Extraction, matching and pose recovery based
on dominant rectangular structures.

Jana Kosecka and Wei Zhang

Department of Computer Science
George Mason University

Fairfax, VA 22030

Abstract

Man-made environments possess many regularities which can be efficiently exploited
for image based rendering as well as robotic navigation and localization tasks. In
this paper we present an approach for automatic extraction of dominant rectan-
gular structures from a single view and show how they facilitate the recovery of
camera pose, planar structure and matching across widely separated views. In the
presented approach the rectangular hypothesis formation is based on a higher level
information encoded by the presence of orthogonal vanishing directions, the dom-
inant rectangular structures can be detected and matched despite the presence of
multiple repetitive structures often encountered in a variety of buildings. Different
stages of the approach are demonstrated on various examples of images of indoors
and outdoors structured environments.
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1 Introduction and Related work

Previous approaches to acquisition of 3D models from multiple views differ
in the type of chosen geometric primitives, estimation algorithms as well as
level of human interaction. There exist several systems for completely auto-
mated recovery of camera motion and 3D structure of the scene [4]. In many
instances these general methods lack robustness, are well conditioned only in
restricted scenarios and rely on successful solution to feature correspondence,
which becomes difficult when the views are widely separated. The techniques
that have enjoyed success in limited domains typically employ structural in-
formation of the environment. Examples of such systems are PhotoModeler [§]
and Facade [9]. These systems were used for building 3D models of architec-
tural environments, which are naturally parameterized by cubes, tetrahedrons,
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prisms, arches, surfaces of revolutions and their combinations, used partial hu-
man interaction to instantiate the model primitives in respective views and
yielded quality of the models superior to the fully automated methods.

The past attempts to automate the geometric model selection and match-
ing typically resorted to weaker geometric assumptions, such as presence of
linear and planar structures combined with orthogonality and parallelism re-
lationships between them. These weaker modelling assumptions have been
successfully incorporated into fully automated system for multi-view recon-
struction [10]. Examples of stronger more constrained models (e.g. doorways,
different window types, facades) and their automatic instantiations have been
explored in automated methods as well [11]. The constraints of parallelism
and orthogonality between planes and lines were used for reconstruction of
3D models in case of uncalibrated camera [12] from single view. Partially
calibrated camera and linearly parameterized models have been used for the
recovery of 3D structure from a single view [13].

The assumptions and models for the wide-baseline feature matching explored
in the past differed in the type of primitives detected in individual views, de-
scriptors associated with their support regions and chosen similarity criteria.
In order to account for variation in the appearance due to the change of view-
point, methods for selecting and matching neighborhoods based on descriptors
invariant to rotation, affine transformations and/or scale have been proposed
in [14-17]. These local descriptors work well when the individual feature sup-
port regions have distinct appearance characterized by either color or texture.
In cases where the perspective fore-shortening effects become dominant the
affine models are no longer appropriate. The detection and matching of rect-
angular regions has been previously proposed by [18], in the context of the
same problem and by [19] in the context of texture analysis. The approach
of [18] proceeded with instantiation of the planar hypothesis in a bottom up
manner by linking and grouping detected line segments to form initial rect-
angular hypothesis. The rectangular regions obtained in such a manner have
a small extent and hence are more prone to mismatching in additional views
specially in the presence of repetitive structures.

The work presented here focuses on the automatic extraction, detection and
matching of rectangular structures detected in individual views. Rectangular
planar structure is an image of a 3D rectangle. For example building facades,
windows, bulletin boards can in many instances be modelled appropriately
by rectangular planar structures. Given the detected rectangular structures
we will show how to recover a relative pose of the camera with respect to
the 3D world in case of partially calibrated camera and match the detected
structures across wide baselines. The presented approach extends the appli-
cability of the automated image based rendering methods to a larger class of
man-made environments and is also useful in the context of visual navigation



and localization tasks. The main contributions of the approach are in: (1) the
structure extraction stage, which exploits higher level information encoded by
the presence of dominant vanishing directions and does not rely on low-level,
often brittle, search for geometric structure. In our case we can establish the
notion of dominant rectangular structures which make the process of pose re-
covery better conditioned and simplify the matching stage; (2) we outline a
simple method for the camera pose recovery from single view for the case of
partially calibrated camera; (3) and demonstrate improvements in the match-
ing stage, which enable us to handle large changes in the viewpoint and slant
of the planar structures and establish matches in the presence of large scale
repetitive structures.

