2107.09789v1 [cs.CR] 20 Jul 2021

arxXiv

NeurObfuscator: A Full-stack Obfuscation Tool to
Mitigate Neural Architecture Stealing

Jingtao Li*, Zhezhi Hef, Adnan Siraj Rakin*, Deliang Fan*, Chaitali Chakrabarti*
*School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287
TDepartment of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai
*{jingtaol, asrakin, dfan, chaitali} @asu.edu; T{zhezhi.he}@sjtu.edu.cn

Abstract—Neural network stealing attacks have posed grave
threats to neural network model deployment. Such attacks can
be launched by extracting neural architecture information, such
as layer sequence and dimension parameters, through leaky side-
channels. To mitigate such attacks, we propose NeurObfuscator,
a full-stack obfuscation tool to obfuscate the neural network
architecture while preserving its functionality with very limited
performance overhead. At the heart of this tool is a set of
obfuscating knobs, including layer branching, layer widening,
selective fusion and schedule pruning, that increase the number
of operators, reduce/increase the latency, and number of cache
and DRAM accesses. A genetic algorithm-based approach is
adopted to orchestrate the combination of obfuscating knobs to
achieve the best obfuscating effect on the layer sequence and
dimension parameters so that the architecture information cannot
be successfully extracted. Results on sequence obfuscation show
that the proposed tool obfuscates a ResNet-18 ImageNet model to
a totally different architecture (with 44 layer difference) without
affecting its functionality with only 2% overall latency overhead.
For dimension obfuscation, we demonstrate that an example
convolution layer with 64 input and 128 output channels can
be obfuscated to generate a layer with 207 input and 93 output
channels with only a 2% latency overhead.

Index Terms—Neural Network, Side-channel attack, Architec-
ture Stealing, Obfuscation

I. INTRODUCTION

The architecture information of a Deep Neural Net-
work (DNN) model is very sensitive and should never be
exposed. It is a valuable Intellectual Property (IP) that costs
companies lots of time and resources. Knowledge of the
exact architecture allows an adversary to build a more precise
substitute model and such a model can be used to launch
devastating adversarial attacks. For instance, it is shown in [/1]]
that accurate architecture information enables the adversary to
improve the attack success rate of input adversarial attack by
almost 3 times.

Side-channel based DNN architecture stealing has been
reported in several prior works [[1], [2]. Even without access
to the service, an outsider can extract the DNN architecture
through side-channel information leakage, as shown in Fig. [1]
Specifically, when the owner of the neural network IP hosts the
application on a third-party cloud computing platform or on a
local device with GPU support, it opens it up to architecture
stealing through side-channel attacks [1|-[4]]. A typical archi-
tecture stealing flow consists of profiling the target device,
training sequence predictor (e.g., LSTM [5]), predicting layer
sequence based on run-time trace of the target DNN model and

then extracting the dimension parameters of each layer. This is
quite different from stealing through Machine-Learning-as-a-
Service (MLaaS) [6], [7]], where the attacker has access to the
public prediction API and the confidence score of the labels.
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Fig. 1. Architecture stealing threatens intellectual property.

Previous efforts on preventing DNN architecture stealing
have focused on hardware to eliminate information leakage.
Oblivious Random Access Memory (ORAM) technology [8]],
[9]] prevents memory access leakage by encrypting the memory
address. [10] proposes re-design of the Miss Status Holding
Registers (MSHR) to obfuscate GPU memory access to add
a layer of randomness. Though hardware modifications are
effective countermeasures, they are not beneficial to existing
devices and have high performance overhead. Recently, [11]]
proposed a decision tree-based detection method against spy
applications on GPU. However, it suffers from high false posi-
tive rate and is not practical. TVM [12]] has also been proposed
as a potential countermeasure. Nevertheless, as shown by our
experiments (Fig. [6), standard TVM does not show enough
randomness to be an effective countermeasure.

In this work, we propose NeurObfuscator, a full-stack
tool which obfuscates neural network execution to effectively
mitigate neural architecture stealing. Our obfuscating tool
consists of 8 obfuscating knobs for two kinds of obfusca-
tion, namely sequence obfuscation which obfuscates the layer
depth and types and connection topologies between layers,
and dimension obfuscation which obfuscates the dimension
parameters of each layer, including the number of input and
output channel, weight kernel size, etc. Function-preserving
knobs such as layer branching, layer deepening, layer skipping
followed by selective fusion at graph optimization step are
used for sequence obfuscation, and layer widening, dummy
addition, kernel widening and schedule modification in the
back end are used for dimension obfuscation.

