
Protecting RESTful IoT Devices from Battery
Exhaustion DoS Attacks

Stefan Hristozov∗, Manuel Huber∗, Georg Sigl†
∗Fraunhofer AISEC – {stefan.hristozov, manuel.huber}@aisec.fraunhofer.de

†Technical University of Munich – sigl@tum.de

Abstract—Many IoT use cases involve constrained battery-
powered devices offering services in a RESTful manner to
their communication partners. Such services may involve, e.g.,
costly computations or actuator/sensor usage, which may have
significant influence on the power consumption of the service
Providers. Remote attackers may excessively use those services
in order to exhaust the Providers’ batteries, which is a form
of a Denial of Service (DoS) attack. Previous work proposed
solutions based on lightweight symmetric authentication. These
solutions scale poorly due to requiring pre-shared keys and do
not provide protection against compromised service Requesters.
In contrast, we consider more powerful attackers even capable
of compromising legit Requesters. We propose a method that
combines attacker detection and throttling, conducted by a third
trusted Backend, with a lightweight authentication protocol. For
attacker detection and throttling, we propose a novel approach
using rate limitation algorithms. In addition, we propose and
formally verify two authentication protocols suitable for different,
widely used IoT network topologies. Our protocols ensure service
availability for benign Requesters even if Providers are under
a battery exhaustion attack. The protocols do neither require
pre-shared keys between Requesters and Providers, nor the usage
of asymmetric cryptography and public key infrastructures on
the Provider. This makes our protocols suitable for a variety of
IoT deployments involving constrained devices and constrained
networks. We demonstrate the feasibility of our method through
a simulation and a proof of concept implementation.

I. INTRODUCTION

The charge of battery-powered IoT devices presents an
attractive target for DoS attacks. For such devices, battery
exhaustion DoS attacks are especially damaging because their
effect does not recede after the attack. In case of battery
depletion, the device can only be reinstated if the battery
is changed or recharged. In IoT deployments with a large
number of possibly spatially dispersed battery-powered devices,
this may cause tremendous effort, financial costs, and long
downtimes of business or safety critical applications.

The threat model in this paper considers a malicious
Requester excessively making use of a Provider’s power-
intensive application-layer services which may involve, e.g.,
costly computations, actuator/sensor usage or transmission
of a larger amount of data. This especially applies to IoT
deployments following the REST architectural style, e.g., those
involving the Constrained Application Protocol (CoAP) [41].
Application scenarios where power-intensive services may be
leveraged for DoS and where our solution is applicable (but not
limited to) are, e.g., indoor Real Time Locating Systems (RTLS)
[32], livestock monitoring [9], industrial IoT deployments [5]
or Car2X applications [2] where vehicles communicate with
constrained sensors embedded in the infrastructure. We discuss
such use cases in more detail in Section II.

Previous work in the area of battery exhaustion attacks
leveraging application layer services considers mainly two
approaches: 1) cryptographic puzzles forcing the Requester
to perform costly computations to balance the effort of both
Requester and Provider [29, 45] and 2) efficient symmetric
authentication of the Requester using pre-shared keys [18, 33].
The main drawback of the former is the adjustment of the
puzzle difficulty and verifying that a puzzle solution was
calculated by the party for which the puzzle was issued. The
main drawback of the latter approach is that it does not protect
against compromised Requesters. Authentication ensures that
the Requester possesses an authentication key, but the key may
be leaked or the Requester may be infected with malware using
the key. Further, it is not always possible to establish pre-shared
keys, especially when it is not known a priori which devices
will communicate with each other. In such cases, asymmetric
authentication algorithms and certificates are commonly used
in traditional, unconstrained computer networks. Unfortunately
the transfer of certificates in IoT networks with constrained
data rates and the verification of asymmetric signatures remains
challenging.

In contrast, our approach is to leverage a trusted third party,
henceforth called Backend, which has two main responsibilities.
First, to execute an attack detection algorithm on per Requester
basis and if a given Requester attempts a battery exhaustion
attack to drop its requests and, second, to offload the computa-
tion and communication effort an asymmetric authentication
protocol may have from the Provider. This way we ensure
the availability of the services for benign Requesters even in
the presence of malicious Requesters and even if the attacker
is capable of spoofing MAC and IP addresses. We make the
following contributions:

Contribution 1. We are the first to propose the usage of
rate limitation algorithms for detecting and throttling
battery exhausting attacks. More precisely, we demonstrate
the parametrization of two such alternative algorithms,
Leaky Bucket and Exponentially Weighted Moving Av-
erage (EWMA) [39]. We argue that these algorithms are
especially effective as they not only consider common
flooding DoS attacks characterized by extreme request
rates, but also consider a distinguishing property of battery
exhaustion attacks: being feasible by requesting services
at inconspicuous rates during less active operational times.

Contribution 2. We introduce and formally verify two authen-
tication protocols suitable for different IoT topologies:

1) Backend as a Proxy: Only the Backend directly commu-
nicates with the Provider, but not the Requesters. The
Provider only returns service responses to Requesters.

2) Backend as Ticket Issuer: The Backend issues Re-
questers single-use cryptographic tickets which they

ar
X

iv
:1

91
1.

08
13

4v
1

 [
cs

.C
R

]
 1

9
N

ov
 2

01
9

can use for direct communication with the Provider.
Both protocols ensure service availability for benign
Requesters even if Providers are under a battery exhaustion
attack. The protocols achieve that the Provider is involved
only in lightweight operations whereas the attack detection
algorithm is executed on per Requester basis on the
Backend. For the formal verification we use the state
of the art cryptographic protocol verifier ProVerif [6].

Contribution 3. We evaluate the Leaky Bucket and EWMA
algorithms for detecting and throttling battery exhaustion
attacks through simulation. We also provide a practical
implementation of the proposed protocols considering state
of the art battery-powered constrained Providers using IPv6
over Bluetooth Low Energy (BLE) communication [38].
Moreover, our evaluation is centered around a real world
RTLS use case in hospitals, see Section II. As platform
for the constrained Provider, we leveraged the widely used
nRF51422 BLE SoC from Nordic Semiconductor.

II. USE CASES AND DESIGN GOALS

We present four representative IoT use cases where power
intensive services may be leveraged for battery exhaustion
attacks. Then, we discuss the use cases’ characteristics based
on which we derive design goals for our detection algorithm
and authentication protocols.

a) RTLS in Hospitals: The usage of RTLS in hospitals
for locating assets such as equipment, supplies and specimens
is broadly adopted [8, 10, 32]. In such systems, the assets are
equipped with low-cost tags powered by coin cell batteries
and communicate with gateways with known location. The
approximate position of a tag can be retrieved by staff members
using interface devices, e.g., tablets or smartphones. In order
to ease the proximity search for which the accuracy of the
RTLS system is not sufficient a pick-by-light [27] approach is
often adopted. For that approach the tags are equipped with an
LED which is turned on when the tag’s position is requested.
In such settings, a battery exhaustion attack can be conducted
by a malicious individual who may capture an interface device
and then excessively request position information for some or
even all supplies. A closely related scenario is the usage of
smart tools in industrial IoT settings [12].

b) Smart Farming: One smart farming application is to
equip livestock with implantable or wearable battery-powered
devices capable of monitoring vital parameters and position [9].
In this use case, a power intensive service may be retrieving
the position of a given animal which requires the activation
of a GPS module. An attack can be conducted similar to the
previous scenario where adversaries can use interface devices
used for retrieving information from livestock.

c) Car2X: Car2X applications may require vehicles to
communicate with constrained sensors embedded in roads,
bridges or buildings, e.g., for acquiring information about
pedestrians around a corner [2]. In this example, the power
intensive service may be the sensor data acquisition and pro-
cessing. Attackers may capture the vehicle’s ECU responsible
for sending the requests and extract the authentication key.
Then, the attacker may use this key for excessively requesting
services from the transport infrastructure.

d) Remote Attestation: Another use case emerges from
the active research area of remote attestation for constrained
devices. Here, a microcontroller calculates a signed hash of its
binary to prove its software integrity upon request from a remote
party. Since such computations may be time and resource
consuming, excessive attestation requests may be used for
battery exhaustion attacks. This is a well-recognized problem
pointed out in several research papers [18, 28, 30].

e) Common Characteristics and Design Goals: Con-
sidering the representative examples we point out several key
characteristics based on which we derive design goals DG-I to
DG-VI.

