
Towards Analyzing Functional Coverage in
SystemC TLM Property Checking∗

Hoang M. Le1 Daniel Große1,2 Rolf Drechsler1
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Institute of Computer Science, Albert-Ludwigs-University, 79110 Freiburg im Breisgau, Germany
{hle,grosse,drechsle}@informatik.uni-bremen.de

Abstract—For Electronic System Level (ESL) design SystemC
has become the standard language due to its excellent support of
Transaction Level Modeling (TLM). But even if the complexity of
the systems can be handled using the abstraction levels offered
by TLM – the most abstract one is untimed and focuses on
functionality – still verification is the major bottleneck. In partic-
ular, as untimed TLM models are the reference for the following
refinement steps their correctness has to be ensured. Thus, formal
verification approaches have been developed to prove properties
for these models. However, even if several properties have been
checked this does not guarantee that the complete functionality
of the TLM model has been verified. Thus, in this paper we
consider the problem of functional coverage analysis in formal
TLM property checking. We present a coverage approach which
can analyze whether the property set unambiguously describes all
transactions in a SystemC TLM model. The developed coverage
analysis method identifies uncovered scenarios and hence allows
to close all coverage gaps. As an example we consider an
automated teller machine and we show the benefits of the
proposed approach.

I. INTRODUCTION

Transaction Level Modeling (TLM) [1] has become the key
aspect for Electronic System Level (ESL) design. The C++-
based language SystemC [2], [3] perfectly supports TLM [4]
and hence is well accepted for ESL design in industry. In
TLM-based design flows, a system is first modeled at a high
level of abstraction using TLM with the particular focus on
functionality. Hence, the initial TLM model is untimed, the
communication between the system components is described
by transactions and the synchronization is carried out by means
of events.

However, since the TLM model serves as reference for the
RTL implementation its correctness has to be ensured. Thus,
formal verification approaches have been proposed to prove
properties of a TLM model in a mathematical sense (see
e.g. [5], [6], [7], [8]) which is a much stronger result than
simulation-based methods can provide. In this context, the
work in [8] introduced a Bounded Model Checking (BMC) [9]
based verification approach to check transaction- and system-
level properties of untimed TLM SystemC designs. But even
if major TLM behavior has been formally proven there is no
guarantee that the complete functionality has been verified. In
classical RTL-based formal verification this question is well

∗This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088.

known as “have I written enough properties?” [10]. Several
practical solutions showing the completeness of a property set
for RTL designs have been proposed in the last years (see
e.g. [11], [12], [13], [14]). However, they cannot be applied
at TLM due to the different characteristics of the models
regarding in particular the notion of time.

In this paper we propose the first approach for coverage
analysis in TLM property checking. As mentioned, we con-
sider untimed TLM models communicating via transactions
synchronized by events. Hence, the goal of our approach is to
ensure that the initiation of any transaction in a TLM model
follows a certain event notification (or another transaction)
which has been unambiguously described by a TLM property.
Since the user is interested in coverage gaps we propose a
method to identify scenarios where no property describes an
implemented but unchecked transaction initiation. Applying
this approach iteratively allows to close all gaps and as a
result the transaction behavior of the considered SystemC
TLM design is completely specified by the final property set.

Clearly, as the proposed coverage notion as well as the
coverage analysis algorithm address the transaction start as
the result from some computation and certain events only,
the focus of this work is on the communication functionality
specified in the TLM design and not on the complete function-
ality. However, this is a first step towards analyzing functional
coverage in property checking of SystemC TLM designs.

Overall, we summarize the contributions of this paper as
follows:
• Transaction-based coverage for TLM property checking

For the first time a coverage notion is proposed to analyze
whether the defined TLM properties specify all possible
initiations of transactions.

• Computation of uncovered scenarios
An algorithm to identify transactions where no TLM
property checks their initiation is presented. The results
can be used to reduce the number of iterations to achieve
full coverage.

• Integration in verification flow
The employed TLM property checking approach is based
on BMC and the proposed coverage analysis approach is
also formulated as a BMC problem. Hence, it can be
easily integrated in a verification tool with only minor
changes.

We present first experimental results demonstrating the
advantages of our approach.