We use genetic algorithm to search for the best set of
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obfuscation combinations for sequence and dimension ob-
fuscation that achieve strong obfuscation for a given user-
defined time budget. The obfuscation strength is measured by
Layer Error Rate (LER) which represents normalized editing
distance of extracted layer sequence given the ground-truth
layer sequence in sequence obfuscation, and Dimension Error
Rate (DER) which represents the normalized error of extracted
dimension parameters in a layer in dimension obfuscation. Our
contributions can be summarized as follows:

o This is the first work on mitigating the NN architec-
ture stealing attack with pure-software obfuscations. We
propose a total of 8 obfuscating knobs across the entire
DNN execution stack to achieve sequence & dimension
obfuscations and demonstrate the performance on state-
of-the-art GPUs.

o We present an obfuscation tool backed by genetic algo-
rithm to search for the best combination of obfuscations
to obfuscate any neural network architecture with user-
defined inference latency budget. Source code is avail-
abld']

« For sequence obfuscation, our obfuscation tool can obfus-
cate a ResNet-18 architecture to have a 2.44 LER (which
translates to a 44-layer editing distance [13|]) against
state-of-art LSTM-based sequence predictors with only
2% increase in overall latency.

o For dimension obfuscation, we show how a convolution
layer with 64 input and 128 output channels can be
obfuscated so that it is extracted as a layer with 207 input
and 93 output channels with only 2% increase in layer-
level latency.

II. BACKGROUND
A. Neural Network Notation

We summarize the neural network notation that is used
throughout the paper, with focus on the most common Conv2D
operator (represented in 4D by k1, k2, ¢, j) in Table

TABLE I
NEURAL NETWORK NOTATION

Notation Definition

X Inputs of i-th layer
wO @ v Weights of i-th layer

() Activation function

k1, k2 Conv2D kernel sizes

¢ Input/Output channel sizes
hi, w; Height/Width of inputs
ho,wo Height/Width of outputs

B. NN Execution Flow

Generally, an NN architecture is a topology of neural
network layers with non-linear functions. Fig. [2] demonstrates

ISource Code: https://github.com/zlijingtao/Neurobfuscator
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Fig. 2. DNN model execution flow. (a) Scripting (Coding) in Python on
popular deep learning framework, (b) using TVM [12], a deep learning com-
piler for graph optimization via TVM Relay, and (c) Auto-TVM scheduling
to generate device-level code.

a typical NN execution process, which consists of multiple
steps. The first step is scripting (coding) of a DNN architecture
using Python with popular frameworks such as Pytorch or
Tensorflow. The scripting transforms the raw design into a
high-level dataflow graph (aka. computational graph). Next,
the high-level graph is ported to TVM for further optimization.
One can also directly use TorchScript or Tensorflow XLA
for graph optimization. For instance, in TVM, the graph
optimization process is handled by Relay module, which
provides handy options such as: 1) “FoldConstant ()”,
which evaluates expression involves only constants; 2)
“EliminateCommonSubexpr ()" which creates a shared
variable for multiple expressions with same output to avoid
the same expression being evaluated multiple times; and 3)
“FuseOps ()7, which fuses multiple expressions together.
User can specify which optimizations to enable.

The last step is scheduling which optimizes the execution of
operators on a given device. In TVM framework, a machine-
learning based scheduling called “AutoTVM” [14] is used to
generate optimized codes. For each operator in the optimized
low-level graph, AutoTVM module uses Xgboost [[15] to
search for the best schedule within the predefined search space.
Fig.[2](c) shows a generic multi-level loop nest implementation
of the linear operator. The search space for such a linear
operator is defined by one single knob, tile_m : [1,m], which
determines the tiling parameter m for input X.

C. Architecture Stealing Attack Flow

Extracting the architecture sequence is not trivial. Since
neural network execution goes through several steps of op-
timization as shown in Fig. 2] the intermediate steps bring
in lots of variations in the final device code which directly
affects the hardware trace. Prior works [1], [2] have adopted
machine learning to extract the architecture from side-channel
information. Both works successfully extract common archi-
tectures with very high accuracy. They share similar stealing
attack methodologies as illustrated in Fig. [3| but differ in their
prediction models.

The works in [1I], [2] both use Long-Short-Term-
Memory (LSTM) models to predict the layer sequence. First,
massive profiling of randomly generated DNNs on the target
devices is done offline. After proper labeling (an example is
shown in Fig Fig. [9), the attacker acquires a trace-sequence
dataset and uses it to train the LSTM model. At the time of the
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Fig. 3. Architecture stealing flow. (a): Layer Sequence Extraction (b): Layer
Dimension Extraction.

attack, the attacker uses the LSTM predictor to perform the
layer sequence extraction on the run-time trace of the target
DNN, which is time-series data consisting of multiple features
as shown in Fig. 3] The sequence prediction locates the layer
operator in the run-time trace and classifies it by layer type.

Then, dimension extraction is done for each identified layer
operator once its time-step (position) and class (layer type)
is known. This is considered to be simpler than sequence
extraction. Note that, dimension extraction can be done either
manually [1]] or automatically [2].

In summary, existing architecture stealing attacks heavily
rely on the run-time trace, and so to mitigate such stealing
attacks, our obfuscating tool changes the run-time trace as
much as possible.

III. THREAT MODEL

We only consider architecture stealing on applications run-
ning on common GPU devices. For other devices such as
FPGAs, CPUs and ASICs, we believe that the obfuscation
methods proposed in this paper can also be used. We consider
NN applications running in both remote and local settings.

