”.

design using some abstraction functibnlf model checking

determines that a universal property holds in an existiyntia As a consequence of the abstraction operation, some of the
abstracted model, then it must also hold in the concreransitive fanin of the abstracted functions may be dagglin
design [8]. However, if a property does not hold in thé¢hatis, at level, fanin circuitry of Abs; may not be connected

Fig. 2. Abstract circuit with black circles representingreation models

primary inputsX}l71 andX;S. If any of the new primary inputs

are found as suspects, then the error in the concrete design
may be encapsulated inside the abstracted functions. These
solutions are calledpuriousbecause they do not correspond
to components in the concrete design.

B. Spurious Solutions

Abstract modules corresponding to spurious solutions must
Fig. 1. Circuit and its hierarchy before and after abstrac#! and i3 be refined to determine where the error location is with reispe

to other circuit components oncébs; are removed. This dan- {0 the concrete design. The refinement process re-intrsduce

gling circuitry can be deleted with a logic removal algonith the abstracted modules corresponding to spurious sofution
to further simplify C". into the designC’. That is, if one of the suspects found is

Since the abstracted design is less complex than the cencfePfimary inputXx,, then the functiony; is added ta”” with
one, it can be used to formulate an easier debugging probldff output connected to the fanin of the removkg,. Once
However, as demonstrated in [11] with theorems and exathe original functions are re-introduced, all its tranvatfanin
ples, the abstract modél’ contains the set of newly addedMUst also be added to the abstract design
primary input, which are unconstrained in the vectttsAs After performing refinement, the debugger must be called
a result, a debugging engine may assign arbitrary logicegl p9aIN to determine th_e error chatlon corresponding to f[he
to these variables while operating on the problem. Suctclod"€Viously found spurious solution. The steps of debugging
value assignments traditionally made by debuggers may reflnemgnt are repeated until no spurious solut_|ons are
unjustifiablein the concrete desigti’ where these variablesound. Algorithm 1 presents the described abstraction and

are constrained by their original fanin logic. Consequetite refinement flow at a given hierarchical level. Lines 2, 4, and 5
solutions returned by the debugger in this formulation cannP€"form module abstraction, constrain the input and perfor
be trusted and may be incorrect. modular debugging. Refinement is performed on line 8 if

To resolve this situation, the logic values of the abstrhct§PUIOUS solutions are found. As explained in [1djaz N
functions Abs; = {F,, F, ...} must be captured and used fan be increased to guarantee correctness and completeness

constrain the primary inpu{Xp,, Xp,,...}. The constraints Theorem 1 states that the desigh resulting from Algo-

can be captured by storing the values of the oufgt Fs, ..} rithm 1 pontains the modgles/functions necessary to find all
of the functions to be abstracted during the simulatiorCof the equivalent error locations. Lemma 1 belO\.N is useful 1o
with the stimulus input sequence In. These values must bePrOve Theorem 1 and other results in this section.

amended to/ to create a new stimulug”’ to constrain the

pr%agy;;%%tc}éfjﬂs’ti):n}ﬁlugf}’ ?:ngl'the abstracted desigd Algorithm 1 Module Abstraction and Refinement Debugging

can be provided to an automated debugger to find the errof 2" 7=

suspects or the error sources. The debugger can determinewhile (1) do

the location of errors inC’ but it can miss errors residing % V'= extractconstraint(C, C", V)

within the abstracted circuitry. To find all equivalent ltioas, & g a’ dehnel, V', N level)

a mechanism is required to identify when suspects may be: if (spurious_solutions(Sol, C')) then

missed. This is accomplished by adding correction models or} Q) Shefine(Sol, & level)

the added primary inpuk for each abstracted functioR. 1. else

In the context of SAT-based debuggingcarrection model 1t Solutions = Solutions U Sol

as defined [11], [6], is a multiplexer that allows the debugge!> .0

to identify any gate as suspects (including primary inputs)i: ~N=nN+1

Similar models exist for other debugging techniques [13]:* ifﬁi\tf;n”’{tgﬁfl‘gﬁf:i“(,,}

