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Abstract

Hadamard transform (HT) as over the binary field providestaraway to implement multiple-rate
codes (referred to @d4T-coset codgswhere the code lengthy = 27 is fixed but the code dimensiadid
can be varied from to NV — 1 by adjusting the set of frozen bits. The HT-coset codesuitiog Reed-
Muller (RM) codes and polar codes as typical examples, canesa pair of encoder and decoder with
implementation complexity of ordep (N log V). However, to guarantee that all codes with designated
rates perform well, HT-coset coding usually requires a cieffitly large code length, which in turn causes
difficulties in the determination of which bits are better faeing frozen. In this paper, we propose to
transmit short HT-coset codes in the so-called block Maduperposition transmission (BMST) manner.
At the transmitter, signals are spatially coupled via sppsition, resulting in long codes. At the receiver,
these coupled signals are recovered by a sliding-windawtite soft successive cancellation decoding
algorithm. Most importantly, the performance around owolethe bit-error-rate (BER) of0~5 can be
predicted by a simple genie-aided lower bound. Both thesmdi® and simulation results show that the

BMST of short HT-coset codes performs well (within one dB wv@m the corresponding Shannon
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limits) in a wide range of code rates.
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I. INTRODUCTION

In practical communication systems, it is frequently regdito implement several codes
with different code rates. This is critical for wireless amumnication systems to implement the
adaptive coded modulation![1], which can lower down the gatprobability of a single code
and hence allows more efficient use of the scarce bandwigdtiurees|[2]. It is then desirable
to implement codes with all different rates of interest wattpair of encoder and decodér [3].
Rate-compatible (RC) codes are a class of multiple-rategodhich are usually constructed
from a mother code by the use of code modifying techniquel ascshortening information bits
and extending or puncturing parity-check bits [4]—[8], amsnarized in[[9]. The rate-compatible
codes usually have different code lengths for differentecades. For some applications, the code
lengths can be varied in a wide range. For example, Rapt@asc@dth length as long as required)
were optimized by designing the degree profiles to maximimeaverage throughput [10]. In
2009, Casadet al proposed multiple-rate codes with fixed code length by cambirows of the
parity-check matrix of a mother code. In 2012, laual constructed multiple-rate nonbinary low-
density parity-check (LDPC) codes with fixed block lengthusyng higher order Galois fields for
codes of lower rates [11]. Although fixed-length multiplde codes are not applicable to hybrid
automatic repeat request (HARQ) with incremental reduo@sn they may find applications in

some other scenarios.

« Fixed-length multiple-rate codes can be applied to theateswhere a framing constraint is
imposed on the physical layer. This occurs, for example hwdrthogonal frequency division
modulation (OFDM) with a fixed number of subcarriers is usE?] [ In this scenario, fewer
information bits should be encoded to maintain the religbiequirement when the channel
is in a low signal-to-noise ratio (SNR) level.

« Fixed-length multiple-rate codes may also find applicaionflash memory systems, where
the channel capacity decreases with ages but the number ofomecells keeps un-
changed [[13]. The older flash memory, which has undergonege laumber of erase
cycles, has a degraded capacity and requires a code of |later while the “younger”
flash memory has a larger capacity and supports a code ofrhigte In this scenario,

fixed-length multiple-rate codes with the same pair of eecahd decoder are preferred.



Block Markov superposition transmission (BMST) is a counstion of big convolutional codes
from short codes (referred to aasic codes[14], [15], which has a good performance over the
binary-input additive white Gaussian noise channel (BIBMC). In [15], it has been pointed
out that any short code with fast encoding algorithm and-isofoft-out (SISO) decoding
algorithm can be chosen as the basic code. A sliding-windesoding (SWD) algorithm with
a tunable decoding delay, as similar to the pipeline mespagsing decoding algorithm of the
LDPC convolutional codes [16], [17], can be implemented ¢catle the BMST system. Most
importantly, the performance of the SWD algorithm in the lexor rate region can be predicted
by a simple genie-aided lower bound.