• The Provider is a battery-powered constrained device
communicating over a constrained network.
DG-I: The Provider should be involved only in lightweight
operations and minimal data transfers.

• Providing a service non-interactively, e.g., at a time
scheduled by the Provider, is often a suboptimal solution
as the service may not be needed at the time it is provided
and therefore will be a waste of energy, see for instance
the smart farming or remote attestation examples.
DG-II: Services should be delivered only at request.

• In case of a battery exhaustion attack, it is not adequate
to simply deny services to all Requesters to protect the
battery’s lifetime. Unavailability of services on global scale
may have negative consequences in any use case. While
unavailability might disturb regular operational processes
such as in smart farming, it may also adversely affect the
health of humans in extreme cases as applicable in the
RTLS example.
DG-III: Attack detection needs to be applicable on
per Requester basis instead of on system-wide basis.
This ensures that those Requesters attempting a battery
exhaustion attack can be excluded while benign Requesters
may still access services. Using a global leaky bucket, for
example, would result in the denial of services for all
Requesters when detecting a battery exhaustion attempt.
Thus, all requests should be mappable to Requesters.
Further, a suitable method must be robust against attackers
capable of conducting spoofing attacks. .

• In complex deployments like in Car2X or smart tools
use cases, it is not practical to establish pre-shared
keys between Requesters and Providers for lightweight
authentication, i.e, for mapping requests to Requesters.
DG-IV: The mapping of requests to Requesters should
be possible without requiring pre-shared keys between
Requester and Provider.

• During the lifetime of the Provider, some Requesters may
use a given service more often than others, e.g., a car
which often passes by a given senor will request its data
a lot more often than cars passing by only rarely, see
the Car2X example. Therefore, reserving a fixed amount
of energy for each Requester is a suboptimal solution
requiring bigger batteries.
DG-V: The detection and throttling mechanism should not
introduce a maximum limit of service requests for each
Requester but rather constrain each Requesters’ maximum

request rate.

• In some deployments, e.g., those using remote attestation
or the Car2X case, the number of Requesters and/or
Providers may be extremely high.
DG-VI: The detection algorithm should be efficient in
terms of memory and computation. This design goal
ensures feasible hardware requirements for the Backend
and therefore makes our solution scalable for large
deployments.

III. ADVERSARIAL MODEL

We consider an attacker in the network capable of eavesdrop-
ping legit communication and sending arbitrary messages to
Backend, Requesters and Provider. This means that the attacker
is able to conduct spoofing attacks, i.e., the attacker may fake
any kind of public identifiers such as IP and MAC addresses.
We also assume the attacker to be able to perform hard- and
software attacks on (a limited amount of) legit Requesters to
extract or use their authentication keys before executing the
battery exhaustion attack.

We assume that the attacker is unable to conduct other DoS-
causing attacks than the battery exhaustion attack. First, this
means that we assume that the attacker can neither compromise
the Backend nor the Provider. Second, this means the attacker
cannot saturate the communication channel of the Provider or
any of the Backend’s resources. Further, the attacker cannot
drop or alter communication packets exchanged between legit
parties. This differentiates our attacker in the network from
the Dolev-Yao [24] model. Otherwise, the attacker may simply
drop the requests of legit Requesters or corrupt the packets
and cause DoS this way. We also assume that the attacker is
unable to break state-of-the art cryptographic primitives.

IV. DETECTING BATTERY EXHAUSTION ATTACKS

Compared to other flooding attacks targeting, e.g., the
victim’s communication bandwidth, memory or computational
capabilities, the battery exhaustion attack is fundamentally
different and therefore requires different detection techniques.
In a typical flooding attack the resources are exhausted when a
high number of requests occurs in a short period of time and
therefore the detection techniques are optimized to detect such
peak request rates. Causing battery exhaustion however, can
be more subtle. It is sufficient to lightly increase the request
rate during usually less active operational times.

Based on that insight we propose to detect battery ex-
haustion attacks by averaging the energy drained through
requests over a sufficiently long time window and by com-
paring the average with a predefined threshold depletion rate
λth = Etot/(T ×N). Here, Etot is the device’s total available
energy for service requests, T is the desired life span of the
battery and N is the estimated amount of active legit Requesters
in a given short period of time. For calculating the average
of the drained energy several techniques exist, for instance 1)
Leaky Bucket Algorithm, 2) EWMA, 3) the Moving Window
Mechanism or the 4) Jumping Window Mechanism [39].

Compared to the Leaky Bucket Algorithm and EWMA,
the Moving Window Mechanism requires to save the history
of past requests in a buffer of the size of the averaging

window. Therefore this technique requires significantly more
memory resources and may thus be disadvantageous for large
deployments, see Section II DG-VI. The Jumping Window
Mechanism may be implemented as a counter which indicates
the spent energy. The counter is compared to a fixed threshold
to detect an attack. The threshold takes a burst tolerance margin
into account which allows that regular request bursts do not
cause false positives. The counter is reset in a fixed time interval
referred to as jumping window. An attacker may exhaust the
margin once per window. In contrast, in the Leaky Bucket
Algorithm and EWMA an attacker may exhaust the burst
tolerance margin only once in a Provider’s life-time. Further,
the Leaky Bucket and EWMA algorithms require merely a
single small state variable per Requester, making them suitable
for large IoT deployments. For these reasons, we consider
the Leaky Bucket and EWMA algorithms most suitable in
terms of scalability and effectiveness. We discuss both in detail
in Section IV-A and Section IV-B and demonstrate how they
can be leveraged for detecting battery exhaustion attacks. See
[39] for a more detailed discussion of the tradeoffs of those
techniques. To execute the algorithms on a per Requester
basis, we authenticate each Requester before executing the
rate limitation algorithm, see Section V.

A. Leaky Bucket Algorithm

The Leaky Bucket algorithm [39] is expressed through the
equation:

elb[n] =

elb[n− 1] + Es −D if request and elb[n] > 0

elb[n− 1]−D if no request and elb[n] > 0

0 else.
(1)

elb is a counter incremented at each service request by the
amount of energy Es required to serve the request. elb is
decremented by a fixed predefined amount of energy D per
time unit n as long as elb is positive. The initial state of the
leaky bucket is elb[n = 0] = 0. If the rate with which the
requests arrive cannot be compensated by D then elb starts
to increase. An attack is detected if elb[n] > Klb, where Klb

determines the burst tolerance of the method. For using the
Leaky Bucket algorithm for detecting battery exhaustion attacks
the energy requirements {Es1, Es2, Es3 . . .} of all services
hosted on the Provider, D and Klb have to be defined. The
energy requirements of the hosted services can be measured
during the development of the Provider. The decrement D can
be set as D = λtht, where t is the duration of one time unit.
For calculating Klb, the most power intensive request burst to
be still considered non-excessive has to be defined and be fed
to Equation 1, e.g., ten requests of a given service with energy
consumption Es1 in ten subsequent time units. The resulting
elb value represents the required depth Klb of the leaky bucket.

B. EWMA

EWMA [39] is expressed through the equation:

eewma[n] =

(1− d)Es + deewma[n− 1] if request

deewma[n− 1] if no request

e0 if n = 0.
(2)

Again, Es is the energy consumption of the requested service.
The variable d = e−1/T is a decay parameter in the range

0 < d < 1. T is the desired life span of the battery and e0 is the
initial state. An attack is detected if eewma[n] > Kewma, where
Kewma is a burst tolerance parameter. In order to use EWMA
for detecting battery exhaustion attacks, the energy requirements
of the hosted services {Es1, Es2, Es3 . . .}, Kewma and s0 have
to be defined. Again, the energy requirements of the services can
be measured during the design time of the Providers. Kewma

can be calculated similar to Klb for the Leaky Bucket algorithm.
The initial state can be set as e0 = λtht, where t is one time
unit.