Figure 2 shows the correction models as black dots on thg. cnqir o

example of Figure 1 at level 1. Notice that suspects ares: end while

added for each of the functions at level 1 in addition to the

() (d)

Xl X5
Y] Y F) Y]
FZ >< 1 Xl Fll 1 ‘ 1
* Bug F F}
F 11 _ F}
X, Y, 'y Xp Y,
§ X, 2 2
2 2 1 2| 2
Fy £ B>u<g
| A |

;)) 1 "
Fig. 3. FunctionFll is composed of function§22 and Ff Fig. 4. Before and after abstracting functioR§ and I} with bug in Fy

Lemma 1 Assuming that an erroneous behavior is only ob- Proof: By the contrapositive of Lemma 1, no errors can
served at the primary output of a design, a modute D€ encapsulated in child modules if the parent modules are

demonstrates an erroneous behavior only if its parent meodlot refined at level. Thus, to debug errors at levgl> i + 1,
m, demonstrates an erroneous behavior. it is not necessary to consider abstracted modules at fevel

[]
Proof: Take any parent module,, of modulem. from a Apart from the functions abstracted at levelmore func-

hierarchical design. All paths from any set of output of miedutions can be abstracted at leviet 1. Intuitively, at each level
m, to the primary output of the circuit will contain the outpuiof the hierarchy, functions are comprised of one or more sub-
of modulesm,,. Thus, the outputs of:, dominate any set of functions. This allows for sub-functions to be abstracted a
output ofm,. As a result, the parent module demonstrates #wer levels of hierarchy even though their collection aatnn
erroneous behavior if an error behavior from is observed be abstracted at a higher level. For example, consider &igur
at the primary output. B where an error resides ifi;. At level 1, function F! cannot be

abstracted since it contains the error, however, at I2\alb-
Theorem 1 The debugging technique presented ifunction F7 may be abstracted since it is independent from
Algorithm 1 finds all equivalent error modules at ar? and its output.
given hierarchy level.

D. Multiple Errors

Proof: Based on Lemma 1, error modules demonstrategnThe module-based abstraction and refinement methodology

erroneous behavior only if their parent modules demorestrg€Scribed above is capable of debugging multiple error-loca

an erroneous behavior. This means that if a child module 1"S- The process for finding multiple error locations isifar
level i is erroneous, then the debugger will find the parefft that in [11]. In that process, the cardinality used to find

modules erroneous at levejs< i. At any hierarchy level, the errors starts at one and increases as the error location

if the erroneous module or its parents are abstracted, fﬁegoﬁl found. How;ver, Wgeln _spur:cpusds?lutlons are f_ou?d
corresponding spurious solutions will be found. Refinemefifid the corresponding module is refined, the error cardynali
Ist be reset to 1. For function abstraction, the same psoces

ensures that the content of the abstracted modules are T&! be foll d si g th dinality i fren
introduced into the design thus allowing the erroneous repdnuSt be followed since resetting the cardinality Is cru
to be identified. Since all equivalent error locations carbpe Maintaining correctness.

distinguished for a given set of vectors, all equivalenperr Consider the example in Figure 4 where the modules
modules will be found. m Absi = {Fy, Fy} are abstracted at level 1. The abstraction

results in the removal of modulds' and F} as well because

C. Hierarchical abstraction they fan-in to Abs,. The pre- and post- abstraction circuits
This function abstraction scheme introduced in the previo@re shown in Figure 4 (a) and (b), respectively. Assuming tha

section is most effective when it is used in a hierarchicite error is in moduleF;, the error effect can propagate to
manner, where module-based debugging can be applied at é@enoutput ofY; andY>. Under those conditions, the debugger
hierarchy level [13], [15]. At each levelof the hierarchy, the Will not identify a single error module, but will find the emro
design can be represented by a set of functi{)ﬁﬁ FQi’ b pair OfXF21 andXF41. Through refinement, these modules and
As discussed in the previous section, the iterative sequerieir fanin circuitry will be re-introduced in the circuit this
of abstraction, debugging and refinement is applied until ®®int, the number of error modules the debugger seeks must
spurious solutions are found. Thus at each level the altsttadde reset to 1, otherwise, the single error source insiflvill
functions inC’ and their children in the hierarchy tré¢ are be missed.
not required for debugging. In other words, it is not necess
to consider the internal logic of abstracted functions(ih
at level: when debugging at the levé+ 1 as presented in Hierarchical debugging and function abstraction can be
Theorem 2. combined to give further gains when debugging a design.