In this paper, the BMST is used to construct a new class ofiphedtate codes with fixed code
length. First, we propose to construct short multiple-rate codesdijysting the set of frozen
bits in Hadamard transform (HT), resulting lr-coset codesThis family of codes, which have
length V = 2P for somep > 0 and dimensionk ranging from1 to V — 1, can be implemented
by the use of a pair of encoder and decoder with complexity rdeoO(N log N). Such a
pair of encoder and decoder were first demonstrated usingailaraph for Reed-Muller (RM)
codes by Forney ir [18]. The HT-coset codes considered sngaper are also closely related to
the polar codes [19], however, channel polarization plajesa important role here because the
considered codes will be very short (typically < 16). Then, to improve the performance of the
short HT-coset codes, we propose to transmit short HT-coz@¢s in the BMST manner [14],
[15]. The resulting system, referred to as a BMST-HT systentbnvenience, takes as the basic
code a Cartesian product of short HT-coset codes and hescentcading/decoding complexity
linearly growing with the transmission block lengtm addition, the unified structure of the
HT-coset codes can significantly simplify the hardware enpéntationSimulation results show
that the BMST-HT systems perform well (within one dB awaynirthe corresponding Shannon
limits) in a wide range of code rates.

The rest of this paper is organized as follows. In Secfibnwvig, present the encoding and
decoding algorithm for the multiple-rate HT-coset codesSectior{ 1ll, we construct BMST-HT
systems with a general design procedure and present theliegcand decoding algorithm for
the multiple-rate BMST-HT systems. Section| IV concludds thaper.



II. SHORT MULTIPLE-RATE CODES

A. Fast Hadamard Transform (FHT)

We consider the Hadamard transform (HT) defined over therpiineld. Let N = 2P for some
positive integep. Any non-negative integegr < N has a binary expansion= (j,_1j, 2 - - “J1Jo)s
in the sense that= > ., ,j:2° andj, € {0,1}. We call(j, ;') (j < j') ans-complementary
pair if and only if their binary expansions differ only in theth bit. For example(0,1) is a
0-complementary paif4, 6) is a 1-complementary pair and, 7) is a 2-complementary pair. A

Hadamard matrix of ordeN over the binary field®, = {0, 1} can be defined recursively as [18]

HN 2 HN 2
o (1)
0 Hyp
) 11 . . .
for p > 1 with Hy = . Notice thatH, is the transpose oF'; in [19]. Let uy, =
01
(u0,0,u01, -+ ,uon—1) € F5 be a binary vector. The Hadamard transformmagfis defined as

u, = uoH y, which can be computed recursively jnstages, see Figl 1 for reference.
Algorithm 1: The Fast Hadamard Transform

« Atstages=0,1,---,p—1, computeu,,, £ u,T,, whereT, is a linear transform, whose
basic operation is the transform defined By as

Us+1j = Usy,

Usy1jr = Uy + Usjr

for eachs-complementary paifj, j'), see Fig[lL(b) for reference.
We useU, andU , to denote aandomvector and its Hadamard transform, respectively. That
is, U, =UyHy, or equivalentl@, U, = U,Hy. In this paper, a message associated with a
discrete random variable is represented by its probabiii&gs function. Suppose that, for each

J, 0 <j <N —1, thea priori messages of/; ; and U, ; are available, which are denoted as

1This can be verified by checking th#f3, = Iy, the identity matrix of ordetV.
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Fig. 1. Fast Hadamard transform. (a) A general framework Wit = 27. (b) The basic building block of the Hadamard
transform at thes-stage, wherdj, ;') is an s-complementary pair, meaning that their binary expansitiffer only in the s-th
bit.

Py, (w),ueFyand Py (u),u € F», respectively. We further assume that@ll; (resp.U, )

are independent. Then we have

Py, (wo) £ Pr{Ug=u} =[] Pg,, (uo) (2)
0<j<N-1
and
PUP (u,) £ Pr{U, =u,} = H 15 (up,) (3)
0<j<N-1

For any given component (sdy ;) of interest inU andV/, the extrinsic messagéenoted
by, say, P, | (u),u € Fy) is defined as a probability mass function that is proporfitoghe

likelihood function, i.e.,

Pi,@oc Y Py, wwHy) [ P, 0, u€F, (@)
Wo:uo j=u O<k<N—1Lk7j
and
P[?PJ <u> x Z PUO (’UszN) H P[(}pk (uil’k)v u € Fy. (5)
Up:up=u O<k< N—1, k)