In remote setting, we assume that the owner runs the NN
application on a third-party cloud computing platform and the
attacker acts as a normal user without system privilege on the
same machine. Specifically, the attacker can perform “driver
downgrading attack” to access the profiling API and thus
conduct GPU profiling on target neural network applications at
run-time. This is similar to the threat model presented in [2].

In local setting, we assume that the device is off-the-shelf
and the attacker can do profiling on an identical device to train
a predictor model. While the target application is running, the
attacker can get access to the run-time hardware traces of the
target neural network applications through side-channel attacks
(1, (31, (16l

Depending on the attack scenario and capability, we cat-
egorize the attacker w.r.t the extent of information leakage.
Table [II| describes three cases (from weakest to strongest):

o Case-A: Timing side-channel. The attacker can get accu-
rate operator latency information for each time step. For
example, the cycle information for each issued operator
is acquired in [3], [4]. This case naturally includes Elec-
tromagnetic (EM) side-channel [16], as the EM reflects
the cycle information of each operator.

e Case-B: DRAM side-channel. The attacker has access to
the DRAM read/write information of each operator, as
well as the latency through PCIE side-channel [1]], [|17].

e Case-C: Cache side-channel. The attacker enables
context-switching side-channel [2] or exploits the collo-
cation [|18] side-channel. By profiling spy applications,
the attacker samples the cache performance counters
of the target applications and uses it to extract cache
performance, DRAM transactions, latency of the target
kernels, etc. The additional cache performance counters
in case C include L1 cache and L2 cache utilization, hit
rate and read and write data volumes.

In all cases, the attacker does massive profiling of DNN
model’s run-time trace to steal the architecture.

TABLE I
DIFFERENT CASES OF INFORMATION LEAKAGE

Latency DRAM-Access Cache-Counters

Case-A v X X
Case-B v v X
Case-C v v v

IV. TRACE OBFUSCATION

Architecture stealing is possible because neural network
execution process is deterministic, as described in Fig. [2| To
provide countermeasure against architecture stealing, we pro-
pose six obfuscating knobs in scripting: layer widening, layer
branching, dummy addition, layer deepening, layer skipping
and kernel widening. Next, we propose selective fusion under
graph optimization and schedule modification in the backend.

A. Obfuscation in Scripting

We realize that many of the function-preserving transforma-
tions that have been successfully used in evolution NAS [[19]]
can be used in obfuscation. More specifically, we use layer
widening, layer branching, layer deepening, layer skipping and
kernel widening and dummy addition obfuscating knobs in
this phase. Note that while many of these operators have been
introduced before in the context of architecture evolution [20],
[21], we are the first to use them in terms of side-channel
countermeasures. Layer branching is redesigned, and dummy
addition knob is added for dimension obfuscation.

1) Layer Widening: Layer widening increases output chan-
nel j of a Conv2D layer or a linear layer. Basically, the
weights of the added output channels are duplicates of the
weights of existing output channels. We allow the widening
operator to take fractional numbers. For example, if the weight

Wk(l)k . takes a widening factor of 0.25x and results in
°1,K2,¢,9

U ki7k2,c,1.25 ;» then the first 0.55 of the output channels come
from the dug)lication of the first 0.255 output channel of
original Wk(:’,%c’j.

To preserve the functionality, next layer’s weights need

to be adjusted accordingly. In this example, the next layer

(i41) . . . .
K korj,m must m;:rease its input channel size accordingly,
i+1

resulting in U,gl ks,1.25j,m t0 match the increased output



channels. The dimension parameters of U+ for the first
0.57 input channels have to be adjusted for the duplicated
input channels.

Purpose: Layer widening increases memory accesses for
the current and the next layer by around (N — 1) times
for widening factor N. This results in increased number of
input/output channels and affects dimension extraction.

2) Layer Branching: Layer branching breaks a single NN
layer operator into smaller ones. For example, a Conv2D

operator W,ﬁ) ky.cj 15 branched into two parts (output-wise

(@)

oy 770
pranchmg). Ukl,kz,c,j /2 and Vkl,kz,.CJ /2 and thft final output
is the concatenation of the two partial convolutions:

* X(i), V(i)

kl,kzﬂc,j/2*X(i)) (1)

(‘,'oncate(Ulg?,kz,c,j/2

While the version in [19] only considers branching in the
output channel dimension of Conv2D/linear layers, we also
consider layer branching in the input channel dimension. A

Conv2D layer of weight Wk(j)’kz’c’j is branched into two

(input-wise branching): U ,gi) Ko c/2, and Vk(j’)kz /2,50 and the
final result is the addition of the two:
(4) i) v/ (8 j
Add(Uy, 1, e * X, Vierkaie/2. * x9) (2)

Here, the activation input needs to be sliced into two as
well to match the halved input channel dimension of two
smaller convolutions. Various branching methods are feasible,
for example, one can also separate it into more than two parts
or even do unbalanced branching. Here we consider balanced
branching into two or four parts, for both input-wise and
output-wise branching.