2 Approach

Our approach is based on the observation that in man-made environments
the majority of lines is aligned with three principal directions of the world
coordinate frame. The groups of parallel lines belonging to the same direction
intersect in the image at the vanishing point. The fact that in man-made envi-
ronments the sets of parallel lines often come from three mutually orthogonal
vanishing direction provides effective constraints for calibrating the camera
and recovering the relative orientation of the camera with respect to the scene
[20,21]. Rectangular structure is defined by four line segments which come
from two different orthogonal line’s groups. While these types of structures
are easily detected by humans, automatic detection of rectangular structures
from images is not straightforward. Simple exhaustive grouping of the ini-
tial set of line segments aligned with three principal directions would yield
a large number of candidates for rectangular structures, many of them not
corresponding to the actual planar structures in the world. In the first part
of this paper we describe an approach for merging, pruning and verifying the
rectangular structure hypothesis in the image. In the second part we demon-
strate how to recover the relative pose of the camera and 3D structure of the
rectangular primitives and match them across widely separated views.

2.1 Vanishing point estimation

The starting point of our method is an efficient line detection procedure and
vanishing point estimation. The gradient orientation is first quantized into a
set of bins containing pixels with similar gradient orientations [21], followed
by connected component analysis within each bin and line fitting. The parallel
lines in the world intersect in the image plane in vanishing points. The inter-
section point can be finite or infinite, depending on the relative orientation of



the camera with respect to the scene.

Consider the perspective camera projection model, where 3D coordinates of
points X = [X,Y, Z 1] are related to their image projections x = [z,y, 1]T
in the following way

Ax = KPgX. (1)

K € SL(3) is the intrinsic camera parameters matrix, P = [I343,0] € R3**
is the projection matrix, g = (R,T) € SE(3) is a rigid body transforma-
tion represented by 4 x 4 matrix using homogeneous coordinates and A is the
unknown scale corresponding to the depth Z of the point X. In the above
equation both x and X are in homogeneous coordinates. Given two image
points x; and X, the line passing through the two endpoints is represented by
a normal of a plane going through the center of projection and intersecting the
image in a line [, such that 1 = x; X X3 = XX, . The vanishing direction of
two lines which are parallel in 3D world then corresponds to the plane normal
where all these lines lie. Given two lines the common normal is determined by
v =1, x 1y = 1;1,. Hence given a set of line segments belonging to the lines
parallel in 3D, the common vanishing direction v can be obtained by solving
the linear least squares estimation problem min, 37, (17'v)?. This corresponds
to miny || Av||?, where the rows of matrix A € R™ 3 are the lines segments I,
belonging to the same vanishing direction. Given a set of line segments shar-
ing the same vanishing direction, the above orthogonal least squares solution
is applicable regardless of the camera being calibrated. Prior to the vanish-
ing point estimation the detected line segments need to be grouped into the
dominant vanishing directions.

Previous techniques for line segment grouping vary in the choice of the ac-
cumulator space, where the peaks correspond to the dominant clusters of
line segments; most common alternatives are the Gaussian sphere and Hough
space [1,3,5,7]. When the camera is calibrated, the image line segments are
represented as unit vectors on the Gaussian sphere and several techniques
for both grouping and initialization stage on the Gaussian sphere exist [1-
3]. The main advantage of the Gaussian sphere representation is the equal
treatment of all possible vanishing directions, including those at infinity. The
initialization and grouping are the determining factors of the efficiency of
the previously proposed methods. An approach for simultaneous grouping
and vanishing point estimation using Expectation Maximization algorithm
has been suggested previously by [1], assuming calibrated camera and Gaus-
sian Sphere representation. In the absence of calibration, the peaks on the
Gaussian sphere are not well separated making the grouping problem poorly
conditioned. In our previous work [21], we have demonstrated an efficient ap-
proach for simultaneous grouping of lines into dominant vanishing directions
and estimation of vanishing points using expectation maximization algorithm

1 % is a skew symmetric matrix associated with x = [z1, z2, 23]7.