The rest of this paper is structured as follows: Section II
introduces the preliminaries, i.e. the basics of SystemC in-
cluding a running example are described and the TLM
property checking approach of [8] is briefly reviewed. The
proposed transaction-based coverage approach is presented
in Section III. After the description of the basic idea the
problem is formalized and a BMC-based method for coverage
computation is described. Section IV gives the experimental
evaluation. Finally, the paper is concluded in the last section.

II. PRELIMINARIES

A. SystemC

In the following only the essential aspects of SystemC are
described. SystemC provides a single language to model and
execute hardware and software systems on various levels of
abstraction. SystemC has been implemented as a C++ class
library, which includes an event-driven simulation kernel. The
structure of the system is described with ports and modules,
whereas the behavior is described in processes which are
triggered by events and communicate through channels. A
process gains the runnable status when one or more events of
its sensitivity list have been notified. If more than one process
is runnable, the simulation kernel selects an arbitrary process
and gives this process the control. The execution of a process
is non-preemptive, i.e. the kernel receives the control back if
the process has finished its execution or suspends itself by
calling wait().

The simulation semantics of SystemC can be summarized
as follows [3]: First, the system is elaborated, i.e. instantiation
of modules and binding of channels and ports. Then, there are
the following steps to process:

1) Initialization: Processes are made runnable.
2) Evaluation: A runnable process is executed or resumes

its execution. In case of immediate notification, a waiting
process becomes runnable immediately. This step is
repeated until no more processes are runnable.

3) Update: Updates of signals and channels are performed.
4) Delta notification phase: If there are delta notifications,

the waiting processes are made runnable, and then it is
continued with step 2.

5) If there are timed notifications, the simulation time is
advanced to earliest one, the waiting processes are made
runnable, and it is continued with step 2, otherwise the
simulation is stopped.

As a running example consider the SystemC TLM design
in Figure 1. This is a simple but conceptually representative
SystemC TLM model. It consists of two modules, each module
has a SC THREAD processes main. Module m1 implements
the interface add sub if (Line 8 - Line 12) and has two trans-
actions add (Line 24 - Line 27) and sub (Line 28 - Line 31),
while module m2 implements the interface receiver if (Line 3
- Line 6) and has only one transaction receive (Line 48 -
Line 51). Note that, while in both modules, main is also

1 #include <systemc.h>
2
3 class receiver if : virtual public sc interface {
4 public:
5 virtual void receive(int) = 0;
6 };
7
8 class add sub if : virtual public sc interface {
9 public:

10 virtual void add(int) = 0;
11 virtual void sub(int) = 0;
12 };
13
14 class m1 : public sc module, public add sub if {
15 public:
16 sc event e1;
17 int sum;
18 sc port<receiver if> port;
19 SC HAS PROCESS(m1);
20 m1(sc module name name) : sc module(name) {
21 sum = 0;
22 SC THREAD(main);
23 }
24 void add(int x) {
25 sum += x;
26 e1.notify(SC ZERO TIME);
27 }
28 void sub(int x) {
29 sum −= x;
30 e1.notify(SC ZERO TIME);
31 }
32 void main() {
33 while (true) {
34 wait(e1);
35 port−>receive(sum);
36 }
37 }
38 };
39
40 class m2 : public sc module, public receiver if {
41 public:
42 sc event e2;
43 sc port<add sub if> port;
44 SC HAS PROCESS(m2);
45 m2(sc module name name) : sc module(name) {
46 SC THREAD(main);
47 }
48 void receive(int x) {
49 cout << x << endl;
50 e2.notify(SC ZERO TIME);
51 }
52 void main() {
53 while (true) {
54 if (rand() % 2) port−>add(rand());
55 else port−>sub(rand());
56 wait(e2);
57 }
58 }
59 };
60
61 int sc main (int argc , char ∗argv[]) {
62 m1 mod1(”m1”);
63 m2 mod2(”m2”);
64 mod1.port(mod2);
65 mod2.port(mod1);
66 sc start();
67 return 0;
68 }

Fig. 1. Simple SystemC example

1

[m1] wait(e1);

[m2] add(x); wait(e2);

[m2] sub(x); wait(e2);

[m2] add(x); wait(e2);

[m2] sub(x); wait(e2);