Purpose: Layer branching increases the number of layer
operators and changes the data volume that needs to be
accessed for each operator. For input-wise branching, the input
activation and weight volume are halved for each small kernel,
and for output-wise branching, input activation is the same but
weight and output activation volumes are halved. This knob
can be used for both sequence and dimension obfuscation.

3) Dummy Addition: Dummy addition is simply adding
zero to the activation results. We create a zero matrix of the
same shape as the activation output X of current layer.

Dy, =Objnyw, 3)

A dummy addition factor of N means that we create and add
the dummy matrix to the output repeatedly N x.

Purpose: Addition operators are “fused” into previous layer
operators in the fusion step in graph optimization (refer
to Fig. [J) and so the extra cache accesses from the addition
operator get added to the layer computation and affect the
dimension extraction of that layer.

4) Layer Deepening: Layer deepening inserts an extra
computational layer at the end of current layer’s activation
function. The insertion of a deepening layer U(*) does not
change the original result.

pUD 5 oW 5 X)) = (WD XD)

For linear layers, the deepening layer U (%) is simply an identity
matrix of the same size as its input. For Conv2D layer, layer
U of size (ki, k2,7, ) need to be initialized as:

, — k=l = ka1 —
Ué?l)))d}m: 0 a 3 Ab 5 ANd=m )
1 otherwise

We favor a kernel size of k; = ko = 1 which avoids too much
extra computation. Notice that the correctness of Eq. (@) also
depends on whether the activation function ¢(-) results stay
the same when it gets stacked ¢(-) = ¢(p(-)). Fortunately, the
most popular ReLU activation subscribes to this property. The
same property does not hold for batch normalization, so the
deepening layer must be added before batch normalization, as
shown in Fig. [] (a).

Purpose: Add an extra computational layer to the layer
extraction result. This can be used for sequence obfuscation.

5) Layer Skipping: Layer skipping inserts an extra compu-
tational layer as illustrated in Fig. 4] (b). The additional layer,
referred to as skipping layer, operates on the activation output
of an existing layer and adds it to the original activation output.
The skipping layer is initialized to zero and thus always have
a zero output martrix.

® Dezpero ®
(@)

X D—{(¥)
(b)

Fig. 4. (a) Illustration of Layer Deepening. (b) Illustration of Layer Skipping.

For an activation of size (b, j, h,,w,), the skipping layer
can be a Conv2D layer U(®) that has a shape of (ki, k2,7, j)
and all entries are zero. The output of the skipping layer is:

UD 5 Xy how, + Xojihoawy = Xbjihy v, (6)

Purpose: Add an extra computational layer to the layer
extraction result. This can be used for sequence obfuscation.

6) Kernel Widening: Kernel widening increases the kernel
size of a Conv2D layer. It is done by padding zeros to both the
input and convolution kernels. A kernel widening of “+1” to a
Conv2D layer of shape (k1, k2, ¢, j) will result in new weight
of shape (k1 + 2,k1 + 2,¢,7) and input of shape (b,c, h; +
2, w; + 2). We find this to be useful in particular for Conv2D
layers that have kernel size of 1 x 1. These small 1 x 1 kernels
would then transform to 3 x 3 kernels after widening.

Purpose: Change kernel size of the Conv2D operator, re-
sulting in a completely different trace. This affects dimension
extraction.

B. Obfuscation in Graph Optimization

Fusion is an important graph optimization technique in the
TVM Relay module. It fuses subsequent injective operators
(scaling or addition) in complex layer operators, such as



Conv2D, linear and max-pooling, and transforms the shape of
the inputs completely. Fusion ensures execution efficiency as
it improves the data reuse and avoids context switching over-
head. As shown in Fig. [5] the fused operator is significantly
faster than sum of the separate operators.

fused_nn_contrib_conv2d_winograd_add_nn_relu_add_kernel2

fused_nn_contrib_conv2d_w. | add_21 ke... add_21_kern...

Fig. 5. Fusion saves time by reducing kernel switching overhead. Top:
winograd_conv2d_kernel2 is fused with add and ReLU kernel. Bottom:
winograd_conv2d_kernel2 is issued separately from add and ReLU kernels,
resulting in significant increase in execution time.

7) Selective Fusion: Selective fusion is a controllable ver-
sion of the generic fusion. While the generic fusion fuses
successive injective operators greedily, the selective fusion
allows N successive operators to fuse and forbids more
operators to fuse. For example, by setting N to zero for a
Conv2D operator shown in Fig. [ the Conv2D operator will
be issued separately, as shown in the lower part of the figure.

Purpose: Increase the number of operators. Setting N to a
small value decreases the memory access and latency of a layer
operator, and affects both sequence and dimension extraction.