(EM) in an uncalibrated setting. Namely we have shown that by applying
arbitrary non-singular normalizing transformation A can be applied to our
measurements 1; and then transforming the result v back does not affect the
final estimates. Hence we can first transform all the endpoints of lines by A~!,
in order to make the line segments and vanishing directions well separated on
the unit sphere and consequently similar to the calibrated setting 2. We can
now apply the Expectation Maximization algorithm (EM), which estimates
the coordinates of vanishing points as well as the probabilities of individual
line segments belonging to particular vanishing directions. The posterior dis-
tribution of the vanishing points given line segments can be expressed using
Bayes rule in terms of the conditional distribution and prior probability of the
vanishing points
p(L)

where p(l; | vi) is the likelihood of the line segment belonging to a particular
vanishing direction vj. This posterior probability captures the membership
probability of a line 1; belonging to k-th vanishing direction and will be de-
noted by w;. For a particular line segment, p(1;) can be expressed using the
conditional mixture model representation

p(vi | 1) =

p) = 3 plvipll | v 3)

The EM algorithm then proceeds in a two stage iterative fashion, where during
each iteration, the posterior probabilities p(vy | 1;) are computed given the
currently available vanishing points estimates. In the maximization step, the
vanishing points are estimated by minimizing negative log likelihood. This in
case of Gaussian likelihood distribution yields the following linear least-squares
estimation problem

J(vg) = minz:wik(liTvk)2 = minH(WAvk)HQ (4)
Vi P Vi

2 In our case A is given by

1 oy
70 -7
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Given an image of size s = [nrows,ncols] the choice of the transformation A is

determined by the size of the image and captures the assumption that the optical
center is in the center of the image and the aspect ratio kK = 1. The focal length in
the pixel units is f* = nrows, o; = *35** and o, = %‘ﬂs Given the assumptions
about optical center and aspect ratio, the chosen focal length f* is related to the

actual focal length by a scale factor.



where v;, is a vanishing point associated with k-th vanishing direction, W €
R™™ is a diagonal matrix of weights (membership probabilities) and rows of
A € R¥>*™ are the detected line segments. Figure 2 depicts the iterations of
EM algorithm and shows an example of vanishing point estimation. The line
segments which are not aligned with principal directions are classified as out-
liers and are discarded from the matching process. More detailed description
of the initialization stage, estimation and adjustment of the number of models
can be found in [21].

2.2 Rectangular structure extraction

As we mentioned above one rectangular structure in 3D world is delimited
by four lines from two principal directions. One approach would be to extend
the existing line segments and search for all possible pairs of lines from two
orthogonal directions. We next describe the process of refining the detected
line segments, and forming and verifying the initial rectangular structure hy-
pothesis.

Line Segment merging. For efficient and accurate rectangular regions ex-
traction, we want to handle only small number of long line segments. The line
segments estimates are first refined by combining vanishing point information
and original line orientation. Each image line is modelled as (x., #) where x, is
the centroid of the segment and @ is its direction. In case the segment belongs
to k-th (finite) vanishing direction (k = 1,2, 3), the line orientation is refined
by weighting 6 with vanishing point direction defined by 6, = atan(d,,d,),
where d = [d,, d,]" = v — x.. The new direction then becomes

Onew = X 0+ (1 —p) x 6, (5)

where p is the membership probability of the line belonging to the k-th van-
ishing direction. After this step, the line segments are more consistent with the
vanishing directions. This enables us to merge the shorter line segments de-
tected in the first stage. In Hough space a line candidate (x., #) is represented
by a point (p, @), such that

p = x.co86 + y.sinb. (6)

By transforming the obtained lines to Hough space while keeping the resolu-
tion of the space high, we check whether multiple lines fall in the same cell and
merge them. The new extended line candidate is obtained by 1) computing the
two end points of a new line defined by maximum and minimum of extremal
points of the incident lines; 2) the middle point is defined by new centroid of
two end points; 3) the mean of contributing line directions is considered to



be the new line direction. In the second stage, the resolution of the Hough
space is decreased and only single dominant line segment is kept for each cell.
This step substantially improves the line segments used for initial hypothesis
formation and also eliminates dramatically the number of line segment candi-
dates. Figure 1 shows the originally detected lines and refined lines. We can
see now the structure information is much more evident.