Note that the extrinsic message associated with a randaable&is irrelevant to the associatad

priori messagelhe complexity to compute adixactextrinsic messages using the above equations



is of order O(N2"), which, however, can be reduced if approximate extrinsissages are
tolerable.This can be attained by performing an iterative messagenudpsocessing algorithm
over the normal graph as shown in Hig. 1(a). The normal grasip Buper nodes, corresponding
to p stages, respectively, where the ndgimposes a constraint thaf,,, = U,T,. Recalling
that the basic building block to implement the transformafl’, is the transform defined b# ,,
we have the following algorithm, which falls into the geddramework given by Forney [18].
Algorithm 2: The Forward-backward SISO Algorithm
« Initialization: Assume thatry; (u),u € Fy and P (u),u € F2(0 < j < N —1) are
available. All intermediate variables are initialized tave a uniform distribution over,.
. Iteration: Perform iteratively the following stepg times for a preset integef > 0.
Backward recursionfor s = p —1,p — 2,---,0, for eachs-complementary pai(j, j'),

compute

P(j's’j (u) X Z Pas’j/ (u,) Pgs+1’j (u) Pgs+1,j/ (u+u,)7

u’ €Fg

Pg‘sjj/ (u,) X Z Pgsyj (u) P[(les+17j (u) P[(}s+l,j’ (u+u,)

u€lg
and update”’; (u) = Pg  (u) andPg  (u') = P5  (u') for u,u’ € Fs.
s, S, s,J S,]
Forward recursion:Fors =0, 1,--- ,p— 1, for eachs-complementary paif;, '), compute

Po, W) o Y Po o W)PE @) P, ),

u’ €Fg

P ) o Y PgL WP @ P, )

u€lFa

and update”’; | (u) =Py, (u) and Py

Us+1,j’

Remark. It can be seen that both Algorithid 1 and Algoritiin 2 have caxip} of order
O(Nlog N) since the fast Hadamard transform has- log N stages and each stage can be

(u,) - Pﬁsﬂ,j' (u/) for u,u' € .

decomposed intdV/2 independent building blocks as specified Hy, each of which is for one

complementary pair.

B. Multiple-rate Codes Based on Hadamard Transform

Given N, we can construct a family of codes with dimensiGnranging from1 to N — 1.

Each code in this family is encoded in the same manner uH y. The code rate{/N is
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Fig. 2. The encoding diagram for HT-coset codes.

attained by fixing soméV — K bits in u and leaving the other bits free to carry the information.
Following [19], this family of codes are calleH y-coset (or HT-coset) codes. The issue is how
to determine a goodctiveset for a givenk'. For this end, we define a permutation maiix; of
order N such that the rows of the matr&y = Iy H 5 has a desired order. We may defifdg,
following the polar coding approach [19], which requirestisy the Bhattacharyya parameters
or the mutual information rates for somaetificial channels and usually depends on the channel
condition, say, the SNR. Here we defilky according to a channel-independent rule, which
was referred to as RM-rule in_[19], such that the rows®f; = IIyH y are ordered with
non-decreasing Hamming weight. Givéhy, the encoding algorithm and decoding algorithm
for the HT-coset codes are essentially the same as Algoflitand Algorithm[2, respectively.
We only need to freeze som¥ — K bits when encoding and to initialize these frozen bits
with deterministic messages when decoding. These two basiptations are summarized in the
following algorithms for completeness, wheke is specified. See Fi@l 2 for reference.
Algorithm 3: The Encoding Algorithm for HT-coset Codes
« Input: Take as input the information sequenge= (ug, uy,- -, ux_1).
« Zero padding and permutation: The information sequenae is expanded by paddiny —
K zeros and then permuted b¥y. The resulting vector is denoted ky= (ug, uq, ux_1,
Ot

N-K
« Output: Deliver as output the codewotd= uH », which can be computed by AlgoritHm 1.
Algorithm 4: The SISO Decoding Algorithm for HT-coset Codes

- Input: Take as inputy (v),v € Fs for 0 < j < N —1 and P (u),u € F, for 0 < j <

K — 1, where the former are usually computable from the channsémiations and the



latter are available from the source distribution, which asually assumed to be uniform
distribution.

« A priori message freezing: SetF; (0) =1 and I (1) =0 for K <j < N —1.

« Output: Deliver as outpuf’; (u),u € F5(0 < j < K—1) for hard decisions anfty (v), v €
Fy(0 < j < N —1) for possible use in concatenated systems. These extriressages can
be computed by Algorithrnl ith the exception that the permutatidhy need to be taken

into account.

C. A Construction Example

We take N = 8 as an example to illustrate the construction procedure.Hdwamard matrix

of order8 is given by

(111111 11)
01010101
00110011
| 00010001 ] ©
000011171
00000101
00000011
(00000001

whose rows have Hamming weights, 4,4, 2,4, 2,2, 1), respectively. Hence a permutation ma-
trix ITy is required to swap thard row and theith row (counting from zero)The encoding
process is depicted in Figl 3, where the dimensidrcan be varied from to 7.