C. Obfuscation in Scheduling

In the backend, AutoTVM handles the compilation and
generates optimized code for a given device. It provides
options such as the number of trials for tuning, etc. We
investigated whether these options can be used to generate
randomness in the final result and thereby help in obfuscation.
We tried 3 rounds with different number of trials using the
default Xgboost (XGB) tuner in AutoTVM for a Conv2D
operator. All these trials generated the same schedule, which
is understandable because the tuning is designed to optimize
latency. The profiling results in Fig. [6] show that the cycle,
DRAM read and L1 cache utilization are very similar for
different number of tuning options (XGB-200, 400 and 800
denoted by bars 1-3), meaning AutoTVM derived schedule is
deterministic and cannot be directly used for obfuscation.
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Fig. 6. Profiling results of AutoTVM derived schedules using Xgboost tuner
with different number of trials (bars 1-3) and results using the proposed
strategies (bars 4-6).

8) Schedule Modification: To generate schedules via Au-
toTVM with different outcomes, the search space has to be

modified. Actually changing the search space requires a time-
consuming tuning (searching) process each time, and so we
propose a simple approach that directly modifies the derived
schedules with a small sacrifice on operator’s performance.
For example, the schedule derived by Xgboost in Fig. [f] is
[-1, 4, 8, 4] for “Tile-Y” and [-1, 2, 4, 2] for “Tile-X”. The
first dimension of the tiling is for mini-batch so it is fixed
as -1. We present a modification strategy by forcing each
of the other dimensions to be 1. For example, the schedule
for “Strategy-1" forces the second dimension to be 1, which
produces [-1, 1, 8, 16] for “Tile-Y” and [-1, 1, 4, 4] for “Tile-
X”. We set the values of other two dimensions by keeping the
product be the same as original (8 x 16 = 4 x 8 x 4) and
let them be as close as possible. We derived three modified
schedules using this method. Their profiling result is shown
in bars 4-6 in Fig. [§] For latency and L1 cache utilization,
all three schedules show noticeable difference. Strategy-2 is
an example of bad modification, where the DRAM read and
number of cycles explodes and L1 cache utilization is very
poor. Strategy-1, on the other hand, helps achieve obfuscation
without hurting the performance too much.

Purpose: Derive different schedules for the same operator
that present differences in latency, DRAM access and cache
performance. This affects dimension extraction.

V. NEUROBFUSCATOR TOoOL FLOW

The NeurObfuscator tool flow consists of two key steps:
1) sequence obfuscation which obfuscates the layer sequence
including layer type and topology, and 2) dimension obfus-
cation which obfuscates the dimensions of individual layer
operators. We summarize the role of each obfuscating knob
in Fig. [7]] Knobs with star superscripts affect both sequence
and dimension extraction.

Dimension \

Obfuscation Knob Set
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Obfuscation Knob Set

Layer Deepen
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Fig. 7. Obfuscating knobs in NeurObfuscator are separated into two sets.
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Since the purpose of sequence and dimension obfuscation
is orthogonal, we investigate them independently. To reduce
search time, we take one more step in limiting the search space
as follows.

Knob Partition. First, we partition the set of knobs, as
shown in Fig. [7] We put selective fusion and layer branching
together with layer deepening and layer skipping in the se-
quence obfuscation knob set. The remaining 4 knobs, namely,
layer widening, kernel widening, dummy addition and sched-
ule pruning are considered for dimension obfuscation. Among
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Fig. 8. Flowchart overview of proposed NeurObfuscator framework. It takes user’s vanilla architecture and outputs an obfuscated NN executable alternative.

them, selective fusion and layer branching knobs clearly affect
both sequence & dimension obfuscation. But we exclusively
use them in sequence obfuscation where they play a dominant
role (Fig. [12). The four knobs for dimension obfuscation
affect dimension parameters significantly while affecting the
sequence obfuscation very mildly. In the extreme case, a large
change in layer dimension can possibly flip the layer type in
sequence obfuscation.

Limited Obfuscation Knob Option. Each obfuscation
knob comes with a list of options where the i-th entry of
the list denotes a specific obfuscation choice for the i-th
layer operator. We limit the available options for each entry
to reduce the search time. For example, we limit the layer
deepening and layer skipping to at most 1, which means
at most one deepening layer and one skipping layer can be
applied to each layer.

Restricted Search Space. We restrict the search space by
keeping the number of entries (length of the list) for each knob
fixed based on the vanilla architecture. Otherwise, knobs such
as branching, deepening and skipping add extra computational
layers and can result in the search space exploding if they are
applied recursively.

A. Sequence Obfuscation

To derive the best set of obfuscating knobs for sequence
obfuscation, we model this as a combinatorial optimization
problem and solve it using genetic algorithm. Basically we find
the set of sequence obfuscating knobs such that the obfuscated
NN achieves strong obfuscation and can be executed within
a given time budget. The obfuscation metric is given by
layer prediction error rate or LER and the time budget is a
small fraction of the inference latency. The overview of the
obfuscation framework is given in Fig. [§]

The input to the framework is the vanilla model and time
budget (steps @-€). The device where the framework is
running on is also an underlying input since it determines the
trace. As discussed previously, the search space is based on the
vanilla architecture. An initial profiling is done to derive clean
latency 7™ and clean trace. The obfuscator applies a selected
set of obfuscation knobs in step @ and runs inference. The
profiling is done on the obfuscated model in step @ and the
evaluator calculates a fitness score given the latency and layer
prediction error rate (LER) in step @. When fitness score

converges (circling through steps @, ©@. @), the framework
outputs the compiled binaries of the obfuscated model.