We evaluate the usage of both the Leaky Bucket algo-
rithm and EWMA for detecting malicious requesters through
simulation of a realistic IoT deployment in our evaluation in
Section VII.

V. AUTHENTICATION PROTOCOLS

In this section, we propose two authentication protocols suit-
able for different IoT communication models and describe their
formal verification using ProVerif [6]. Both protocols leverage
a trusted Backend as an intermediary between Requester and
Provider, as depicted in Figure 1. We place the Requester
authentication and attack detection algorithm logic in the
Backend to keep the complexity on Provider-side minimal. The
protocol Backend as a Proxy allows direct communication from
Backend to Provider, but not from Requester to Provider. The
protocol Backend as Ticket Issuer allows direct communication
between Requester and Provider when the Requester possesses
a valid cryptographic ticket issued by the Backend. In both
protocols, the Requester authenticates to the Backend using
asymmetric cryptography while the Backend authenticates to
the Provider using lightweight symmetric cryptography. The
required symmetric keys for Backend to Provider authentication
can be provisioned in a secure environment before the enroll-
ment, such as in the production facility at the time the firmware
is flashed onto the Provider. This way we achieve 1) that the
attack detection algorithm can be executed on per Requester
basis on the Backend, therefore allowing to drop malicious
requests while sustaining availability for benign Requesters and
2) that the Provider is involved only in lightweight operations
with low communication overhead.

In general, we assume that the Requester is a more powerful
device capable of communicating with the Backend through
unconstrained networks, e.g., the Internet. We assume that the
constrained battery-powered Provider communicates through
a constrained network. The two protocols we propose are
suitable for the following two IoT network topologies. First,
the Backend may directly communicate with the Provider via
an edge gateway over the Internet. Such topology can, e.g.,
be present in the RTLS use case from Section II. Second, the
Requester may directly communicate with the Provider through
a constrained networks, e.g., in the Car2X case. We design the
protocol Backend as a Proxy (see Section V-A) for the former
case and protocol Backend as Ticket Issuer (see Section V-B)
for the latter. Both authentication protocols require:

1) The Requester and Backend to have asymmetric key pairs
and certificates along with trust anchors for certificate
chain verification.

2) The Provider and Backend to share a symmetric key
provisioned, e.g., during the Providers’ production.

Backend ProviderRequester
Request Request

Response

(a) Backend as a Proxy

Backend ProviderRequester
Ticket Issuing

Ticketed Request & Response

(b) Backend as Ticket Issuer

Figure 1: Overview of the authentication protocols.

3) The Provider to use a lower layer protocol supporting
reliable message transport, e.g., CoAP or TCP, where
messages are acknowledged and retransmitted at loss.

We introduce the following notation for the protocols. The
reader may skip this part and refer to it while reading the
protocols.

Notation.
1) IDS , IDR, IDP are identifiers of the requested service,

the Requester and the Provider, respectively.
2) N is a nonce.
3) i is an anti-replay counter.
4) F is a flag indicating the receiver whether it has to

send its certificate in the subsequent message. If the
party sending the flag can cache certificates, the flag
can be set only at the very first protocol run.

5) CX
∗ is the certificate of party X. The asterisk denotes

that the certificate may not always be transmitted,
depending on F .

6) SX(m) is an asymmetric signature of the message m
generated with the private key of party X.

7) Kpub
X is the public key of party X.

8) KXY is a shared secret key between party X and Y.
9) MKXY

(m) is a Message authentication Code (MAC)
over m with key KXY shared between party X and Y.

10) r is a random number and h is the hash of r calculated
with a preimage resistant hash function.

11) T is a cryptographic ticket allowing a single request of
a service.

A. Backend as a Proxy

In the following, we describe a method where the Backend
serves as proxy between Requester and a Provider, see Figure 1a.
When the Backend receives a request, it executes one of the
detection algorithms from Section IV and if the current request
is considered benign it is forwarded to the given Provider, as
detailed in Protocol 1.

Protocol 1 Backend as a Proxy
(a) Requester → Backend: IDR, N1, F
(b) Requester ← Backend: N2, F , CB

∗, SB(N1, N2)
(c) Requester → Backend: IDS , IDP ,

SR(IDS , IDP , N2), CR
∗

(d) Backend → Provider: IDS , MKPB
(IDS , IDP , i)

A new protocol run is initiated by the Requester by
sending its identifier IDR, a nonce N1 and a certificate flag
F to the Backend in message (a). The certificate flag is set
if the Backend’s certificate is not in the Requester’s local
cache. In message (b) the Backend sends a new nonce N2, a
certificate flag F depending on whether it possesses a certificate
corresponding to the received IDR and optionally its certificate
CB , depending on the flag received in message (a). In addition,
the signature SB() over N1 and N2 is generated and sent. When
the Requester receives message (b), it verifies SB() and CB

in case it was requested with the flag F in message (a). The
signature SB() and the nonces N1 and N2 prevent attackers
from forging messages (b). In message (c), the Requester
generates and sends a signature over IDS , IDP and N2. The
Requester sends also IDS and IDP in plaintext. Depending on
the flag received in message (b), the certificate of the Requester
CR is also sent. The replay protection of message (c) is achieved
through the the signature and nonce N2. Receiving the message
(c), the Backend checks the signature and the nonce, executes
the detection algorithm and sends message (d) if the current
request is considered non-excessive. When the Provider receives
message (d), it checks the lightweight MAC and the replay
protection counter i before serving the request. We omitted the
subsequent procedure of serving the request from our protocols
as this step is highly specific to the use case.

B. Backend as Ticket Issuer

In this protocol, the Backend issues the Requester single-use
permission tickets allowing to directly request services from
the Provider, see Figure 1b.

Protocol 2 Backend as Ticket Issuer
(a) Requester → Backend: IDR, N1, F
(b) Requester ← Backend: N2, F , CB

∗, SB(N1, N2)
(c) Requester → Backend: IDP , IDS , N3, h, CR

∗,
SR(IDP , IDS , N2, N3, h)

(d) Requester ← Backend: T , SB(T,N3)
(e) Requester → Provider: r, T

Messages (a) and (b) are identical to Protocol 1. Before
sending message (c), the Requester chooses a random number
r and calculates its hash h using a preimage resistant hash
function. Both r and h are used for binding a ticket to a given
Requester. Message (c) contains the identifier of the Provider
IDP , the identifier of the service IDS , a new nonce, N3, the
hash of the random number h, optionally the certificate of the
Requester CR and a signature SR(IDP , IDS , N2, N3, h). The
replay protection of message (c) is accomplished through the
nonce N2 and the signature.

When the Backend receives message (c) it verifies the
signature SR() and, if requested, the certificate CR. After

that, the Backend executes the detection algorithm. If the
current request is considered non-excessive a ticket T :=
IDS , i,MKPB

(IDP , IDS , h, i) is created and sent together
with a signature over it and the nonce N3 to the Requester in
message (d). In order to prevent attackers using an intercepted
ticket contained in message (d) for requesting a service, the
MAC of the ticket contains the hash h of the random number
r, which is only known to the legit Requester. In message (e),
the Requester forwards the ticket T to the Provider together
with the random number r. When the Provider receives the
ticket T it calculates h and verifies the MAC MKPB

(). Doing
so, we ensure that an attacker cannot use a ticket that has been
eavesdropped in message (d).