Rectangle hypotheses initialization. Given only small number of ex-
tended line segments, we exhaustively choose two line candidates from each
group, and compute their intersection points. In case the selected lines indeed
delineate a rectangular planar patch, there should exist real corners points
within a small neighborhood of the predicted corner position. If all four points
satisfy the requirement we initiate a rectangular structure hypothesis. This en-
ables us to reject hypotheses as the one depicted in Figure 3.

The image patch represented by the four hypothesis corners and corresponding
line segments undergoes an additional verification stage.

Hypothesis verification. In this stage, given the rectangular structure hy-
pothesis, we choose to keep or discard it by checking whether the whole patch
delimited by four line segments indeed comes from the same plane. Recall that
any planar mapping between the 3D world plane and the image plane can be
characterized by a homography H € R3*3 which relates the coordinates of
points from two respective planes. Without loss of generality we can assume
that the points in the 3D world plane are specified by homogeneous coordi-
nates X = [X,Y, 1] and point coordinates in the image plane are denoted by
x = [z,y,1]T. The relationship between the points is then

x ~ HX (7)

where ~ denotes an equality up to scale and H is the homography matrix.
Consider the coordinate frame associated with the plane with one of the rect-
angle points (e.g. upper left) being the origin and the axis aligned with the
sides of the rectangle. The coordinates of four extremal points of a rectangular
structure S expressed in this frame are then

0a0a
S=100bb]|, (8)
1111

where a and b the dimensions of 3D rectangle. Given at least four correspond-
ing points and knowledge of S, H can be recovered linearly from Equation 7.



However H can be recovered only up to scale and in general a and b are un-
known. For the purpose of hypothesis verification we can assume a = b, which
will only introduce a different scaling of two principal directions but won’t
affect the verification. The recovered homography enables us to warp the hy-
pothesized image patch to a normalized fronto-parallel view. Since the choice
of the scale a essentially controls the resolution of the warped image we adjust
its value depending on the size of the image patch.

The verification step is based on our previous assumption of the presence of
dominant orientations used in the vanishing points detection stage. The gradi-
ent orientation histogram of warped image should also contain two dominant
horizontal and vertical directions. In case additional peaks in the histogram
are detected the hypothesis is discarded. Figure 4 shows two rectangular hy-
potheses and their corresponding warped images. We can easily identify the
true one by either of the proposed methods.

In certain instances checking only the corner areas of the warped image is suf-
ficient for verification, since corners are the most likely areas where the planar
hypothesis is violated. By discarding the center part, the verification becomes
more robust, in scenarios where for example there is a tree or clutter in front
of the building. Currently we consider only larger structures in order reduce
the number of initial hypotheses. The detected structures can be alternatively
organized in hierarchical manner. Figure 5 shows the final set of the verified
rectangular structures. Note that they are naturally divided into two groups,
coming from the composition of vertical directions with two horizontal van-
ishing directions respectively and cover most area of the two facades. In this
case, the intersection line of the two facades is well defined. This information
will be used later for merging the individual single reconstructions to obtain
consistent relative pose between the views.

Figure 5 depicts the examples of detected rectangular structures. Some of
the rectangles in the figure are artifacts of the visualization method, since
they due to intersections of more dominant rectangular structures and do not
correspond to structures detected from and verified by images.

3 Camera pose recovery and partial scene reconstruction

In this section we describe a method for recovery of the relative pose of the
camera with respect to the world plane from single view. This problem is a
variation of techniques used previously for camera pose recovery from a single
view [13] and can be solved very efficiently. Detailed analysis of the exist-
ing constraints provided by rectangular structures in multi-view uncalibrated
setting can be found in [22].