1) Evaluator: LSTM Predictor Testbed: To evaluate the
obfuscation effect, we build a testbed that performs stealing
attack on the obfuscated architecture based on existing stealing
methods in [1], [2].

Dataset Generation. To mimic the attacker, first, massive
profiling on the user’s device needs to be done. So we build a
random neural network architecture generator, which is used
as input to the profiling toolset. It first fixes the depth of
the network (number of computational layers), and at each
step, randomly inserts neural network convolution layer with
random dimension parameters (input channel size and output
channel size), ResNet and MobileNet computing blocks and
pooling/batch normalization (BN) layers. Linear layers with
random number of neurons are added only after all the Conv2D
layers. The classification layer (linear layer with neuron equals
to the number of class) and the softmax layer are added at the
end. We generate 6,000 different neural network architectures
for input size of [3, 32, 32] and number of classes equals
to 10, to match the CIFAR-10 dataset setting. We generate
another 6,000 architectures for input size of [3, 224, 224],
and number of classes equal to 1,000 to match the ImageNet
dataset setting. Because normally the BN/ReLU are fused with
complex layer operators (Conv2D, Linear, etc.), we only label
the complex operators. An example of the randomly generated
architecture is shown in Fig. [0}
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Fig. 9. Random NN archtecture and its labeling. Labeling is only done
on Conv2D, Linear, MaxPool and SoftMax layers which are considered as
complex layer operators and will not be fused.

Run-Time Profiling. Both the offline and run-time profiling
is done using Nsight Computeﬂ which uses “kernel replay”
for accurate trace generation. We use this tool to simulate the
three cases (cases A, B and C) of attack described in Section
III. Two contemporary NVIDIA GPUs are used for profiling,

2 A proprietary tool maintained by NVIDIA corp. for CUDA kernel profil-
ing, similar to NVPROF.



i.e., a Turing GPU (GTX-1660) to profile models on CIFAR-
10 dataset and an Ampere GPU (RTX-3090) to profile models
on ImageNet dataset. We collect the number of cycles, DRAM
and cache performance metrics for each issued operator of
the model running in inference mode. After profiling, we
collect three sets of features to match the three attack cases.
The selected features in Nsight Compute profiling process are
listed in Table In practice, the attacker gets noisy trace
information through side-channels [1]], [2]. To study the worst-
case (i.e., strongest attack), we assume that the attacker that
can obtain an accurate trace.

TABLE III
FEATURE MEASUREMENT ENABLED IN PROFILING

Feature exists in Case
sm__cycles_active.sum A, B, C
dram__sectors_read.sum, dram__sectors_write.sum B, C
L1 transaction®| utilization’| hit ratd C
L2 transaction? utilizationa hit rat%f

“11tex__t_sectors_pipe_lsu_mem_global_op_ld/st.sum

b1 1tex__lsu_writeback_active.avg.pct_of_peak_sustained_active
“I1tex__t_sector_hit_rate.pct

1ts__t_sectors_op_read/write.sum
“Its__t_sectors.avg.pct_of_peak_sustained_elapsed

Y 1ts_t_sector_hit_rate.pct

LER metric. The LSTM-based predictor for the testbed
is a single-layer LSTM-RNN model with a Connectionist
Temporal Classification (CTC) decoder as adopted in Deep-
sniffer [1]. The Layer prediction Error Rate (LER) is used to
quantitatively measure the performance of a trained predictor.
The LER has the form:

ED(L,L*)
|L*|
where L is the predicted sequence and L* is the ground-truth,
ED denotes editing distance (Levenshtein distance [13]]) and

| - | denotes the length.

We derive three sets of LSTM predictors - one for each
attack case. For each case, we set different number of hidden
units of the LSTM network to 64, 96, 128, 256 and 512,
resulting in a total of 3x5 = 15 LSTM predictors. We split
each dataset into 4:1 for training and validation subsets, and
train for 150 epochs. The final validation LERs for all the
LSTM predictors are shown in Table We observe an ex-
cellent layer sequence extraction performance on case C where
all the latency, DRAM and cache features are considered for
each time-step, and a comparative poor performance on case
A where only the latency feature is considered.

Predictor Training. The evaluator uses the bagging ap-
proach [22] and provides the average LER of LSTM predictors
for different input sizes, where we choose the input sizes to
match that of CIFAR-10 and ImageNet datasets. The evaluator
is shown in Fig. The training needs to be done once for
each new device.

