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    Abstract—Nonlinear sparse sensing (NSS) techniques have 
been adopted for realizing compressive sensing in many 
applications such as Radar imaging.  Unlike the NSS, in this 
paper, we propose an adaptive sparse sensing (ASS) approach 
using reweighted zero-attracting normalized least mean fourth 
(RZA-NLMF) algorithm which depends on several given 
parameters, i.e., reweighted factor, regularization parameter and 
initial step-size. First, based on the independent assumption, 
Cramer Rao lower bound (CRLB) is derived as for the 
performance comparisons. In addition, reweighted factor 
selection method is proposed for achieving robust estimation 
performance. Finally, to verify the algorithm, Monte Carlo based 
computer simulations are given to show that the ASS achieves 
much better mean square error (MSE) performance than the 
NSS.  

I. INTRODUCTION 

      Compressive sensing [1], [2] has been attracting high 
attentions in compressive Radar/sonar sensing [3], [4] due to 
many applications such as civilian, military, and biomedical. 
The main task of CS problems can be divided into three 
aspects as follows: 1) sparse signal learning:  The basic model 
suggests that natural signals can be compactly expressed, or 
efficiently approximated, as a linear combination of 
prespecified atom signals, where the linear coefficients are 
sparse as shown in Fig. 1 (i.e., most of them zero); 2) random 
measurement matrix design. It is important to make a sensing 
matrix which allows recovery of as many entries of unknown 
signal as possible by using as few measurements as possible. 
Hence, sensing matrix should satisfy the conditions of 
incoherence and restricted isometry property (RIP) [5]. 
Fortunately, some special matrices (e.g., Gaussian matrix and 
Fourier matrix) have been reported that they are satisfying RIP 
in high probably; 3) sparse reconstruction algorithms. Based 
on previous two steps, many sparse reconstruction algorithms 
have been proposed to find the suboptimal sparse solution.  
     It is well known that the CS provides a robust framework 
that can reduce the number of measurements required to 
estimate a sparse signal. Many NSS algorithms and their 
variants have been proposed to deal with CS problems. They 
mainly fall into two basic categories: convex relaxation (basis 
pursuit de-noise, BPDN [6]) and greedy pursuit (orthogonal 
matching pursuit, OMP [7]). Above NSS based CS methods 

are either high complexity or low performance, especially in 
the case of low signal-to-noise (SNR) regime. Indeed, it was 
very hard to adaptive tradeoff between high complexity and 
good performance. 

 

 
Fig. 1 A typical example of sparse structure signal. 

     In this paper, we propose an adaptive sparse sensing (ASS) 
method using reweighted zero-attracting normalized mean 
fourth error algorithm (RZA-NLMF) [8] to solve the CS 
problems. Different from NSS methods, each observation and 
corresponding sensing signal vector will be implemented by 
the RZA-NLMF algorithm to reconstruct the sparse signal 
during the process of adaptive filtering. According to the 
concrete requirements, complexity of the proposed ASS 
method could be adaptive reduced but without sacrificing 
much recovery performance. The effectiveness of our 
proposed method is confirmed via computer simulation when 
comparing with NSS. 
   The remainder of the paper is organized as follows. Basic 
CS problem is introduced and typical NSS method is 
presented in Section II. In section III, ASS using RZA-NLMF 
algorithm is proposed for solving CS problems and its 
derivation process is highlighted. Computer simulations are 
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coefficients will be replaced by zeros in high probability [11]. 
Here, it is worth noting that ( )ass nμ  is a variable step-size  
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which depends on three factors: initial step-size issμ , input 
signal mx  and update iterative error ( )me n . Since issμ   is 
given initial steps-size and mx  is random scaling input signal, 
hence, assμ  in Eq. (10) can also be rewritten as  
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n
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which is a variable step-size (VSS) which is adaptive change 
as square sensing error ( )me n

2 , smaller error incurs the smaller 
step-size to ensure the stability of the gradient descend while 
larger error  yields larger step-size to accelerate the 
convergence speed of this algorithm [12].  
 

 
Fig. 3 Sparse constraint strength comparison using different reweights. 

 
Input:X ,y , μiss , ε and λ  
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   Determine mx  and my  with mod( , )← +1m n M ; 
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← +1n n   
End 
Algorithm 1. Realization of ASS using RZA-NLMF. 

   According to the update equation in (9), our proposed ASS 
method can be concluded in Algorithm 1, where ζ >0  is a 
given error tolerance and maxn  is a given maximum iteration 
number. The CRLB of the proposed ASS can be obtained as  

{ }CRLB{ }=

.
μ σ ρ

μ σ σ σ μ σ μ σ

−

= −
− −

224 22 2 2 2 4 259 2 27 6
 
ass ass

iss n

iss n iss n iss n

E

NK

h h h

      

(12) 

About detailed derivation of the CRLB, interested authors are 
suggested to refer [13]. 