Recall the image coordinate x is related to its 3D counterpart X via projection
equation (1). In case sufficient number of 3D coordinates is available, the
entire projection matrix Il = K Pg € R3*4 can be recovered and factored into
intrinsic and extrinsic parameters of the camera. For uncalibrated camera, its
intrinsic calibration matrix K and its simplified form Ky have following form

f ag oy f00
K=10kf o, Ki=10f0
00 1 001

where f is the focal length of the camera in pixel units, k is the aspect ratio, ay
is skew factor and [0, 0,]” is the principal point of the camera. We assume zero
image skew ap = 0, the aspect ratio is k = 1 and principal point [0, 0,]7 lies
in the center of image (or is known) and the calibration matrix thus assumes
simple form of K above. The basic projection equation can be simplified in the
special case, when the partially calibrated camera is viewing a planar scene.
Without loss of generality we assume that 3D planar points X = [X,Y,0, 1]
lie on the plane which goes though the origin in the world frame and has a
normal vector v = [0, 0, 1]7. In such case we have

- o < X

where 77, 7wl 7] are the rows on the projection matrix II. Since the third

coordinate of X is zero and the intrinsic parameter matrix is Ky, the projection
equations can be written explicitly in the following form

frin friz fte X X
)\X — f7’21 f’l"22 fty Y - H Y . (10)
r31 T3z L 1 1

H € R3*3 here gives an explicit form of homography between the world plane
and image plane in case only the focal length f of the camera is unknown. In
order to estimate the homography we need to know at least four correspon-
dences between the world and the image plane. Note that despite the fact that
we do not know the actual world coordinates of the points X, assuming that we
are viewing a rectangular structure, we can parameterize the unknown shape
S in the following way. The four corner points of the rectangular structure S



are

00 abab
S=10bb 0], (11)
111 1

where b is the height of the rectangle in 3D world and « is ratio between the
height and width of the rectangular structure. Factoring S into scaling matrix
and the structure part

ab00] 0011
S=S,Ss=|00b0||0110]. (12)
0011111

Substituting it into equation (10) we obtain
Ax = HS,Ss. (13)

Denote H, = HS, which has the following form

abfrii bfrie ftg hi1 hia his
Hy = | abfroy bfras fty | = | har hag hos
abrsy brss t, hsi hsa hss

Note that H, is the homography between the rectangular structure and a
unit square, which is well defined by the four corner points. Now we are in the
position that given the structural information S the unknown homography H,,
can be recovered up to scale as H = vH, from the constraint (13). In case
the homography estimation is poorly conditioned, we choose an alternative
dominant rectangular structure from the detected set for the purpose of pose
recovery. Due to the special structure of H, it is now possible to recover
the unknown camera pose as well as dimensions of the rectangular structure.
Note now that the columns of the rotation matrix can be expressed in terms of
the homography matrix and unknown scales. Exploiting the constraints that
the columns of the rotation matrix have to be orthogonal (r{ry = 0) and of
unit norm (||r{|| = ||r2|| = 1), we can solve for unknown scaling factors by
expressing these constraints in terms of entries of the homography matrix.
From the orthogonality constraint we obtain

111 <h11h12+h21h22

il 7

P +mmm>:0 (14)
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From the above equation we can estimate f in the following way

]g _ \/h11h12 + ha1hao
—hs1hso

(15)

Note that the recovered f is independent of b. Dividing the first two rows of
H by f we obtain

Oéb’f‘ll bT‘12 tx
H' =1 | abryy brog t, | = V(1 ha, hs). (16)

Oéb’f’gl b7’32 tz

Imposing the unit norm constraint on the rotation matrix columns the un-

14l Y
AT where h}, hj are the

column vectors of H'. Denoting v, = vb = ||h}|| as a scale factor and eliminat-
ing the unknown scales 7, and «, the unknown camera pose can be extracted
from the above equation as

known ratio of dimensions can be calculated as & =

~+
i}

11 T12

S Q“

(17)

g = |To1 Toa

|

SN

31 T'32

The final column of the rotation matrix can be obtained as r3 = ry X re. So
finally we recover the focal length and the complete camera pose (R, T') as well
as the dimensions of the rectangle up to universal scale. Note the recovered T’
is inversely proportional to true rectangle dimension b, because we are using
a unit square instead of true dimension to compute the homography:.