LER = (N

TABLE IV
VALIDATION LER OF LSTM-BASED LAYER SEQUENCE PREDICTORS

LSTM unit CIFAR-10 ImageNet

case A case B case C case A case B case C
64-unit 0.095 0.100  0.001 0.178 0.027 0.002
96-unit 0.121 0.087 0.007 0.291 0.035 0.000
128-unit 0.126 0.045 0.008 0.292 0.044  0.001
256-unit 0.077 0.023 0.013 0.283 0.031 0.004
512-unit 0.098 0.074  0.000 0.303 0.036 0.003

|
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Dataset Device Registered?
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l Train

Bagging Predictors D T
Obfuscated Trace
Ly, Ly, ... Ly
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Clean Trace

Clean Latency Obfuscated Latency

DR A T
Fitness Score 9}

Fig. 10. Design of the Evaluator in the proposed framework. Bagging
predictors supply LER (in sequence obfuscation) or DER (in dimension
obfuscation) to calculate the fitness score function.

Fitness Score
Function

2) GA-based Obfuscator: Our next goal is to maximize
the obfuscation given a user-defined latency budget, B. For
instance, B = 0.1 means that the user can afford up to 10%
extra inference latency. Then the optimization problem can
be set up as a constrained discrete optimization problem that
maximizes the average LER given the latency budget:

N
. 1
min - ;LERZ-(S)

st. T<(1+B)T"

®)

where, IV is the number of predictors in bagging, S denotes the
set of obfuscation options, 7' is the latency with obfuscation
and T is the clean latency without obfuscation.

Genetic Algorithm. We choose to use the genetic algorithm
(GA) to solve the discrete optimization problem. Since the
optimization with constraints in Eq. (§) cannot be directly
used in GA (as GA works well for unconstrained optimization
problems [23]]), the reward R (a.k.a. fitness score) for GA is
designed as follows:

ne ks uens /[or (UEEY] o

We replace the constraints in Eq. with a penalty term,
which penalizing the reward when latency 7' deviates from
the total latency (1 + B)T™. This deviation is normalized
and squared and a small offset term e is added to avoid
zero proximity. The block diagram of GA-based obfuscator

is shown in Fig.
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Fig. 11. Design of the GA-based Obfuscator in the proposed framework.

(random pivot)

The initial value of each obfuscating knob is randomly
generated based on the search space provided in step €@
in Fig. 8] For the mating process, we add top 50% of the
population based on fitness score into the mating pool. The
crossover process takes random pivot of two lists and produces
the same number of offsprings. In the mutation process, we
apply Gaussian noise with standard deviation o on each of the
offspring obfuscation sets with rounding and clipping to keep
the value in legal format. Mutated offsprings are added into
the candidate pool, and half of the candidates (including newly
added offsprings) that have lowest fitness scores are removed
from the candidate pool. The pool of candidates gradually
improve over generations resulting in high fitness scores.

B. Dimension Parameter Extraction

For dimension obfuscation, we focus on the obfuscating
knobs, namely, layer widening, kernel widening, dummy ad-
dition and schedule modification, that affect the dimension
parameters the most. We only describe obfuscation on standard
Conv2D operators as they appear most frequently in the DNN
architectures under testing.

DER metric. To evaluate the prediction error of a layer’s di-
mension parameter, we define dimension parameter prediction
error rate (DER) as a measure of the obfuscation effect similar
to the LER metric. If the number of input/output channels of
a Conv2D operator be (c, j), the DER for a given prediction
(c,7) on layer i is defined as:

e — ¢

+|Jf]|

DER(i) = =

(10)
where, ¢* and j* represent the original (without obfuscation
input/output channels.

Predictor Training. We adopt the Random Forest (RF)
model, as a bagging version of decision trees for the dimension
parameter extraction testbed. We collected around 50,000
traces for Conv2D operators with different input channel and
output channel parameters (c, j), which are the two most
important dimension parameters. We neglect stride, kernel size
and padding features because they rarely change. We train
RF regression model with different number of trees (30, 50,
100 and 200) to predict ¢ and j separately. The training and
validation ratio is set to 4:1. We record the average DER of the
validation dataset (20% of the data) for ImageNet and CIFAR-
10 for the three attack cases. The results in Table [V] show that

the dimension extraction has negligible error for cases B and
C and comparably high error for case A because it has only
latency feature. Furthermore, the number of trees do not affect
the prediction performance much.

TABLE V
AVERAGE DER OF RANDOM FOREST REGRESSION MODEL FOR
DIMENSION EXTRACTION.

Number of Trees CIFAR-10 ImageNet
case A case B case C case A case B case C
30-tree 0467  0.060 0.014 0.160 0.041 0.023
50-tree 0465 0.060 0.014 0.160  0.041 0.023
100-tree 0462  0.059 0.014 0.160 0.040 0.023
200-tree 0464  0.059 0.014 0.159 0.040 0.023

The dimension obfuscation framework is similar to that of
sequence obfuscation framework shown in Fig. |8} The user
needs to specify a budget that limits the latency increase in
dimension obfuscation for each layer. The evaluator (Fig. [I0)
uses RF regression model as the “Bagging Predictor” and aver-
age DER of all three attack cases to compute the fitness score.
Note that the GA-based obfuscator (Fig. for dimension
obfuscation has a different search space because a different
set of obfuscating knobs is considered.