[m1] wait(e1);

2

[ker] notify(e1);

[m1] receive(); wait(e1);

3

[ker] notify(e2);

[m2] add(x); wait(e2);

[m2] sub(x); wait(e2);

[ker] notify(e1);

Fig. 2. The execution of the example

declared as a function, it is however not considered as a
transaction because it will never be called explicitly during the
execution of the design. Module m2 can either initiate an add
or a sub transaction of module m1 (via calling the respective
transaction method via the port, as example see Line 54).
Both transactions deliver an integer to module m1, which is
then added to or subtracted from a cumulative variable sum
respectively. The value of this variable is sent back to module
m2 afterwards by the transaction receive. It follows that the
transaction order should be either add then receive or sub then
receive.

The execution of the program with respect to the simulation
semantics of SystemC is illustrated in Figure 2. The states
correspond to the beginning of each delta cycle and the paths
between them describe the behavior during each delta cycle.
In the figure [m1], [m2] and [ker] represent that process main
of module m1, process main of module m2 and the kernel
process/scheduler currently have the control, respectively. Also
note that even though the function notify is called inside the
transactions add, sub and receive, the actual notification of the
corresponding event is delta-delayed. There are overall four
outgoing paths from state 1 to state 2. They result from the two
possible schedulings for “starting” the model (either the main
process of m1 or the main process of m2 can be scheduled first)
and the non-deterministic choice between transaction add and
sub in Line 54 of m2.

B. TLM Property Checking

In this section we briefly review the approach presented in
[8] for proving properties of untimed SystemC TLM models.
The Property Specification Language (PSL) [15] with exten-
sion of TLM primitives (begin/end of transaction, notification
of event) [16] is used as the property language. In addition
to simple safety properties the effect of transactions and the
causal dependency between events and transactions can be
checked. Sampling at different temporal resolution is also
supported using PSL clock expressions, for instance at certain
events only or at the begin/end of certain transactions.

The overall flow of the approach is depicted in Figure 3.
First, from the SystemC TLM model, the transformed model
M in C is generated automatically. The transformation consists

SystemC
TLM model

Model generation

transformed
C model M

Monitor generation

TLM property

transformed
C model with

monitoring
logic MP

BMC on C model

CEX
found

Property
verified

Fig. 3. Overall Flow

of three main steps:
1) The static elaborated structure of the design (i.e. the

module hierarchy, the processes and the port bindings)
is identified. Then the object-oriented features of Sys-
temC/C++ are translated back into plain C.

2) The static scheduler implementing the non-preemptive
simulation semantics of SystemC is generated including
the delta cycle loop and the evaluation loop. Each
process gets a global variable indicating its status (RUN-
NING, RUNNABLE, WAITING, or TERMINATED).
Non-deterministic choice, i.e. which runnable process is
to be executed next, is embedded into the evaluation
loop. This allows a C model checker to explore all
interleavings implicitly.

3) Each event gets a Boolean flag indicating whether it is
notified. For each process synchronized by an event, a
Boolean flag indicating that the process is waiting for
the event is added. After each potential context switch
(a call of wait()), a label (resume point) is inserted, to
resume the execution of the corresponding process later.
The handling of events is then mapped to the handling
of the Boolean flags.

Dynamic process creation and dynamic memory allocation
cannot be handled by the transformation yet.

After the model generation, the monitor for the TLM
property is generated as a Finite State Machine (FSM) and
this FSM is embedded into M in combination with assertions
to form the transformed model with monitoring logic MP.

For the verification task BMC can be employed by applying
CBMC [17] on the C model, but an additionally proposed
induction-based method gives completeness guarantee and is
more efficient. The notion of states and how the transition
relation is formed with respect to MP is also detailed in [8].
The basic idea is to view the current values of the variables as a
state s and each iteration of the outermost loop of the scheduler
(also called the main loop) – which is either the evaluation
loop or the delta cycle loop – as the transition relation T .
Each execution of the model can be formalized as a path,
which is a sequence of states s[0..n] = s0s1...sn satisfying the
condition path(s[0..n]) =

∧
0≤i<n T (si, si+1).