Still, the attacker may intercept a ticket and a random
number r contained in message (e) and try to replay them for
requesting a service. We use the counter i contained in the ticket
to prevent such replay attacks. To ensure that replay protection
also works reliably when the Provider receives valid tickets in
different order than issued by the Backend we leverage a small
memory cache. This cache is initially empty and when a ticket
with a valid MAC is received we save its counter in the cache.
For each ticket received with a valid MAC, we check 1) if its
counter is in the cache and 2) if the counter is more distant
than a validity distance ∆i from the highest counter contained
in the cache. If any of these conditions applies we discard the
request. Otherwise, we save the current counter in the cache
and provide the service. When saving a new counter in the
cache we check if this is the new highest counter value. If so,
we remove all counters more distant than ∆i from the cache.

C. Formal Verification with ProVerif

In this section we describe our verification of our proposed
protocols using ProVerif [6]. For both protocols we developed
ProVerif verification models which we made available online
[7].

ProVerif is a command line tool which expects a model
of a cryptographic protocol and a set of security properties to
be verified as input, both encoded in the language of typed
pi calculus. The protocol properties relevant in our scope and
which ProVerif can prove are: 1) reachability – an attacker
cannot deduce a certain value, e.g., a secret key, and 2)
correspondence assertions – a certain protocol state can only
be reached if the protocol was in a certain other state before
[17].

In ProVerif, cryptographic primitives are abstracted and
assumed to be perfect. They are modeled through constructors
and destructors. Constructors and destructors only model the
relations between input and output parameters but not the math-
ematic operations which a cryptographic primitive conducts. A
constructor models a forward cryptographic primitive, e.g., the
construction of an asymmetric signature and a destructor the
reverse primitive, e.g., verification of an asymmetric signature.
When no reverse primitive exists, e.g., a hash function, the
primitive is modeled only as a constructor.

In a ProVerif model, the protocol participants are modeled
as parallel processes communicating through a public channel.
The attacker has no knowledge about the operations inside the
processes but has full control over the messages exchanged on
the public channel. ProVerif considers Dolev-Yao [24] attackers

capable of eavesdropping, deconstructing and dropping legit
messages, constructing and injecting new ones and using known
crypto primitives. However, the attacker cannot break crypto
primitives, e.g., construct a MAC without the key. Comparing
the capabilities of our attacker in Section III related to attacks
on the communication channel with the Dolev-Yao model, our
attacker is slightly less powerful. The difference is that we
assume that our attacker cannot drop or alter legit messages,
which would otherwise be sufficient for conducting DoS.
Therefore, if protocols 1 and 2 are correct under a Dolev-
Yao attacker, the protocols are also correct under the attacker
described in Section III.

For modeling the Public Key Infrastructure (PKI) we used
an abstraction where a certificate contains a set of participant
identifiers, its public key, and a signature generated with the
private key of the Certification Authority (CA). We modeled
the CA as a public-private key pair in the main process.

In protocols 1 and 2 we used counters for replay protection.
Because of its internal abstraction ProVerif is incapable of
fully handling protocols involving counters. This is a known
limitation for which the authors of ProVerif demonstrate a
semiautomatic workaround in [16] which we also leveraged for
our models. In this workaround the counter value is received by
the honest participants on the public channel from the attacker,
therefore this value may be repeated. Then, using ProVerif
it can be verified that a protocol message which contains a
counter value was sent by an honest participant before it was
received and processed by another honest participant. This may
happen eventually multiple times with the same counter value
if the attacker inputs always the same value. Therefore, in the
next analytical step we constrained the attacker to only be able
to send counter values in increasing order. This means that
a message containing a given counter value can be received
exactly once after it was sent.

To conclude, our models [7] demonstrate that protocols 1
and 2 have the following security properties:

1) No secret values are leaked. For this property, we leveraged
the ProVerif capabilities to prove reachability. Thus, the
secret keys of the CA, Requester and Backend and the
symmetric key KPB cannot be deduced by the attacker.

2) A service can only be requested by a Requester possessing
a private key. For this property, we leveraged the ProVerif
capabilities to prove correspondence assertions and the
workaround as described above.

VI. DISCUSSION

In the following discussion, we refer back to the design
goals we initially set and discuss a Distributed Denial of
Service (DDoS) attack scenario in which the effectiveness
of our protection may be limited.

a) Design Goals: Both protocols fulfil our design goals.
In both, the Provider is involved only in lightweight operations,
either processing tickets or directly verifying the authenticity
the Backend (DG-I) for providing services only at request
(DG-II). The authentication of the Requester to the Backend
based on public-key cryptography in combination with per-
Requester rate limitation ensures DG-III and does not require
preshared keys between each Requester and Provider (only

between Backend and Provider), as defined in DG-IV. Using
the Leaky Bucket Algorithm or EWMA for rate limitation, our
method does not limit the total amount of possible requests for
each Requester, but regulates the rate with which requests are
served (DG-V). Moreover, both algorithms are very efficient in
terms of computation and memory, thus our solution is scalable
for use cases with large amounts of Requesters and/or Providers
(DG-VI).

b) Distributed Denial of Service: A theoretically possi-
ble scenario may be DDoS where the attacker compromises
a large group of Requesters to quickly deplete a Provider’s
battery by sending requests from each compromised Requester’s
below its threshold rate. This attack is limited by the following
factors:

1) Each Requester has a unique and independent authenti-
cation key. The attacker must thus compromise a large
number of Requesters for the attack to scale. Each Re-
quester may be a different device type (e.g. a smartphone
or tablet) with different software stacks and thus not expose
a single, common vulnerability.

2) The energy each Requester can draw is limited to λtht.

A logical approach to protect the battery capacity in the
DDoS scenario could be to use a single rate limiter executed
locally on the Provider without Requester authentication. This
approach falls short in ensuring availability of services to benign
Requesters (DG-III) since a single Requester may cause all
incoming requests to be dropped by saturating the rate limiter.
Therefore, this approach only shifts the battery exhaustion
vulnerability to a DoS vulnerability feasible by saturating the
single rate limiter.

VII. EVALUATION

We evaluate the proposed detection algorithms and authen-
tication protocols considering the use case RTLS in hospitals
we previously introduced in Section II. For that purpose we
1) demonstrate the operation of the Leaky Bucket and EWMA
algorithms through MATLAB simulation and 2) implement
a proof of concept setup based on the nRF51422 BLE SoC
which we use for evaluating the protocols in terms of power
consumption and latency.

A. Simulation

We first describe how we selected the parameters for our
simulation. Then we demonstrate the severity of the battery
exhaustion attack by chaining regular burst requests. We simu-
late different burst intensities and show their effect respective
to the attack duration. In Section VII-A3 we demonstrate the
operation of the Leaky Bucket and EWMA algorithms.

1) Simulation Parameters: In the RTLS use case the
Provider is a localization tag, see Section II. For the simulation
we assumed that it is powered by a CR2430 coin cell battery
with capacity of Ebat = 840 mWh = 3, 024 J [11]. We
assumed that it hosts a single energy expensive service which
flashes an indicator LED requiring Es = 45 mJ. We specify
T = 1 year as the operational time of the Provider. We assume
that, in average, N = 100 Requesters, i.e., staff members, are
active.

Parameter Symbol Value

Battery capacity Ebat 3,024 J
Energy for non-significant purposes Eelse 10% Ebat

Energy cost of service Es 45 mJ
Desired lifetime T 365 days
Active Requesters in a given time N 100
Average RX current irx 24µA
Energy spent for RX in lifetime T Erx 2,270 J
Total energy for requestable services Etot 452 J
Threshold depletion rate λth 12.38 mJ/day
Leaky bucket decrement, EWMA initial state D, e0 12.38 mJ
Leaky bucket detection threshold Klb 0.4049 J
EWMA detection threshold Kewma 9.332× 10−6 J

Table I: Summary of the setup parameters for the evaluated
IoT use case.