Assume that the codeword is transmitted over an additiveenmB@iaussian noise (AWGN)
channel with binary phase-shift keying (BPSK) signallifidtne performances of the HT-coset
codes at the BER arountd)— can be evaluated by simulation, while the performancesat th
extremely low BER (sayl0~!Y) can be predicted using the union bound with the help of the
input-output weight enumerating function (IOWEE) [20]1]2Since the number of codewords of
the considered HT-coset codes with= 8 is small, we compute the IOWEFs by an exhaustive
search. Tabl@ | presents the IOWEFs of all HT-coset codds Wit= 8. We have simulated all
these HT-coset codes under the SISO decoding algorithnoiftigns[2 and4) with an iteration
number.J = 3. We find that all simulation curves (not shown here) except tfarate 4/8



TABLE |
THE IOWEFS FORHT-COSETCODES WITHN = 8

Codes| IOWEFs

8,1] [ 1+xV8

8,2] | 1+XV*4 XVs 4 x4

8,3] [ 1+2XY*+ XV843X2v4 4 X3y
8,4] || 143XV + XY® +6X2Y1 + 4X3Y4 +

Xy

8,5] | 1+ XY? 4+ 3XY* + XY® + 2X2Y2 +
TX2YY + XY 4+ 7X3YY + 3X3YS +
X1Y? +4XY1 4+ XOY!

8,6] [ 1 +2XY?2+3XY* + XY® +5X2Y2 +
8X2Y* + 2X2X°¢ + X3Y? + 12X3Y* +
7X3Y6 4+ 3X1Y? 4 11XVt + XY ¢
4X°Y* 4+ 2X5Y 0 4 X0y

8,7] || 1+ 3XY? + 3XY* + XV?® 4+ 9X?Y? +
9X?2Y* + 3X2Y6 + 3X3Y? + 20X3Y* +
12X3Y6 +9X1Y? 4 23X4Y* + 3X1Y6 +
12X5Y4 + 9X5Y6 4+ 3X6Y2 4 3X6Y* +
X6Y6+X7Y2

match well with the corresponding union bounds at the BERelotian10—3. Fig.[4 shows the
performance curves of the code with rattés (the [8, 4] Reed-Muller code). We can see that
the performance curve of the rat¢8 code under the maximum posteriorprobability (MAP)
decoding matches well with the union bound at the BER lowantt)~3. However, compared
with the union bound, the SISO decoding algorithm (Algarigi2 and¥4) with/ = 3 causes a
performance loss of aboQt5 dB. This performance loss can be narrowed.tbdB by increasing

J, as already pointed out in [18].

[1l. BMST OF SHORT HT-COSETCODES
A. Choice of Encoding Memory

We have demonstrated that Hadamard transform can be usemhstruect a family of codes
with constant lengthV and flexible dimensiork. This family of codes can be implemented by
the same pair of encoder and decoder but with adjustablésnplowever, the performances are

far away from the Shannon limits, as evidenced by the coctstru example withV = 8. One
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Fig. 3. The encoding process for HT-coset codes with- 8.
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Fig. 4. The performance of the HT coset code with= 4 and N = 8 under the SISO decoding algorithm (Algorithfds 2 and
[4)) with an iteration numbey = 3. The union bound and the performance curve of the MAP degodie also plotted.

possible way to improve the performance is to enlarge therastithe Hadamard transform. As
N becomes sufficiently large, for any given dimensighwe have chance to select active set to
approach the channel capacity. The difficulty lies in theiohof the active set wheN becomes
large. Here we propose to combine the BMST with the HT-cosdes. As pointed out in [15],
any short code can be embedded into the BMST system to obtain @ding gain in the low
BER region. The critical parameter for BMST is the encodingmmory m, which predicts the
extra coding gain ofl0log,,(m + 1) dB over AWGN channelsGiven this predictable extra
coding gain, we can use the following deterministic procedo find the encoding memory ;-
required by the BMST-HT systerfiV.= 27, p > 1) to approach the Shannon limit at a target
BER prarget-

A General Procedure of Determining the Encoding Memories for the BMST-HT Systems
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TABLE I
THE MEMORY REQUIRED FOREACH CODE RATE USING THEBMST OF HT-COSETCODES WITHN = 8 TO APPROACH
THE SHANNON LIMIT AT THE BEROF107°