The property P holds in the original design, iff no assertion
fails during each iteration of the main loop, or in other
words during each transition T (si, si+1). Such a transition is
called safe and written as safe(si, si+1). The BMC problem
is formulated as proving that there exists an execution path of
length k, starting from an initial state, and containing unsafe
transitions: ∃s0...sk.

(
I(s0)∧path(s[0..k])∧¬allSafe(s[0..k])

)
with allSafe(s[0..n]) =

∧
0≤i<n safe(si, si+1) and I is the

characteristic predicate for all initial states.
For induction, two terminating conditions are added.

The forward condition checks the satisfiability of I(s0) ∧
loopFree(s[0..k]) and the inductive step checks the satisfiabil-
ity of loopFree(s[0..k]) ∧ allSafe(s[0..k]) ∧ ¬safe(sk, sk+1)
where loopFree(s[0..k]) = path(s[0..k]) ∧

∧
0≤i<j≤k si 6= sj .

The constraints are embedded into the transformed model by
means of assumptions1 to make induction possible directly at
level of C.

1C model checkers typically support an assumption concept, i.e. assertions
are checked for all execution paths of the program that satisfy the assumptions.

III. TRANSACTION-BASED COVERAGE IN TLM PROPERTY
CHECKING

After presenting the basic idea, the exact problem formula-
tion of transaction-based coverage in TLM property checking
is presented. The second part of this section introduces a
BMC-based approach to analyze transaction-based coverage
by detecting coverage gaps.

A. Basic Idea and Problem Formulation

Transactions are arguably the most important elements
of a SystemC TLM design. Synchronized by events, trans-
actions carry out the communication between modules of
a design. With the property language and the verification
method from [8], one can specify and prove properties about
when a transaction should be initiated, for example after
a certain event notification or after the design reaches a
given internal state. However, especially for safety-critical
transactions (e.g. banking operations, see Section IV), it is
also very important that they can only be initiated in the
intended ways. Our idea is that any transaction should not
be initiated “unexpectedly”, i.e. all circumstances leading to
the initiation of a transaction (which are called coverage target
or simply target in the following) should be fully captured by
the properties. More concretely, whenever a coverage target is
observed during the execution of the design, some suffix of
the current execution path must satisfy at least one property
from the property set.

For the exact problem formulation, we use the notion of
states and transitions as defined in [8]. In the transformed
C model, a state is defined as a tuple of values of the state
variables at the beginning of an iteration of the main loop,
which can be either the evaluation loop or the delta cycle
loop of the generated SystemC scheduler. In the first case, a
transition corresponds to an iteration of the evaluation loop,
i.e. an execution of a process. In the second case, a transition
consists of several process executions in a delta cycle. In
an execution of a process, transactions can be initiated or
completed and events can be notified. Thus during a transition,
begin/end of transactions and notification of events can occur.
We call such occurrences attachments to the transition.

Back to the running example, assume that our coverage
target is the begin of the transaction receive. According to
the transformation from [8], we have the following state
variables: m1 main status, m2 main status, e1 notified,
m1 main waiting e1, e2 notified, m2 main waiting e2,
m1 main resume point, m2 main resume point, sum. Each
state of the transformed model can be fully described by
a tuple of values of those variables. The FSM for the
transformed model is shown in Figure 4. Note that the
variable sum has been omitted because it is not important
for the communication. Runn and Wait correspond to the
status Runnable and Waiting of a process. The transitions are
marked with the corresponding attachments in the order of
their occurrence. Note that both e1 notified and e2 notified
have the value 0 in all states. The reason for that is the
following: those flags are raised when the function notify() is

P1: default clock = add:exit || sub:exit || receive:entry;
always (add:exit −>next (receive:entry))

P2: default clock = add:exit || sub:exit || receive:entry;
always (sub:exit −>next (receive:entry))

Fig. 5. Properties for the example at the default temporal resolution

called and they are set to 0 again after the actual notification
occurs (the black circles in Figure 4).

Now consider the property P1 from Figure 5, which means
that after the transaction add is finished, the transaction
receive will be initiated. Recall that our coverage target is the
initiation of the transaction receive, thus only paths leading to
receive:entry (the black triangle with subscript receive) need
to be checked. Two of all four paths leading to receive:entry
follow an end of transaction add and are therefore covered by
the property. The two other paths are not covered. We need at
least one other property to achieve the desired coverage, for
example the property P2 in Figure 5.