In order to achieve the given operational time using the
limited energy budget provided by the coin cell battery the
Provider has to keep its hardware modules turned off as long
as possible. Since the RX part of the radio transceiver is one
of the main power dissipators (e.g. 9.7 mA for nRF51422
[4]), the capability to receive data, i.e., the latency for
receiving a request, and minimizing power consumption are
two contradictory requirements. In our setup we configured
the BLE radio to be capable of receiving 20 bytes of payload
data every single second. Doing so we measured an average
current consumption irx = 24µA on the nRF51422 device.
Using irx we calculate the energy Erx = uirxT = 2, 270 J
required for receiving data throughout the lifetime T with
voltage u = 3 V. Using Ebat, Erx and assuming that the
device may require some additional energy for other purposes
which we chose to be 10% of Ebat for the given evaluation,
we calculate Etot = Ebat − Erx − 0.1Ebat = 425 J and
λth = 12.38 mJ/day.

Furthermore, we assume that each of the 100 legit Re-
questers requests services randomly with a probability of request
occurrence per day P = N/T = 0.2740. For the evaluation of
the Leaky Bucket and EWMA algorithms in Section VII-A3 we
set their parameters as: D = e0 = 12.38 mJ, Klb = 0.4049 J
and Kewma = 9.332× 10−6 J. Note that we calculated Klb and
Kewma by evaluating Equation 1 and Equation 2, respectively,
assuming that the most energy consuming but still tolerated
burst consists of 10 requests in 10 minutes. All parameters are
summarized in Table I.

2) Attack Severity: In Figure 2 we plot the time required
for a single Requester to cause complete battery exhaustion
by chaining regular bursts when no protection is in place and
when considering the parametrization as given in Table I. From
Figure 2 it is evident that the required time for a complete
battery exhaustion depends on the start time of the attack,
i.e., the amount of energy still available in the battery and the
proportion of burst energy and burst duration of the most power
intensive regular burst. If the most intensive burst consists of
10 requests in 10 minutes the attacker needs around 45 days
to completely exhaust the battery but if the the most intensive
burst consist of 1,000 requests in 10 minutes, the attacker
requires less than a day.

3) Attack Detection and Throttling through Rate Limitation:
In order to demonstrate the effectiveness of the rate limitation

0 50 100 150 200 250 300 350
0
5

10
15
20
25
30
35
40
45

10 requests/10 minutes
100 requests/10 minutes
1,000 requests/10 minutes

Figure 2: Time required for full battery exhaustion by chaining
regular bursts with different intensity.

algorithms for detecting and throttling battery exhaustion attacks
we simulated the attack scenario in which a malicious Requester
chains regular bursts, see Figure 3. Figure 3.a shows the number
of requests made by the Requester within T = 365 days. In
the first 200 days the Requester is benign but conducts a
battery exhaustion attack after that period (days 200 to 365).
During the legit operational time the Requester uses the service
with probability P for a request. In Figure 3.a we see that
the number of requests dropped by the Leaky Bucket and
EWMA algorithms rapidly grows during the attack (notice the
logarithmic scale of the y axis) and that the number of served
requests during the attack is equal for both Leaky Bucket and
EWMA algorithms. Therefore, both algorithms are equally
suitable for detecting battery exhaustion attacks. Figure 3.b
shows the development of elb and eewma for the request series
from Figure 3.a. In Figure 3.b we see that as soon as the
attack is conducted, elb and eewma start to increase until they
reach their thresholds Klb and Kewma, respectively. When this
happens the attack is detected. The Backend will allow only
such amounts of requests so that the threshold energy resulting
from λtht is not exceeded, see Figure 3.b. Figure 3.b also
shows the energy a malicious Requester can drain when no
protection mechanism is in place (notice the logarithmic scale
of the y axis).

B. Implementation of the Evaluation Setup

We sought to realize an abstract IoT scenario with a battery-
powered constrained Provider, suitable for a representative
evaluation of both protocols. The following paragraphs elaborate
on the most relevant factors that influence the Provider’s power
consumption and protocol latency. These are the setup of the
IoT network, as well as the protocol-related implementation
aspects.

a) Overview of the Setup: Figure 4 shows the setup of
our IoT network. The setup consists of two Linux workstations,
one representing a Requester and the other one representing a
Backend. Further, a BLE board as a Provider and an IoT border
router. We used two separate IPv6 networks, which the IoT
border router connects: 1) a standard non-constrained network
for the communication between Requester, Backend and the
border router and 2) a constrained network where the BLE board
communicates with the IoT border router using IPv6 over BLE

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
10 0
10 1
10 2
10 3
10 4
10 5

Number of request occurrences
Number of dropped requests by LB
Number of dropped requests by EWMA
Number of served requests * LB/ o EWMA

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0.0

0.2

0.4

8.0

8.5

9.0

9.5
10 -6

e lb

e ewma

K lb ,Kewma

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

10 0
10 1
10 2
10 3
10 4

LB/EWMA Protection

th t

no Protection

Figure 3: Attack detection and throttling with Leaky Bucket and EWMA.

IoT router

non-constrained
TCP/IPv6 network

IPv6 over BLE
Requester

(workstation 2)

Provider
(NRF51422)

Backend
(workstation 1)

Figure 4: Setup of the IoT network used for the evaluation.

[38]. We use BLE for the constrained network, because BLE can
be easily integrated into existing non-constrained IPv6 networks
while providing excellent low power characteristics, suitable
for battery-powered devices. As a representative platform for a
constrained Provider, we used the nRF51422 BLE SoC from
Nordic Semiconductor. The nRF51422 is based on a Cortex-M0
processor running at 16 MHz and has 256 KB of flash memory,
32 KB RAM and an AES accelerator.

b) Communication Model and Underlying Protocols:
For each of the two protocols proposed in Section V, we used
the following communication model and protocols:

1) Backend as a Proxy: The Requester is a TCP client while
the Backend is a TCP server and at the same time a CoAP
client. The Provider is a CoAP server.

2) Backend as Ticket Issuer: The Requester is a TCP and
CoAP client. This Backend is a TCP server and the
Provider is a CoAP server.

For the protocol implementations for Requester and Backend
we leveraged the standard Linux TCP API and the open source
CoAP library libcoap [1]. For the BLE SoC, we used the CoAP
stack provided by Nordic Semiconductor’s SDK [3].

c) Request Message Format: The size of the last
message in protocols 1 and 2 is of critical importance as it

is sent over the constrained network to the Provider and may
therefore significantly influence protocol latency, i.e. the time
required for requesting a service. In our implementation we
used C structures for defining each message, see Listing 1.
According to the listing, message (d) for protocol 1 requires 9
bytes and message (e) for protocol 2 15 bytes. Those messages
contain several values which size is either 1) dependent on the
concrete IoT use case (IDs and i) or 2) a tradeoff between
size of the complete message and security against guessing
attacks (r and MAC). For our prototype we used a MAC of
length 8 bytes which is considered secure by NIST [25]. Using
a sufficiently long MAC is essential for our protocols since the
adversary can otherwise construct a valid message to 1) be used
for requesting a service and/or 2) be used to put the counter
out of synchronization. Another parameter which length is a
tradeoff between security against guessing attacks and the size
of the message is r in Protocol 2 message (e). The length of r
should be chosen depending on a ticket’s validity time. Since
a ticket may be significantly shorter living than the pre-shared
authentication key, r may be chosen to be shorter than the
MAC.

d) Hash and MAC Functions: To prevent a malicious
Requester from leveraging the Provider’s MAC and hash
computation for battery exhaustion, these primitives must
be efficiently computable. In order to achieve this in our
implementation we leveraged the AES hardware accelerator
available on BLE SoC. Note that, such an accelerator is a
common hardware peripheral for this class of devices. For the
implementation of the MAC and hash functions we used the
CBC-MAC and Davies-Meyer [34] hash function, respectively.

e) Alternative Asymmetric Protocol: The most obvious
alternative to our protocols is an asymmetric protocol where

t y p e d e f s t r u c t {
b y t e ID s ;
b y t e MAC[8] ;

} p ro t1 msg d t ;

(a) Protocol 1 msg d

t y p e d e f s t r u c t {
b y t e r [4] ;
b y t e ID s ;
b y t e i [2] ;
b y t e MAC[8] ;

} p r o t 2 m s g e t ;

(b) Protocol 2 msg e

Listing 1: Data structures of the request messages sent to the
Provider.