Hierarchy-based debugging can identify erroneous modules
Theorem 2 After applying Algorithm 1, only the modules a& divide and conquer approach while abstraction simplifies
level i present in desigrC’ are necessary for debugging ateach step of the problem. The overall proposed technique
levelj > i+ 1. for function abstraction is shown in Algorithm 2. Here the

a\E. Overall algorithm

TABLE |

Algorithm 2 Hierarchical Debugging
SUMMARY OF PROBLEMS FOR FUNCTION ABSTRACTION

1: Solutions = 0, level =0, N =1, C' = C

i; wlll;il(lz) ;i:d . design Problem statistics Debugger engine [13]

4: {New_sols, C'} = Module_debug(C", level, N) size [# DFF[# cyc (used]| # Titeral] time (s)] mem (M)

5: if New_sols = () then wb_conl | 81K | 818 19 (19) 519K | 58.74 619

6: return Solutions wb_con3 81K 818 1387 (40) 1273K | 205.16 1250

7. else fdctl 264K| 5461 | 189 (40) 1705K | 555.37| 4400

8 Solutions = Solutions U New_sols memctrl1| 39K | 1145 | 1318 (40) || 3888K | 55.13 850

9: endif vgal 147K | 17102| 16100 (40)|| 8680K | 1635.78] 4700

10: end while vgaz T47K | 17102| 141 (40) || 213K | 236.16| 1350
comml [450K][30339] 19 (25) 1912K [1575.67] 5080
comm2 [454K| 26852] 88 (25) N/A N/A" | Mem out
comm3 [454K][26852] 1387 (25) [| 278K | 809.31| 4831

debugging problem is solved iteratively by descending the .
hierarchy while the details of abstraction and refinemeat ar N _Table Il, the column labeled itr states the number

performed as require at each levelpdule debugaccording of refinement and debugging iterations required to find all
to Algorithm 1. equivalent locations (number of times line 5 of Algorithm 1

is run). The colummmod refined / totapresents the number
IV. EXPERIMENTS of modules refined out of the total number of modules in the

This section presents experimental results for the prapog@ncrete design. These modules are the only ones required
high level abstraction and refinement methodology. All th® diagnose the error. The smaller this number is, the more
circuits used are Verilog designs from the OpenCores.dféf€ctive is the abstraction technique. The next threerak)
website [16] except for an industrial communication desighliterals, time (s) andpeak mem (Mpresent the benefit of the
(comn). Each circuit contains a functional level error sucRroposed technique in terms of the number of literals reguir
as an incorrect statement, incorrect module instantiatid N the problem formulatlon, the total run time in seconds and
wiring between modules, etc. These RTL errors typically rep€ak memory requirement by the entire algorithm.
resent tens or hundreds of gate-level errors. The debugger u The improvement provided by the proposed technique when
in all experiments is the module-aware SAT-based automa@mpared to a state-of-the-art method such as this of [13]
debugger of [13]. This set of experiments is conducted onia shown in the last columns of Table II. Its effectiveness
64 bit Intel Core 2 Quad processor with 2.66 GHz and 8GE attributed to reducing the problem size which is directly
of memory. related to the number of literals. For exampleyimpal where

Table | presents a summary of the circuits and the statistles’ 14 modules are used, it leads to 6304Beduction in
using SAT-based debugging [13]. Columns one, two, and thréérals which results in a 260.89improvement in run time
show the name of the debugging problem based on the desigd 27.1% reduction in overall memory requirement. For all
and its size in terms of gates and state elements (DFA)oblems, the number of refinement and debugging iterations
respectively. Column four presents the length of the emware Performed is larger than one. Therefore, it is clear thaheac
trace in terms of clock cycles required to observe the ewose iteration is much easier and faster when abstraction is,used
behavior from an initial state. When the trace is too long fdhus it is more advantageous to run more iterations on easier
the debugger, the trace is reduced to only contain the I&pblem than fewer iterations on harder problems.