Sensitivity and Degeneracy

In the general configuration the recovery of pose and structure dimensions is
well conditioned. Although the orthogonality constraints for the recovery of
the focal length has been used previously in the past [20], there were instanti-
ated in terms of estimated vanishing point coordinates as opposed to homog-
raphy entries. In practical experiments we have found our method to yield
more reliable estimates. Since it is difficult to compare the two approaches on
a equal footing we demonstrate the sensitivity of our estimates as a function
of errors in image coordinates on several simulations with the synthetic data.
Assuming focal length f = 1000, the length ratio a = 2 and the size of rect-
angular structure was set to 220 x 400, which was a typical size of the largest
rectangular structure detected in our experiments. The four corner coordi-
nates were perturbed by Gaussian noises with different o. Figure 13 shows the
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median of estimated error obtained from 1000 trials. Note that for ¢ = 2 the
median error of estimated length ratio is around 0.06 and the relative error
is only 0.06/2 = 3%. The effect of the size of rectangular structure and the
relative orientation of the camera on the final estimates of focal length and
length ratio parameters is in Figure 14. Note that reducing the size of the
structure affects the final estimates noticably.

There are two degenerate configuration of the above method. When there is
no rotation R = I, hoy, hio, h31 and hso are all 0 and no unique solution for
the focal length can be obtained. The length ratio o can still be computed as
%' Second, when the rotation axis coincides with horizontal (R,) or vertical
coordinate axis (Ry), hs1 or hsy are equal to 0 and the focal length and the

length ratio cannot be recovered.

Partial reconstruction of facade

The two rectangular structures belonging to different dominant planes enable
us to recover their dimensions and camera pose with regard to the reference
frames they define, say (R;,T;) and (R,, T}), up to ”different” universal scales.
We can reconcile this by assigning the same origin to the two frames. Any
point in the intersection line between of the two planes can be used, with
the end corner point they share being the most convenient one. The most
upper vertex of the building is chosen in Figure 5. The relative scale is then
n = % and scale T; can then be adjusted accordingly to n7T;, because the
two translations should be the same. The two recovered rotations show the
perpendicular relationship between two facades with only 3¢ error. To visualize
the result, we still use the world coordinate frame defined by two facades, with
the camera pose expressed in this frame as ¢’ = (RT, —RTT). Figure 6 shows
the recovered structure and pose based on two facades recovered in Figure 5.

Additional examples of the structure detection results are in Figure 7 and
Figure 8 applied to indoors environment.

Given the detected rectangular structures in two views we now demonstrate
how to establish their correspondence, and use it for the recovery of the relative
camera pose between the views.

4 Matching rectangular structures

Similarly as in the verification stage we warp the rectangular structures de-
tected in individual views into canonical fronto-parallel view. The matching
uses both pictorial and geometric information and proceeds in three stages:
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(1) comparison of ratios of rectangle sizes; (2) normalized cross correlation
of normalized warped views; (3) consistency coplanarity check based on ho-
mography between the two views. We next describe these three steps. Since
we already have the size ratio o = § of the height and the width of each
rectangular structure, in order for two structures to match, they must in ideal
case have the same size ratio a. In practice, we allow for a small variance of
a. In case the structure to be matched has ratio oy, candidates with « be-
tween [, (1 4 err) X a;] will pass the pre-selection, err is set to be 20% in
our experiments. In the second stage the remaining candidates are compared
based on pictorial cues. Given the normalized warped views of rectangular
structures, we simply choose Normalized Cross Correlation (NCC) measure
to asses the similarity between the structures. The corresponding pair is kept
if their correlation score is larger than some specified threshold t,... After
these two stages there are still remaining ambiguities, due to the repetitive
nature of the rectangular structures in man-made environments; i.e. for one
candidate in the first view, there still may be several structures in the second
view matching both geometrically and pictorially. As the top of Figure 9 il-
lustrates, multiple structures pass both the geometric and the pictorial test.
Note that in the second view (Figure 9 top-left), there are valid matches on
the left side of the building, demonstrating that the selected matching criteria

and our structure detection method can handle very large distortion.

These remaining ambiguous matches are resolved by using a geometric consis-
tency criterion. The basic assumption behind this criterion is the fact that the
dominant rectangular structures detected in the individual views come from
the same 3-D plane. In such case, we can exploit the two view relationship
between matched structures characterized by a homography matrix A which
relates coordinates of two sets of planar points between two views; xo ~ HX;.
Hence, the two view homography can be estimated by selecting a pair of rect-
angular structures in respective views. For the remaining structure candidates
it can be then verified whether they are consistent with the detected homogra-
phy, by looking at the residual error between warped and actual corner points
coordinates '