We introduce the following notion of an extended path:
a path s0s1 . . . sn can be extended by its attachments
to s0att

T (s0,s1)
1 . . . att

T (s0,s1)
m1 s1att

T (s1,s2)
1 . . . att

T (sn−1,sn)
mn sn

with mi = the number of attachments of T (si−1, si) and
att

T (si−1,si)
k = the k-th attachment of T (si−1, si). Recall that

a TLM property refers to a specific order of begin/end of
transactions and notification of events during any execution
(i.e. regardless the scheduling of processes), for example a
transaction must end after a notification of a certain event. In
the current context that specific order during an execution path
corresponds to the order of the attachments along this path.

A path fragment f = att
T (si−1,si)
p . . . si . . . sj . . .

att
T (sj ,sj+1)
q satisfies a property P unvacuously (written as

P � f) if the attachments conform strictly to the order
specified by the property with att

T (si−1,si)
p and att

T (sj ,sj+1)
q

being the first and the last attachment in the order respectively.
Then, the coverage problem can be formalized as follows: a
single coverage target X is covered by a set of properties P
iff ∀n ∀s0, . . . , sn :(

path(s[0..n]) ∧ I(s0) ∧
(
∃k : X = attTk (sn−1, sn)

))
−→

(
∃i, j ∃P ∈ P : P � att

T (sj−1,sj)
i . . . att

T (sn−1,sn)
k

)
Essentially, we have formalized the following: For any ex-
tended path that ends with the coverage target, there must
exist at least one property from the property set which is
unvacuously satisfied by a suffix of the path. Otherwise, the
formula is false and the target is not covered.

On a side note, in the properties as formulated here trans-
action initiations are to be explicitly specified and hence non-
vacuous but irrelevant properties such as true −>next(true)
– which could provide a false coverage picture – are not

expected.

...
targetCovered = false;
make possible transition on monitor 1;
if (monitor 1 reports success) targetCovered = true;
...
make possible transition on monitor n;
if (monitor n reports success) targetCovered = true;
assert(targetCovered);
occurrence of X; // inlined transaction
...

Fig. 6. Coverage assertion for a target X

B. Coverage Analysis

In the following we show how to analyze the coverage of
a single target. The main idea is to translate the coverage for-
mulation into assertions that are embedded in the transformed
C model. After that the induction-based verification method
from [8] can be applied. A target is either proven to be covered
or we get a counter-example, which represents an uncovered
scenario. Recall that in [8] the monitoring logic of a property is
generated as a FSM and is embedded in the transformed model
in combination with assertions. The code for transitions and
the assertions are inserted at the beginning/end of transactions
or at notification of events, which are the sampling points of
the property. The property is satisfied by the current execution
path if there has been no assertion failure so far. However, in
the coverage formulation, at least one property is required to
be unvacuously satisfied at any occurrence of the target. Recall
that each state of the FSM of a property indicates that a certain
prefix of the specified order has been observed so far. Thus,
it follows that a property is unvacuously satisfied iff the FSM
is just brought to the initial state from the state corresponding
to the observation of the specified order. The translation for
the coverage analysis works as follows:

1) For each property in the property set, the monitoring
logic (FSM) is generated and embedded into the trans-
formed model.

2) A new Boolean variable targetCovered is introduced into
the model.

3) This variable is set to false before the monitoring logic
code at each occurrence of the coverage target X (i.e. the
inlined call of transaction X, since in this paper only the
initiation of a transaction is considered as a target).

4) The code for the monitors is subsequently modi-
fied, so that if any of the monitors reports success
(i.e. the corresponding property is unvacuously satis-
fied), targetCovered is set to true indicating that the
target is covered.

5) Finally, before each occurrence of the coverage target,
we need to insert a coverage assertion stating that
targetCovered is true.

The pseudo-code in Figure 6 shows the result of the translation
for the general case.