25 or 40 transitions in order to make automated debugging!n Table II there are two problems that experience a slow-
feasible. The number of clock cycle traces used to formuladewn. For probleni dct 1, six iterations are required to solve
the debugging problem are presented in the parenthesedh@ problem, at which stage all 5 modules are used. Thus
column four. The columst literals presents the total numberin this case, the extra iterations simply add overhead as the
of literals generated in the CNF of the debugging problenj.[13ntire circuit is needed in order to solve the problem. The
Finally, columngime (s)andmem (M)show the total run-time, problemvga2, also experiences a slow down, but in this case,
in seconds, required to solve the problem and the requir@®.26< reduction in memory is observed. In this case, unlike
memory, in MB, respectively. Notice that probleaonrm?2 the overall trend, the simpler and faster debugging problem
requires more than 8GB to formulate the problem and thaennot compensate for the extra iterations performed.

runs out memory. Figure 5 (a), (b) and (c) provide detail into the numbers of

Table Il presents the result of the proposed technique whéliable 1l for vga2, f dct 1 and conmi, respectively. These
initially all functions are abstracted. In other words, wé/ron figures illustrate the relationship between the run timeasho
refinement to re-introduce all the circuitry required to wigb in solid line and the number of literals shown in dashed line
the design. Column one shows the names of the probleragainst the refinement and debugging iterations. Notice the
while column two shows the maximum error cardinalitgeneral trend where both run time and number of literals
(maxN required to solve the debugging problem. As discussegpear to increase exponentially with the increase in the
in Section I11-D the cardinality required to locate the bigijng number of iterations. For the majority of cases where the
an abstracted design can be larger than required to solve pheposed technique is effective, abstraction allows tioélem
original problem. Even though the problems shown here hateebe solved with a fraction of its size thus leading to snmalle
a single functional-level (RTL) error, for the problemonml memory requirements and run times. Considering problem
andcommB a higher cardinality of 2 is used by the algorithnmvga2, notice that for iterations 3,4,5 the solve time is quite
to find the error site. high thus not providing any run time benefit.

TABLE Il

RESULTS OF PROPOSED FUNCTION ABSTRACTION AND REFINEMENT TE®G!IQUE

design nam abstracted problem stats comparison to original
9 maxNT# itr [mod refined/tota] # literals| time (s)] peak mem (M)[Tit reduced) [speed up k) [mem reduced X)
wb_conl 1 3 3/8 116K 25.55 253 4.49 2.30 2.45
wb_con2 1 4 478 141K | 149.12 469 9.05 1.38 2.67
fdctl 1 6 575 1705K | 638.78 4400 1.00 0.87 1.00
mem.ctril 1 4 12714 113K 12.02 200 34.53 4.59 4.25
vgal 1 2 5714 14K 6.27 173 630.48 260.89 27.17
vga2 1 5 6/14 94K 436.38 1052 2.26 0.54 1.28
comml 2 8 10/ 129 38K 108.32 772 50.37 13.11 6.58
comm2 1 9 10 /129 25K | 1403.47 640 — — > 12.50
comm3 2 8 87129 80K 63.94 317 3.47 12.66 15.24
160 T . — 96000 600 T T . 1.86+06 45 —— 40000
solve time —+— Plad solve time —+— solve time —+— ;
140 - #literals --pe=—" - 84000 #literals ---x--- 40 - #literals ---x--- 36000
/ 500 [1.5e+06
120 - - 72000 32000
% 100 | 4 0000 |, % 400 12408 % 28000
E s E s E 24000 ©
= 80 4 48000 & = 300 900000 & =]
2 = 2 = 2 20000
s or 7 86000 & 200 | 600000 3 16000
40 < 24000 12000
wof - 1 12000 100 | 300000 8000
0w ‘ 0 0 : 0 4000
1 2 3 4 5 1 2 3 4 5 6 i 2 3 4 5 6 7 8