Rate R = | 1/8 | 2/8 | 3/8 | 4/8 | 5/8 | 6/8 | 7/8
K/8
Vi (dB) -1.2|-0.8/-0.3{0.2/08|1.6|29
vk (dB) 96 | 98|84 |7.7,89|86|8.2
Gap vx — || 10.8|10.6| 8.7 | 7.5 8.1| 7.0| 5.3

Vi (dB)
Memory 11 10 6 5 5 4 2
my
0
u? ) %)

Fig. 5. The encoding diagram of the BMST-HT system with a mmxn memorym.

e For K =1,2,---,N — 1, determine the encoding memony, with the following steps.
1) From the union bound of the HT-coset code with informatin/’, find the required
E,/No = vk to achieve the target BER gt -
2) Find the Shannon limit for the code rat&/N, denoted byy;,.
3) Determine the encoding memory by log,,(m + 1) > vx — 7. That is,

Mk = {10”(10”( - 1} : )

where |z] stands for the integer that is closestito

Table[Il shows the memory required for each code rate usia@BtST of HT-coset codes

with N = 8 to approach the Shannon limit at a target BERy@f.. = 107°.

B. Encoding of BMST-HT System

A BMST-HT system is constructed by taking the encoder forHfiecoset codes as the basic
encoder, which accepts as input a binary information sexpien lengthBK and delivers as
output a binary coded sequence of len@iV. More precisely, the basic cod€[n, k] is a B-

fold Cartesian product o¥’|N, K|, wheren = BN andk = BK. To approach the capacity,
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**************

%adecodin layer
2 g lay

Fig. 6. The normal graph of the BMST-HT system with= 4 andm = 2.

we usually choose3 such thatBN > 10000. Since K can be varied froml to N — 1, the
basic encoder actually works as a multiple-rate encodegubBmantee that all members from the
family of the considered HT-coset codes have capacityagmbring performance, the encoder
must be furnished withn (= 1<?<a§_1m;<) interleavers. The basic structure of the encoder is
shown in Fig[h, which consists of one basic encoder, reptedeby ENC, andn interleavers,
represented b¥l,, - - - ,IT,,, respectively. The switches between the buffers D are useadjust
the encoding memory. In our simulations, all interleaveesrandomly generated but fixed. The
encoding algorithm is described as follows, whéfes specified. See Fi¢l 5 for reference.

Algorithm 5: The Encoding Algorithm for BMST-HT System

« Input: Take as inputl, blocks of datau®, u®, ... u*=Y whereu® ¢ FFK,

« Memory choosing: Turn on themy left-most switches and turn off the other — my
switches see Fid.] 5 for reference.

« Output: Deliver as outputl + my coded sub-blockg®, ¢ ... cl+mx=1 for trans-
mission, wherec® ¢ FJZV. This can be done by the encoding algorithm of BMST with
memorym [22].

Remark. The code rate decreasesﬁ?ffm due to the termination. However, the rate loss

is negligible for largeL.

C. Decoding of BMST-HT System

Assume thatc® is transmitted with BPSK signalling over AWGN channels,utéag in
a received vectoyy®. The decoding algorithm can be implemented as an iteratigesage

processing/passing algorithm over a unified (high-levetymal graph, see Figl 6 for an example
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of a BMST system withl. = 4 andm = 2. The normal graph can be divided into+ m layers,
each of which typically consists of one node of t@ for the basic code, one node of tyjFE

that connects ton future layers via interleavers, and one node of tigpethat connects ton
past layers. The basic structure is applicable to all mesftvem the family of HT-coset codes.
Once K (hence the memoryny) is specified, we only need to disconnect the edges (if they
exist) between theé-th layer and thet + ¢)-th layer fort > 0 and? > m. With this adaptation,
the sliding-window decoding algorithm is the same as Aldponi 3 in [15] withm replaced by
mi.