Protocol Req. Size (byte) Latency (s) Energy Auth. (J)

Proxy 9 1 1.21× 10−6

Ticket Issuer 15 1 2.34× 10−6

Asymmetric 532 27 33.14× 10−3

Table II: Number of bytes per request message, latency
and energy cost for authentication for protocols 1 and 2 in
comparison with asymmetric authentication.

the Requester requests services directly from the Provider
by sending its certificate and a signature over the service
ID, Provider IDs and replay protection counter. When the
Provider receives a request, it verifies the certificate and
signature, executes the attack detection algorithm and provides
its service in case of a positive result. We implemented this
asymmetric protocol as baseline for comparison with our
protocols from Section V. For the asymmetric protocol we
used the ED25519 signature algorithm and X.509 certificates.
For the verification of the signatures on the nRF51822 SoC
we used the wolfcrypt library [13], because the SoC lacks
an accelerator for asymmetric signatures. To the best of our
knowledge, there is no such peripheral for low-end BLE SoCs
(e.g. Cortex M0) on the market. We only found higher-end BLE
SoCs (Cortex M4 and above) equipped with an accelerator for
asymmetric cryptography.

C. Request Latency and Cost of Authentication

In this part, we compare the protocol latencies and cost of
authentication for protocols 1 and 2 with each other and with
our asymmetric baseline protocol.

We summarized our results in Tables II and III based
on which we conclude the following: According to Table II,
asymmetric authentication with certificates causes high latencies
in constrained networks (in our case 20 Bytes/s receive data
rate) and therefore may be not applicable in many real use
cases. In contrast, our authentication protocols are many times
faster and therefore, in this aspect, superior. Second, using the
commonly available AES accelerator on the radio SoC, we are
capable of authenticating requests very efficiently in terms of
energy.

In Table III we present an extrapolation of the measurements
summarized in Table II. Note that we assume a device powered
by a coin cell battery with capacity Ebat = 3, 024 J [11]. For
that device we assume that its desired lifetime is one year.
Table III clearly shows that attacks where an attacker injects
requests (Protocol 1) or invalid tickets (Protocol 2) to the

Protocol Energy (J) % of Ebat

Proxy 38 1.14
Ticket Issuer 74 2.23

Table III: Energy drain by forcing the Provider to authenticate
one attacker-injected request per second over its whole lifetime.

Requester to force the Requester to spend energy for their
authentication does not cause battery exhaustion. An attacker
is only capable of exhausting 1.14% of Ebat when Protocol 1
is used and 2.23% of Ebat when Protocol 2 is used.

VIII. RELATED WORK

In the following, we investigate previously published
battery exhaustion attacks and their countermeasures. Additional
systematization of knowledge in this area can be found in [35].

In [44, 45], the authors describe an attack using legit service
requests to prevent the Provider from entering sleep mode,
thus exhausting its battery. The authors briefly mention the
use of cryptographic puzzles as a possible solution without
presenting specific methods or evaluations. Cryptographic
puzzles [14, 15, 23, 31] are mathematical tasks with adjustable
complexity determined by the Provider. The puzzles have to
be solved by the Requester before the service is provided.
Puzzles aim to balance the effort of both parties to slow down
the request rate of attackers. The approach introduces two
challenging requirements: The first one is that the difficulty of
the puzzle has to match the computational capabilities of the
Requester. Otherwise, very weak devices will not be capable
of solving the puzzle at all and strong devices will quickly
solve it, i.e., the puzzle will not serve its purpose to slow
down the request rate. To satisfy this requirement, information
about the computational capabilities of the Requesters has to
be communicated to the Provider in a secure and trusted way.
The second requirement is that the Provider needs a mechanism
to verify whether the puzzle solution was indeed calculated by
the Requester, otherwise a malicious Requester may outsource
the computation to more powerful devices. Because of those
challenging requirements, we consider puzzles unsuitable.

In [18, 28], the authors elaborate on the case of runtime
attestation of constrained devices. In their work, a constrained
device calculates a signed hash of its binaries in order to prove
the software state to a remote party. Since this may be a time
consuming calculation, excessive attestation requests may be
used for a DoS attack. The solution proposed in [18] is based on
symmetric authentication. In addition to the difficult symmetric
key establishment in many IoT deployments, this approach also
has the major downside that it does not prevent compromised
Requesters from conducting a battery exhaustion attack.

A body of research in the area of battery exhaustion attacks
on mobile computing devices exists as well [20, 21, 33, 36, 37].
The authors in [33] consider an attack detection and identifica-
tion method with Requester authentication and power signature
monitoring hosted on the service Provider. For the authentica-
tion, the authors describe an abstract method of multiple layers
of authentication without focusing on any specific algorithms.
To the best of our knowledge, this method cannot avoid the

use of intensive cryptographic operations without using pre-
shared secrets and may therefore present an additional battery
exhaustion attack vector when used for constrained devices.
Moreover, the proposed power signature monitoring requires
hardware for power measurement, a database with reference
power traces hosted on the service Provider and a comparison
algorithm to match the reference traces with the current
measurement. Those requirements inevitably lead to increased
demands in terms of memory and computational power and
are therefore not suitable for constrained devices. In [37] the
authors consider mobile computers executing several parallel
processes for which the power consumption is estimated by
using CPU performance counters and by measuring the number
of disk accesses. In contrast to mobile computers, IoT devices
are oftentimes built for a specific purpose. Therefore the energy
required for certain services can be precisely measured during
development, knowledge we use for our approach. The paper
briefly mentions, without discussing any specific methods, that
averaging and thresholding can be used for detecting processes
responsible for fast battery depletion. In [21] the victim device
measures its power consumption with a sampling rate of 10 kHz
utilizing an additional power measurement circuit. For attack
detection, the data is sent over the network to a trusted party
which correlates the data with existing power traces indicating
an attack. Compared to our approach this work has following
disadvantages: 1) it requires additional circuitry and the power
traces must be sent over the network which may be challenging
in constrained IoT networks. 2) The detection algorithm needs
reference power traces indicating an attack. How these traces
are collected is not discussed. The authors clearly state their
algorithm performs well when the attack causes long lasting
high energy draw but performs poorly when the attack is
conducted with spikes during usually inactive operational times.
In contrast, our rate limitation algorithms perform well in
both scenarios. 3) [21] only considers attack detection but no
countermeasures. In [20, 36] a detection algorithm correlates the
power traces also to Wi-Fi and Bluetooth activity for detecting
other types of irregular behavior such as SYN flooding DoS,
virus infections, or network probing.

Further approaches for exhausting the batteries of IoT
devices target weaknesses on the lower layers of the communi-
cation protocols. The authors of [19, 40] analyze such attacks
for several WSN MAC protocols and conclude that a protection
mechanism has to consist of strong link-layer authentication,
anti-replay protection, jamming identification and mitigation,
and broadcast attack defense. Battery exhaustion attacks and
countermeasures leveraging weaknesses in the routing layer
were also considered in several publications [26, 46]. The main
idea of those attacks is that the attacker constructs packets
which intentionally either circulate in routing loops exhausting
each forwarding node or visit as many intermediate notes
until they reach their destination. This line of work remediates
battery exhaustion leveraging lower-layer mechanisms, however
leaves exhaustion through application-layer services out of
consideration.

Note that, several methods to detect flooding DoS attacks on
web servers were presented in previous work [22, 42, 43, 47].
A common characteristic is that these methods are designed
to detect peak packet/request rates. Since a successful battery
exhaustion attack does not necessarily exhibit peak rates (see
Section IV), but may for instance be conducted by increasing

the request rate during usually less active times, we consider
those methods poorly suitable for detecting battery exhaustion
attacks.