Number of iterations

(a)

Number of iterations

(b)

Number of iterations

(€)

Fig. 5. Solve time and # literals in problem vs. the # of refiratmand debugging iterations fega2 , f dct 1 andconmi

In general, it is found that more aggressive abstractiof] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic meldchecking

leads to more debugging and refinement steps. However, du
to the simplicity of the design when abstracted aggressivel

the initial debugging and refinement iterations are reddyiv

much easy problems and thus quicker to solve. This behavi
is observed in Figure 5 where the initial iterations hav
a faster run time than later ones. It may be possible to
find an abstraction heuristic that can balance the number &

iterations and the functions abstracted, but this is noivalr

task. However, in these experiments, it is found that simply

abstracting all functions and modules is quite effectivatas
results with the smallest problems possible.

This work presents abstraction and refinement techniq
for automated debugging that leverage the high level inéar
tion contained in RTL design. More specifically, functiorfs o
the designs are first abstracted resulting in smaller débggg?!
problems. To ensure that all the equivalent error locatames [13)

V. CONCLUSION

found in the original design, a refinement process is peréokm
The performance of the methodology is enhanced as it
applied hierarchically to the RTL design. The experimen

ment over a conventional debugging.

[1] International

REFERENCES

Techonology

Roadmap

for

Semicondugtors

“http://www.itrs.net/links/2006update/2006updatefintn,” 2008.
[2] E. Clarke, O. Grumberg, and D. Pelddodel Checking MIT Press,

1999.

[3] H. Foster, A. Krolnik, and D. LaceyAssertion-Based Design Kluwer
Academic Publishers, 2003.

i

m

{ﬂ]
S
demonstrate two orders of magnitude of performance impl’O\ﬁES]

e Wwithout BDDs,” in Tools and Algorithms for the Construction and

Analysis of Systemser. LNCS, vol. 1579.
pp. 193-207.

H. Foster, “Assertion-based verification: Industry mmgytto realities
(invited tutorial),” in CAV, 2008, pp. 5-10.

A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagsis and logic
debugging using Boolean satisfiability EEE Trans. on CADvol. 24,
no. 10, pp. 1606-1621, 2005.

K.-H. Chang, |. Markov, and V. Bertacco, “Automating peaslicon
debugging and repairlEEE Trans. on Compp. to appear, 2008.

Springer Verlag, 1999,

] E. Clarke, O. Grumberg, and D. Long, “Model checking aristeac-

tion,” in Symposium on Principles of Programming Language392,
pp. 342-354.

E. Clarke, A. Gupta, and O. Strichman, “SAT-based cowexample-
guided abstraction refinementEEE Trans. on CADvol. 22, no. 7, pp.
1113-1123, 2004.

P. Bjesse and J. Kukula, “Using counter example guidestraction
refinement to find complex bugs,” iDesign, Automation and Test in
Europe 2004, pp. 156-161.

S. Safarpour and A. Veneris, “Abstraction and refinetrtenhniques in
automated design debugging,’resign, Automation and Test in Eurgpe
2007, pp. 1182-1187.

S. Huang and K. Chengrormal Equivalence Checking and Design
Debugging Kluwer Academic Publisher, 1998.

M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Breler, “Post-
verification debugging of hierarchical designs,”lm’l Conf. on CADQ
2005, pp. 871-876.

A. Veneris and |. N. Hajj, “Design error diagnosis andreation via test
vector simulation,JEEE Trans. on CADvol. 18, no. 12, pp. 1803-1816,
1999.

G. Fey, S. Safarpour, A. Veneris, and R. Drechsler, “Ga telation
between simulation-based and SAT-based diagnosispesign, Au-
tomation and Test in Europ@006, pp. 1139-1144.

[16] OpenCores.org, “http://www.opencores.org,” 2008.