Total coverage in terms of our approach is achieved by
considering all single targets of a design. If all those trans-

{Runn,Runn, 0, 0, 0, 0, 0, 0}

add add e1

sub sub e1

{Runn,Wait, 0, 0, 0, 1, 1, 1}
receive receive e2

{Wait, Runn, 0, 1, 0, 0, 1, 1}

e1 add add

e1 sub sub

e
= notification of event e

t
= begin of transaction t

t
= end of transaction t

Fig. 4. States and transitions of the transformed example

actions and events are successfully proven to be covered by
the properties then it can be concluded that the transaction
behavior of the design is fully specified.

IV. EXPERIMENTAL EVALUATION

In this section, first results are presented and discussed.
We have integrated the proposed approach in the verifica-
tion framework of [8]. Our benchmark is a medium-sized
TLM skeletal implementation of an Automated Teller Machine
(ATM). The experiments have been carried out on a 3GHz
Intel Xeon system with 4 GB RAM running Linux and
Boolector v1.2 [18] is used as the underlying SMT solver for
CBMC v3.3 [17].

First, we give a short description of the ATM. Then the
verification of the design is discussed and finally the results
of the coverage analysis are given.

A. ATM

The ATM has approximately 150 lines of code and two
modules: a front-end receiving the inputs from user/environ-
ment and a back-end processing those requests. Each module
has a main SC THREAD process. The main process of the
front-end waits repeatedly for an event input request and then
transports the input to the back-end through a transaction.
This transaction also notifies the event input received and as
a consequence, the main process of the back-end is woken up
to process the input and subsequently informs the front-end
that new input is needed by initiating a transaction that issues
a notification of input request.

The main functionality of the ATM is described by the
FSM in Figure 7. The design accepts five possible inputs:
RESET, INC, TAKE, OP, VAL and has five internal states:
INIT, CARD IN, CARD OUT, CODE CHECK, CODE OK.
Whenever the input RESET is received, the card is ejected
and the state of the design will be set to CARD OUT. The
input INC (TAKE) is activated if the card is inserted into
the ATM (withdrawn from the ATM). Then, the state is also
changed from INIT to CARD IN (from CARD OUT to INIT),
respectively. The input OP represents a banking operation
and the first time OP is issued, the customer is requested to

give the PIN through the input VAL. If the customer gives
the correct code before a number of attempts MAX TRY,
the requested banking operation is performed and the state
CODE OK is reached and henceforward banking operations
are allowed without asking for PIN. For a banking operation,
a transaction do op will be initiated. Otherwise the card is
kept and the initial state INIT is reached.

B. Verification

In the following we focus on the verification and coverage
of the representative banking operation OP. For the verification
purpose, the three properties depicted in Figure 8 have been
formulated. The first two properties P4 and P5 specify that
the transaction do op will be initiated if the customer has
entered the correct code (ival == ok) in the first or in the
second attempt, respectively. The property P6 specifies the
case that the correct code has been given already (i.e. the
design is in state CODE OK) and thus the transition do op
can be immediately initiated upon request. All properties were
successfully proven to hold using the induction-based method
from [8] in less than 60 seconds.

C. Coverage Analysis

However, the coverage of the target do op:entry cannot be
proven with P4, P5 and P6. The resulting error trace/uncovered
scenario consists of a sequence of three validation attempts
whereas the last one is successful and the transaction do op
is consequently initiated. The scenario reveals a gap in the
property set: It has not been specified what happens when more
than two validation attempts have failed. There are now two
possible interpretations of the coverage result. In our case, by
analyzing the uncovered scenario we find a “off-by-one bug”
in the implementation (<= instead of < has been written in the
SystemC TLM model). After fixing this bug, the coverage for
do op:entry can be proven successfully in about 180 seconds.
The other case would be that the specification actually allows
up to three validation attempts. We would need to include a
new property describing this unchecked behavior and hence if
no other gap remains with the new set of properties the target
would be covered.