IX. CONCLUSION

In this work, we considered IoT deployments where
resource-constrained, battery-powered Providers offer services
that can be leveraged by malicious Requesters for conducting
battery exhaustion attacks. We started with surveying repre-
sentative use cases and deriving design goals for an effective
countermeasure. As a solution, we proposed a method combin-
ing rate limitation with lightweight authentication, supported by
a trusted Backend. To the best of our knowledge we are the first
who addressed the property of battery exhaustion attacks being
feasible by requesting services at medium rates at usually less
active operational times by using rate limitation. For the rate
limitation, we proposed the usage of two algorithms – Leaky
Bucket and EWMA – and demonstrated their parametrization.
Through simulation of a real word use case, we have shown that
both are equally suitable for detecting such battery exhaustion
attempts. As part of our method, we proposed and formally
verified two cryptographic authentication protocols suitable for
different classes of IoT use cases. We conducted our formal
verification using the ProVerif verifier and made our verification
models available online [7]. With our prototype implementation
and evaluation, we have further shown that our method can be
implemented in an energy-efficient way for battery-powered
constrained devices, effectively reducing attack surface for
battery exhaustion.

REFERENCES

[1] “libcoap: A C implementation of the Constrained Appli-
cation Protocol (RFC 7252),” https://github.com/obgm/
libcoap, 2019, [Online; accessed 23-Mai-2019].

[2] “Networked with the surroundings. Car-to-X communi-
cation goes into series production,” https://www.daimler.
com/innovation/case/connectivity/car-to-x-2.html, 2019,
[Online; accessed 19-June-2019].

[3] “nRF5 SDK v15.3.0,” https://infocenter.nordicsemi.com/
topic/struct sdk/struct/sdk nrf5 latest.html, 2019, [On-
line; accessed 23-Mai-2019].

[4] “nRF51422 Product Specification v3.1,”
https://infocenter.nordicsemi.com/pdf/nRF51422
PS v3.1.pdf?cp=4 6 0 3, 2019, [Online; accessed
17-June-2019].

[5] “Powering sensor nodes for industrial IoT,”
https://www.powerelectronicsnews.com/technology/
powering-sensor-nodes-for-industrial-iot, 2019, [Online;
accessed 19-June-2019].

[6] “ProVerif: Cryptographic protocol verifier in the formal
model,” https://prosecco.gforge.inria.fr/personal/bblanche/
proverif/, 2019, [Online; accessed 10-June-2019].

[7] “ProVerif Models for the Proxy and Tickets Proto-
cols,” https://github.com/proverifTmp/Battery-Exhaustion-
DoS, 2019, [Online; accessed 30-July-2019].

[8] “Real-Time Location System for Hospitals: Improving
Facilities for Patients and Staff,” https://www.centrak.
com/products/real-time-location-services/, 2019, [Online;
accessed 6-Mai-2019].

https://github.com/obgm/libcoap
https://github.com/obgm/libcoap
https://www.daimler.com/innovation/case/connectivity/car-to-x-2.html
https://www.daimler.com/innovation/case/connectivity/car-to-x-2.html
https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_nrf5_latest.html
https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_nrf5_latest.html
https://infocenter.nordicsemi.com/pdf/nRF51422_PS_v3.1.pdf?cp=4_6_0_3
https://infocenter.nordicsemi.com/pdf/nRF51422_PS_v3.1.pdf?cp=4_6_0_3
https://www.powerelectronicsnews.com/technology/powering-sensor-nodes-for-industrial-iot
https://www.powerelectronicsnews.com/technology/powering-sensor-nodes-for-industrial-iot
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://github.com/proverifTmp/Battery-Exhaustion-DoS
https://github.com/proverifTmp/Battery-Exhaustion-DoS
https://www.centrak.com/products/real-time-location-services/
https://www.centrak.com/products/real-time-location-services/

[9] “Smart livestock collars let ranchers track, monitor
and manage herds like never before,” https:
//www.sigfox.com/en/solutions/smart-livestock-collars-
let-ranchers-track-monitor-and-manage-herds-never,
2019, [Online; accessed 21-Mai-2019].

[10] “Tracking Equipment, Supplies and Specimens with
Precision Accuracy,” https://www.zebra.com/content/
dam/zebra new ia/en-us/solutions-verticals/vertical-
solutions/healthcare/vision-study/healthcare-vision-
study-asset-tracking-en-us.pdf, 2019, [Online; accessed
02.05.2019].

[11] “Varta CR2430 data sheet,” https://products.varta-
microbattery.com/applications/mb data/documents/
data sheets/DS6430.pdf, 2019, [Online; accessed
24-Mai-2019].

[12] “White paper: Introducing Digital Asset Mananagement,”
https://www.hilti.com/content/dam/documents/pdf/w1/
ontrack/whitepapers/W1 US en White%20Paper%
20Increase%20Profit%20and%20Productivity.pdf, 2019,
[Online; accessed 30-July-2019].

[13] “wolfCrypt Embedded Crypto Engine,” https://www.
wolfssl.com/products/wolfcrypt/, 2019, [Online; accessed
7-January-2019].

[14] T. Aura, P. Nikander, and J. Leiwo, “DOS-Resistant
Authentication with Client Puzzles,” in Revised Papers
from the 8th International Workshop on Security Protocols.
London, UK, UK: Springer-Verlag, 2001, pp. 170–177.

[15] A. Back, “Hashcash - A Denial of Service Counter-
Measure,” 09 2002.

[16] B. Blanchet, “Symbolic and Computational Mechanized
Verification of the ARINC823 Avionic Protocols,” in
30th IEEE Computer Security Foundations Symposium
(CSF’17). Santa Barbara, CA, USA: IEEE, Aug. 2017,
pp. 68–82.

[17] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre,
“ProVerif 2.00: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial,” Tech. Rep., 2018.

[18] F. Brasser, K. B. Rasmussen, A.-R. Sadeghi, and
G. Tsudik, “Remote Attestation for Low-end Embedded
Devices: The Prover’s Perspective,” in Proceedings of the
53rd Annual Design Automation Conference, ser. DAC
’16. New York, NY, USA: ACM, 2016, pp. 91:1–91:6.

[19] M. Brownfield, Y. Gupta, and N. Davis, “Wireless sensor
network denial of sleep attack,” in Proceedings from the
Sixth Annual IEEE SMC Information Assurance Workshop,
June 2005, pp. 356–364.

[20] T. K. Buennemeyer, F. Munshi, R. C. Marchany, and J. G.
Tront, “Battery-Sensing Intrusion Protection for Wire-
less Handheld Computers Using a Dynamic Threshold
Calculation Algorithm for Attack Detection,” in 2007
40th Annual Hawaii International Conference on System
Sciences (HICSS’07), Jan 2007, pp. 163b–163b.

[21] T. Buennemeyer, M. Gora, R. Marchany, and J. Tront,
“Battery Exhaustion Attack Detection with Small Handheld
Mobile Computers,” 06 2007, pp. 1 – 5.

[22] A. Dainotti, A. Pescapè, and G. Ventre, “Wavelet-based
Detection of DoS Attacks,” in Proceedings of the Global
Telecommunications Conference, 2006. GLOBECOM’06,
San Francisco, CA, USA, 27 November - 1 December
2006, 2006.

[23] D. Dean and A. Stubblefield, “Using Client Puzzles to
Protect TLS,” in Proceedings of the 10th Conference on
USENIX Security Symposium - Volume 10, ser. SSYM’01.
Berkeley, CA, USA: USENIX Association, 2001.

[24] D. Dolev and A. C. Yao, “On the security of public
key protocols,” in Proceedings of the 22Nd Annual
Symposium on Foundations of Computer Science, ser.
SFCS ’81. Washington, DC, USA: IEEE Computer
Society, 1981, pp. 350–357. [Online]. Available: https:
//doi.org/10.1109/SFCS.1981.32

[25] M. Dworkin, “Recommendation for Block Cipher Modes
of Operation: the CMAC Mode for Authentication,” Jun.
2016.

[26] S. H. G Sateesh, “Depletion of Energy Attacks in Wireless
Sensor Networks,” International Journal of Engineering
and Computer Science, vol. 3, no. 08, Aug 2014.