Ix3 — Hx}| < ¢ (18)
where x| are coordinates of i-th rectangular structure in the first view and
x} are coordinates of j-th rectangular structure in the second view. Within
some tolerance characterized by value €, two structures which are not exactly
in the same 3D plane can be matched, as long as the distance of the plane
from the camera coordinate system differs by a small amount. This process
of estimation of the dominant homography is carried out in spirit similar to
RANSAC. First a pair of corresponding structures is picked randomly and it’s
support is computed. In the final stage the homography with the largest sup-
port is chosen. The final estimate is then obtained using all correspondences
which comply with the homography. This process enables us to eliminate the
remaining mismatches and establish a small number of corresponding rectan-
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gular structures in two views. Given the estimated homography H the relative
displacement between the views can be obtained by standard decomposition
of H into motion (R,T) € SE(3) and structure parameters. Once the cor-
respondence between rectangular structures has been established the relative
displacement can be alternatively computed from the two absolute displace-
ments between the camera and planar structure. Figure 11 shows structure
extraction results of two views of a library and their matching results. The
motion estimates obtained from the homography decomposition are: the rota-
tion axis w = [0.98408, 0.15094, —0.093846]" and rotation angle § = 12°, and
translation is T = [—0.080845,0.34867, —0.36336], where z-axis is aligned

with the vertical direction.

Additional examples of matched structures and recovered relative pose are
shown in Figure 12. Note that even though our matching algorithm uses more
global information captured by dominant rectangular structures, occlusions
caused by trees does not affect the matching results. In the example in Fig-
ure 12 the actual camera poses were in reality far apart, but the focal length
in the right view was much larger, yielding almost the same apparent size of
the building.

5 Summary and discussion

In this paper we described an approach for extraction and matching of domi-
nant rectangular structures. The approach was motivated by our previous work
on vanishing points detection and used the assumption that the majority of
detected line segments comes from principal vanishing directions associated
with the world coordinate frame. We have also demonstrated a simple method
for the recovery of planar structure and camera pose from a single view in the
absence of focal length. This enabled us to develop a three stage wide base-
line matching strategy, which utilized both pictorial and geometric cues. We
have demonstrated successful matching and relative pose recovery from widely
separated views in the presence of multiple repetitive structures.

We are currently exploring applicability of the proposed method in the con-
text of robotic visual navigation and image based rendering. The presented
approach demonstrates, that the use of descriptors with a larger spatial ex-
tent, which utilize higher level structural constraints, simplifies certain difficult
matching tasks. We are currently investigating alternative choices of match-
ing primitives and representations of their spatial relationships which would
enable the applicability of both geometric and appearance based matching in
the context of wide-baseline pose and structure recovery as well as recognition
tasks.
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Fig. 1. Initial line segments (left) and refined line segments (right).
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Fig. 2. Tterations of the EM algorithm, detected vanishing points (vertical vanishing
point not shown here) and lines belonging to different vanishing directions.

Fig. 3. An example where the intersection of extended lines is outside the rectangular
structure.
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Fig. 4. Hypothesis rectangles and their corresponding warped images, the left is
invalid hypothesis and the right one is correct. Verification based on corner areas
only, is demonstrated on the warped image patch in the center.
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Fig. 5. Rectangle structure extraction result and two initialized building facades.

Fig. 6. Frontal view (left) and top view (right) of recovered structures and camera
pose based on the two initiated facades of a building in Figure 5.
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Fig. 7. Rectangle structure recovered for another building, crosses mark the corners
of structures which failed the verification stage.

Fig. 8. Rectangle structures detected in indoor environment.

Fig. 9. Structure in first view have multiple matches pictorially (top). The repeated
pattern causes mismatch (bottom).
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Fig. 10. Library image pair: structure detected in the first view (upper left); struc-
ture detected in the second view (upper right); successfully matched structures
(bottom).

Fig. 11. Pose recovery results for the library image pair.

Fig. 12. Matching and relative pose recovery result for California Hall.
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Focal Length Estimation Length Ratio Estimation
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Fig. 13. Sensitivity of the focal length (left) and length ratio (right) estimates as a
function of errors in image coordinates.
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Fig. 14. Sensitivity of the focal length and length ratio estimates as a function of
relative rotation (R,) with respect to the plane and size of the rectangular structure.
The error in image coordinates was set to o = 2.
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