INIT

CARD OUT

[TAKE]

CARD IN
[INC]

[RESET]

CODE CHECK
[OP]

[RESET]

[VAL && icode != ok &&
num try >= MAX TRY]

[VAL && icode != ok &&
num try < MAX TRY]
num try++;

CODE OK

[VAL && icode == ok] do op();

[RESET]
[OP] do op();

Fig. 7. FSM of the ATM

P4: default clock = input received.notified || do op:entry;
always ((input received.notified && ((state == CARD IN) && (icode == OP)))

−> (next ((input received.notified && ((icode == VAL) && (ival == ok)))
−> (next (do op:entry)))))

P5: default clock = input received.notified || do op:entry;
always ((input received.notified && ((state == CARD IN) && (icode == OP)))

−> (next ((input received.notified && ((icode == VAL) && (ival != ok)))
−> (next ((input received.notified && ((icode == VAL) && (ival == ok)))
−> (next (do op:entry)))))))

P6: default clock = input received.notified || do op:entry;
always ((input received.notified && ((state == CODE OK) && (icode == OP)))

−> (next (do op:entry)))

Fig. 8. Properties for the ATM

V. CONCLUSIONS

We have presented a transaction-based coverage notion for
property checking of untimed SystemC TLM designs. This is
to the best of our knowledge the first formal coverage notion
proposed for SystemC TLM. The notion enables to analyze
whether all possible ways to initiate a transaction in the
implementation are also described by the TLM property set.
The coverage analysis is then formulated as a BMC problem
allowing an easy integration into the existing BMC-based
TLM property checking approach introduced in [8]. The C
model with monitoring logic generated for property checking
is modified and augmented by a coverage assertion. The cover-
age analysis is reduced to verify a C program with assertions in
the same manner as the property checking problem. The BMC
formulation also enables a very important feature: the efficient

computation of uncovered scenarios (i.e. counter-examples
to the coverage analysis) providing valuable feedback. By
analyzing the traces, the designer is pinpointed to behavior
which has not been checked by a property. This behavior
is either correct and hence he/she has to add an appropriate
property to achieve the desired coverage or a bug has been
discovered.

This work with its focus on communication functionality
is the first step towards the formal analysis of complete
functional coverage for SystemC TLM designs. For future
work we want to extend our coverage notion such that the data
transferred by a transaction and the effect of a transaction on
the design is also captured. For example, after the end of a
transaction all possible following states of the design should
be fully described by the property set.

REFERENCES

[1] L. Cai and D. Gajski, “Transaction level modeling: an overview,”
in IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, 2003, pp. 19–24.

[2] Functional Specification for SystemC 2.0, Synopsys Inc., CoWare Inc.,
and Frontier Design Inc., http://www.systemc.org.

[3] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2005.

[4] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer, 2006.

[5] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy: an open tool
for the analysis of systems-on-a-chip at the transaction level,” Design
Automation for Embedded Systems, pp. 73–104, 2006.

[6] P. Herber, J. Fellmuth, and S. Glesner, “Model checking SystemC
designs using timed automata,” in IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis, 2008,
pp. 131–136.

[7] H. Garavel, C. Helmstetter, O. Ponsini, and W. Serwe, “Verification of
an industrial SystemC/TLM model using LOTOS and CADP,” in ACM
& IEEE International Conference on Formal Methods and Models for
Codesign, 2009, pp. 46–55.

[8] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in ACM & IEEE
International Conference on Formal Methods and Models for Codesign,
2010.

[9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 1999, pp. 193–207.

[10] S. Katz and O. Grumberg, “Have I written enough properties - a method
of comparison between specification and implementation,” in Correct
Hardware Design and Verification Methods, 1999, pp. 280–297.

[11] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Black-
more, and F. Bruno, “Complete formal verification of Tricore2 and other
processors,” in Design and Verification Conference (DVCon), 2007.

[12] A. Fedeli, F. Fummi, and G. Pravadelli, “Properties incompleteness
evaluation by functional verification,” IEEE Trans. on Comp., vol. 56,
no. 4, pp. 528–544, 2007.

[13] K. Claessen, “A coverage analysis for safety property lists,” in Int’l Conf.
on Formal Methods in CAD, 2007, pp. 139–145.

[14] D. Große, U. Kühne, and R. Drechsler, “Analyzing functional coverage
in bounded model checking,” IEEE Trans. on CAD, vol. 27, no. 7, pp.
1305–1314, 2008.

[15] Accellera Property Specification Language Reference Manual, version
1.1, http://www.pslsugar.org, 2005.

[16] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman, “A temporal
language for SystemC,” in Int’l Conf. on Formal Methods in CAD, 2008,
pp. 1–9.

[17] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 2004, pp. 168–176.

[18] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 174–177.