[27] A. Guo, S. Raghu, X. Xie, S. Ismail, X. Luo,
J. Simoneau, S. Gilliland, H. Baumann, C. Southern,
and T. Starner, “A Comparison of Order Picking
Assisted by Head-up Display (HUD), Cart-mounted
Display (CMD), Light, and Paper Pick List,” in
Proceedings of the 2014 ACM International Symposium
on Wearable Computers, ser. ISWC ’14. New York,
NY, USA: ACM, 2014, pp. 71–78. [Online]. Available:
http://doi.acm.org/10.1145/2634317.2634321

[28] S. Hristozov, J. Heyszl, S. Wagner, and G. Sigl, “Practical
Runtime Attestation for Tiny IoT Devices,” in NDSS
Workshop on Decentralized IoT Security and Standards
(DISS) 2018, San Diego, CA, USA, 2018.

[29] R. Hummen, H. Wirtz, J. H. Ziegeldorf, J. Hiller, and
K. Wehrle, “Tailoring end-to-end IP security protocols to
the Internet of Things,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP), Oct 2013, pp.
1–10.

[30] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, “SeED: Secure
Non-interactive Attestation for Embedded Devices,” in
Proceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, ser. WiSec ’17.
New York, NY, USA: ACM, 2017, pp. 64–74.

[31] A. Juels and J. G. Brainard, “Client Puzzles: A Crypto-
graphic Countermeasure Against Connection Depletion
Attacks,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 1999, San Diego,
California, USA, 1999.

[32] M. N. Kamel Boulos and G. Berry, “Real-time locating
systems (RTLS) in healthcare: a condensed primer,”
International Journal of Health Geographics, vol. 11,
no. 1, p. 25, Jun 2012.

[33] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-
of-Service Attacks on Battery-powered Mobile Comput-
ers,” in Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications
(PerCom’04), ser. PERCOM ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 309–.

[34] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot,
Handbook of Applied Cryptography, 1st ed. Boca Raton,
FL, USA: CRC Press, Inc., 1996.

[35] A. Merlo, M. Migliardi, and L. Caviglione, “A Survey
on Energy-aware Security Mechanisms,” Pervasive Mob.
Comput., vol. 24, no. C, pp. 77–90, Dec. 2015.

https://www.sigfox.com/en/solutions/smart-livestock-collars-let-ranchers-track-monitor-and-manage-herds-never
https://www.sigfox.com/en/solutions/smart-livestock-collars-let-ranchers-track-monitor-and-manage-herds-never
https://www.sigfox.com/en/solutions/smart-livestock-collars-let-ranchers-track-monitor-and-manage-herds-never
https://www.zebra.com/content/dam/zebra_new_ia/en-us/solutions-verticals/vertical-solutions/healthcare/vision-study/healthcare-vision-study-asset-tracking-en-us.pdf
https://www.zebra.com/content/dam/zebra_new_ia/en-us/solutions-verticals/vertical-solutions/healthcare/vision-study/healthcare-vision-study-asset-tracking-en-us.pdf
https://www.zebra.com/content/dam/zebra_new_ia/en-us/solutions-verticals/vertical-solutions/healthcare/vision-study/healthcare-vision-study-asset-tracking-en-us.pdf
https://www.zebra.com/content/dam/zebra_new_ia/en-us/solutions-verticals/vertical-solutions/healthcare/vision-study/healthcare-vision-study-asset-tracking-en-us.pdf
https://products.varta-microbattery.com/applications/mb_data/documents/data_sheets/DS6430.pdf
https://products.varta-microbattery.com/applications/mb_data/documents/data_sheets/DS6430.pdf
https://products.varta-microbattery.com/applications/mb_data/documents/data_sheets/DS6430.pdf
https://www.hilti.com/content/dam/documents/pdf/w1/ontrack/whitepapers/W1_US_en_White%20Paper%20Increase%20Profit%20and%20Productivity.pdf
https://www.hilti.com/content/dam/documents/pdf/w1/ontrack/whitepapers/W1_US_en_White%20Paper%20Increase%20Profit%20and%20Productivity.pdf
https://www.hilti.com/content/dam/documents/pdf/w1/ontrack/whitepapers/W1_US_en_White%20Paper%20Increase%20Profit%20and%20Productivity.pdf
https://www.wolfssl.com/products/wolfcrypt/
https://www.wolfssl.com/products/wolfcrypt/
https://doi.org/10.1109/SFCS.1981.32
https://doi.org/10.1109/SFCS.1981.32
http://doi.acm.org/10.1145/2634317.2634321

[36] B. R. Moyers, J. P. Dunning, R. C. Marchany, and
J. G. Tront, “Effects of Wi-Fi and Bluetooth Battery
Exhaustion Attacks on Mobile Devices,” in 2010 43rd
Hawaii International Conference on System Sciences, Jan
2010, pp. 1–9.

[37] D. C. Nash, T. L. Martin, D. S. Ha, and M. S. Hsiao,
“Towards an intrusion detection system for battery exhaus-
tion attacks on mobile computing devices,” in Third IEEE
International Conference on Pervasive Computing and
Communications Workshops, March 2005, pp. 141–145.

[38] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil,
Z. Shelby, and C. Gomez, “IPv6 over BLUETOOTH(R)
Low Energy,” RFC 7668, Oct. 2015.

[39] E. P. Rathgeb, “Modeling and Performance Comparison
of Policing Mechanisms for ATM Networks,” IEEE J.Sel.
A. Commun., vol. 9, no. 3, pp. 325–334, Sep. 2006.

[40] Raymond, Marchany, Brownfield, and Midkiff, “Effects
of Denial of Sleep Attacks on Wireless Sensor Network
MAC Protocols,” in 2006 IEEE Information Assurance
Workshop, June 2006, pp. 297–304.

[41] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained
Application Protocol (CoAP),” RFC 7252, Jun. 2014.

[42] V. A. Siris and F. Papagalou, “Application of Anomaly
Detection Algorithms for Detecting SYN Flooding At-
tacks,” Comput. Commun., vol. 29, no. 9, pp. 1433–1442,
May 2006.

[43] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras,
and B. Stiller, “An Overview of IP Flow-Based Intrusion
Detection,” IEEE Communications Surveys Tutorials,
vol. 12, no. 3, pp. 343–356, Third 2010.

[44] F. Stajano and R. Anderson, “The Resurrecting Duckling:
security issues for ubiquitous computing,” Computer,
vol. 35, no. 4, pp. 22–26, Apr 2002.

[45] F. Stajano and R. J. Anderson, “The Resurrecting Duck-
ling: Security Issues for Ad-hoc Wireless Networks,” in
Proceedings of the 7th International Workshop on Security
Protocols. Berlin, Heidelberg: Springer-Verlag, 2000, pp.
172–194.

[46] E. Y. Vasserman and N. Hopper, “Vampire Attacks:
Draining Life from Wireless Ad Hoc Sensor Networks,”
IEEE Transactions on Mobile Computing, vol. 12, no. 2,
pp. 318–332, Feb. 2013.

[47] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN
Flooding Attacks,” in Proceedings IEEE INFOCOM 2002,
The 21st Annual Joint Conference of the IEEE Computer
and Communications Societies, New York, USA, June
23-27, 2002, 2002, pp. 1530–1539.

	I Introduction
	II Use Cases and Design Goals
	III Adversarial Model
	IV Detecting Battery Exhaustion Attacks
	IV-A Leaky Bucket Algorithm
	IV-B EWMA

	V Authentication Protocols
	V-A Backend as a Proxy
	V-B Backend as Ticket Issuer
	V-C Formal Verification with ProVerif

	VI Discussion
	VII Evaluation
	VII-A Simulation
	VII-A1 Simulation Parameters
	VII-A2 Attack Severity
	VII-A3 Attack Detection and Throttling through Rate Limitation

	VII-B Implementation of the Evaluation Setup
	VII-C Request Latency and Cost of Authentication

	VIII Related Work
	IX Conclusion