Remark. We need to point out that both the encoding and the decodivg liveear complexity
in the code lengtm. Actually, since the basic code is /a-fold Cartesian product of a short
HT-coset code, the computational complexity at the nis linear in B (equivalently, the
basic code length). In addition, the computational complexity at the n@ as well as the

node[=] is also linear with the basic code length

D. A Construction Example (Continued)

We continue the construction example given in Seclion] IM& take theB-fold Cartesian
product¢’[8, K]?(1 < K < 7) as the basic code, wher®@ = 1250. The memory required
for each K to approach the corresponding Shannon limit at the BER0of is specified in
Table[1l. Hence we need an encoder with a maximum memory 11. The SISO decoding
algorithm (Algorithms 2 and 4) with an iteration numbér= 3 is used to implement the SISO
decoding algorithm for the basic code. The iterative sieivindow decoding algorithm for the
BMST-HT system is performed with a maximum iteration numbérl8, where the entropy-
based early stopping criterion [15], [23] is used with a sii@d of 10~°. Simulation results
with L = 1000 for encoding are shown in Figl 7, where the decoding delaypéxified as
di = 2my for code rateK’/N. Also shown in Fig[7 are the genie-aided lower bounds, which
are obtained by shifting the corresponding performanceesunf the basic codes to left by
10log;o(1 + mg) dB. We can see that the performances of the BMST-HT system magth w
with the respective genie-aided lower bounds in the low BE&an for all considered code
rates.To evaluate the bandwidth efficiency of the BMST-HT systera,plot the required SNR
to achieve the BER of 0~ against the code rate in Figl 8. We can see that the BMST-HT

system achieves the BER o6—° within one dB from the Shannon limit for all considered code
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Fig. 7. Performance of the BMST-HT system using the Camegiaducts of the HT-coset codés K]'%°°(1 < K < 7) with
L = 1000. The sliding-window decoding algorithm is performed witlmaximum iteration numbef,.x = 18 and a decoding
delay dx = 2my for the code of rate(/8.

rates. However, the performance gap of fRel] code is slightly larger. This is due to the sub-
optimality of Algorithm[2, as mentioned previously.an optimal (locally) SISO algorithm (the
MAP decoding) is used for th@, 4] code, the performance can be improved, as marked inFig. 8

by the crossx.

E. Further Discussions

We have also constructed a BMST-HT system using/h®ld Cartesian product’[16, K|?
(1 < K < 15) as the basic code, whe® = 625. The required encoding memories can be
determined following the procedure described in Sedtid#)Iwhich are shown in Tablée ]l
The required SNR to achieve the BER1#f° is plotted against the code rate in Fig. 9. We can
see that the BMST-HT system also has a BER@f° within one dB away from the Shannon
limits for all considered code rates. Using HT-coset codéb Varger N, we can implement
codes with finer code rates. However, this simple approanhoady construct codes with rates
of form K/2P. In practice, other code rates (say3 and 4/5 in the standard of Long Term
Evolution (LTE)) are required_[24]. In this case, we can ¢ong the basic code by combining
several HT-coset codes with different rates. Taking rgte as an example, we can use the
Cartesian product of the HT-coset codfk 1] x [4,1] x [4,2])” as the basic code.
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Fig. 8. The required SNR for the BMST-HT system using the &aan products of HT-coset codgs K]'*°(1 < K < 7)
to achieve the BER of0~°® with BPSK signalling over AWGN channels.
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Fig. 9. The required SNR for the BMST-HT system using the &sain products of HT-coset codfi$, K1°%° (1 < K < 15)
to achieve the BER of0~® with BPSK signalling over AWGN channels.

IV. CONCLUSIONS

In this paper, we have proposed a new class of multiple-ate<by embedding the Hadamard
transform (HT) coset codes into the block Markov superpmsitransmission (BMST) system,
resulting in the BMST-HT system. The implementation comipeof the system is linear in the
code length, while the performance in the low error rateaegian be predicted. The simulation
results show that the BMST-HT system can approach the Shalmd within one dB at the

BER of 10~° for a wide range of code rates.
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TABLE 1lI

THE MEMORY REQUIRED FOREACH CODE RATE USING THEBMST OF HT-COSETCODES WITHN = 16 TO APPROACH

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

THE SHANNON LIMIT AT THE BEROF107°

R = K/16 [ i (dB) | i (dB) [ =7 (dB) [ e

1/16 -1.4 9.6 11.0 12
2/16 -1.2 9.8 11.0 12
3/16 -1.0 8.4 9.4 8
4/16 -0.8 7.7 8.5 6
5/16 -0.6 7.4 8.0 5
6/16 -0.3 8.1 8.4 6
7/16 -0.1 7.9 8.0 5
8/16 0.2 7.6 7.4 4
9/16 0.5 7.4 6.9 4
10/16 0.8 7.2 6.4 3
11/16 1.2 7.5 6.3 3
12/16 1.6 8.2 6.6 4
13/16 2.2 8.4 6.2 3
14/16 2.8 8.4 5.6 3
15/16 3.9 8.3 4.4 2
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