IV.  COMPUTER SIMULATIONS 

    In this section, the proposed ASS approach using RZA-
NLMF algorithm is evaluated. For achieving average 
performance, 1000 independent Monte-Carlo runs are adopted. 
For easy evaluating the effectiveness of the proposed approach, 
signal representation domain D  is assumed as an identity 
matrix N N×I  and unknown signal ࢙ is set as sparse directly. 
Sensing matrix is equivalent to random measurement matrix, 
i.e., =X W . For ensuring X  satisfies the RIP, W  is set as 
random Gaussian matrix [5]. Then, sparse coefficient vector 
h  equals to s . The detail simulation parameters are listed in 
Tab. 1. Notice that each nonzero coefficient of h  follows 
random Gaussian distribution as ( , )σ 20  and their 
positions are randomly allocated within the signal length of h  
which is subject to {|| || }E =h 22 1 , where ܧ{∙}  denotes the 
expectation operator. The output signal-to-noise ratio (SNR) is 
defined as 20log	(ܧ௦ ⁄௡ଶߪ ) , where ܧ௦ = 1  is the unit 
transmission power. All of the step sizes and regularization 
parameters are listed in Tab. I. The estimation performance is 
evaluated by average mean square error (MSE) which is 
defined by 

 { } { }Average MSE ( ) : ( ) ,= −
22 n E nh h h          (13) 

where h  and ( )nh  are the actual channel vector and its ݊-th 
iterative adaptive channel estimator, respectively. According 
to our previous work [8], regularization parameter for RZA-
NLMF is set as λ −= × 85 10 so that it can exploit signal sparsity 
robustly. Since the RZA-NLMF-based ASS method depends 
highly on the reweighted factor ε , hence, we first select the 
reasonable factor ε  by virtual of Monte Carlo. Later, we 
compare the proposed method with two typical NSS ones, i.e., 
BPDN [6] and OMP [7]. 

TABLE 1. SIMULATION PARAMETERS. 

Parameters Values 
Signal length ܰ = 40 

Measurement length ܯ = 20 

Sensing matrix Random Gaussian distribution 

No. of nonzero coefficients ܭ ∈ {2,6,10} 
Distribution of nonzero 

coefficients 

Random Gaussian 

Signal-to-noise ratio (SNR) (0dB, 12dB) 

Initial step-size: ߤ௜௦௦ 1.5 

Regularization parameter: 5 ߣ × 10ି଼ 

Re-weighted factor: 2000 ߝ 
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A. Reweighted factor selection 
    Since the RZA-NLMF algorithm depends highly on 
reweighted factor. Hence, selection of the robust reweighted 
factor for different noise environments and different signal 
sparsity is typical important step for the RZA-NLMF 
algorithm.   

 
Fig. 4 RZA-NLMF performance verses reweighted factors (2=ܭ and 

SNR=5dB). 
 

 
Fig. 5 RZA-NLMF performance verses reweighted factors (2=ܭ and 

SNR=10dB). 

It is well known that ℓ଴ -norm normalized least mean 
fourth (L0-NLMF) for CS can achieve optimal solution but it 
is a NP hard problem in practical applications such as noise 
environment [2]. One can find that RZA-NLMF reduces to 
L0-NLMF when the reweighted factor approaches to infinity. 
Due to the noise interference, we should select the suitable 
reweighted factor which can not only exploit signal sparsity 
but also can mitigate noise interference effectively. Hence, 

reweighted factor of the RZA-NLMF is selected empirically. 
By means of Monte Carlo method, performance curves of the 
proposed ASS method with different reweighted factors ε ∈ {2,20,200,2000,20000} with respect to different number 
of nonzero coefficients ܭ ∈ {2,6,10}  and different SNR 
regimes (5dB and 10dB) are depicted in Figs. 4~7.  

 

 
Fig. 6 RZA-NLMF performance verses reweighted factors (6=ܭ and 

SNR=10dB). 

 
Fig. 7 RZA-NLMF performance verses reweighted factors (12=ܭ and 

SNR=10dB). 

 

   Under the simulation setup considered, RZA-NLMF using  ߝ = 2000 can achieve robust performance in different cases as 
shown in Figs. 4~7.  From the four figures, one can find that 
sparser signal requires larger reweighted factor but no more 
than 20000 in this system. This is concise with the fact that 
stronger sparse penalty not only exploits more sparse 
information but also mitigates more noise interference.   
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B. Performance comparisons with NSS 

     Two experiments of ASS are verified in performance 
comparisons with conventional NSS methods (e.g., BPDN [6]  
and OMP [7]). In the first experiment, ASS method is 
evaluated in the case of SNR dB= 10  as shown in Fig. 8. On 
the one hand, according to this figure, we can find that the 
proposed ASS method using RZA-NLMF algorithm achieves 
much lower MSE performance than NSS methods and even if 
its CRLB.  

 
Fig. 8 Performance comparisons verses signal sparisty. 

 

 
Fig. 9 Performance comparisons verses SNR. 

 
    The existing big performance gap between ASS and NSS is 
that ASS using RZA-NLMF not only exploits the signal 
sparsity but also mitigates the noise interference using high-
order error statistics for adaptive error updating.  On the other 
hand, we can also find that ASS depends on the signal 
sparseness. That is to say, for sparser signal, ASS can exploit 

more signal structure information as for prior information and 
vice versa.  In the second experiment, number of nonzero 
coefficients is fixed as K =2  as shown in Fig. 9. It is easy to 
find that our proposed ASS is much better than conventional 
NSS as the SNR increasing. 

V. CONCLUSIONS AND FUTURE WORK 

    In this paper, we proposed an ASS method using RZA-
NLMF algorithm for dealing with the CS problems. First, we 
decided the reweighted factor and regularization parameter for 
the proposed algorithm by virtual of Monte Carlo method. 
Later, based on update equation of the RZA-NLMF, CRLB of 
ASS was also derived based on the random independent 
assumptions. Finally, several representative simulations have 
been given to show that proposed method achieves much 
better MSE performance than NSS with respect to different 
signal sparsity, especially in the case of low SNR regime.  
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