VI. EVALUATION
A. Sequence Obfuscation Performance

We evaluate the performance of our obfuscation tool on a
series of standard models [24]-[26]. Specifically, we select
VGG-11, VGG-13, ResNet-20, ResNet-32 models on CIFAR-
10 running on a Turing GPU (GTX-1660). We select VGG-19,
ResNet-18 and MobileNet-V2 models on ImageNet running
on an Ampere GPU (RTX-3090). For the GA, we set the
population size to be 16 and run it till the fitness score
stabilizes which occurs around 20 generations. The standard
deviation o for the the mutation step is set to a high value
(i.e. o = 8.0) at the beginning and gets halved after every 4
generations. To eliminate the randomness, for each data point
reported here, we choose the average of 3 runs.

Effect of Individual Knobs. First, we investigate the effect
of individual knobs on stand-alone Conv2D operators with
different dimension parameters. We list the latency overhead
for different dimension parameters in Table VIl We found layer
branching introduces extra operators with a low latency cost.
For example, output-wise layer branching into four adds 3
extra Conv2D operators and 1 concatenate operator with at
most 49% latency increase. Selective fusion increases latency
by around 15% but it only introduces one extra ReL.U operator
and BN operator. In contrast, deepening layer and skipping
layer introduce an extra Conv2D operator at a lot higher
latency cost, and is thus not effective.

Since the latency overhead due to application of an ob-
fuscation knob on a single operator is large, the obfuscation
knobs have to be applied selectively to only certain layers.
Next, we demonstrate the contribution of individual knobs on



a full model using the GA-based obfuscator. We let only one
obfuscating knob be available at a time during the GA search,
and keep a fixed budget of B = 0.02. The results are shown
in Fig. [I2} Among all four sequence obfuscating knobs, layer
branching and selective fusion have higher LER for the same
latency budget and are clearly better choices. The selective
combination of 4 knobs by NeurObfuscator achieves stronger
obfuscation than any single knob, as expected.

TABLE VI
EFFECT OF INDIVIDUAL SEQUENCE OBFUSCATING KNOBS

Knobs Extra Operator Latency Overhead

Branching (output-wise by 2) 1 x Conv2D, 1 x Concate 21% ~ 27%

Branching (output-wise by 4) 3 x Conv2D, 1 x Concate 38% ~ 49%

Selective Fusion (N=0) 1 x ReLU, 1 x BN 14% ~ 15%
Deepen 1 x Conv2D (1x1 kernel) 39% ~ 89%
Skipping 1 x Conv2D 70% ~ 130%

Budget: 0.02 Model: EZZZAVGG-11 EEEIResNet-20 EE2VGG-13 RSNV ResNet-32

2

15

1

LER

0.5

Fusion Combined

Branching

Deepen Skipping

Fig. 12. Individual contribution of each sequence obfuscating knob in GA-
obfuscator, followed by combination effect. Time budget is selected at 0.02.
VGG-11, VGG-13, ResNet-20 and ResNet-32 are on CIFAR-10 dataset.

NeurObfuscator - Sequence Obfuscation. We demonstrate
the performance of NeurObfuscator on CIFAR-10 and Ima-
geNet datasets. For VGG-11, VGG-13 and ResNet-32 running
on CIFAR-10, we use bagging of all 15 LSTM predictors.
The LER results under different latency budgets are shown
in Fig. [[3] We notice that the LER absolute value is high
for VGG-11 and VGG-13 while low for ResNet-20 and
ResNet-32. This is because LER is the layer editing distance
divided by total number of layers of the vanilla architecture
(without obfuscation) and the sequence obfuscation affects
the absolute editing distance directly rather than the relative
editing distance (i.e., LER).

For VGG-19, ResNet-18 and MobileNet-V2 on ImageNet
dataset, case A and case B LSTM predictors struggle to
get good extraction performance, i.e., provide low LER for
the baseline architecture. So we use bagging of three “elite”
LSTM predictors (number of units of 128, 256, 512 LSTM
predictors in case C), which have near-zero clean LER. The
results are shown in Fig. Moreover, we observe that LER
increases sub-linearly with increasing latency budget. This is
because the search space is kept fixed, and the most effective
knobs with low latency overhead are chosen up front and
so increasing the budget only allows knobs that are not as
effective to get added to the obfuscation set.

KrrZAVGG-11
E=VvGG-13

= ResNet-20
KNSNJResNet-32

Model:

LER

Baseline 0.01 0.02 0.05

Latency Budget

Fig. 13. Sequence obfuscation results on typical architectures on CIFAR-10
dataset including VGG-11, VGG-13, ResNet-20 and ResNet-32.
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Fig. 14. Sequence obfuscation results on typical architectures on ImageNet
dataset including VGG-19, ResNet-18 and MobileNet-V2.

Summary 1: We demonstrate the performance of four
knobs, namely, layer deepening, layer skipping, layer branch-
ing and selective fusion, for sequence obfuscation. While
layer branching and selective fusion have relatively strong
performance, combination of all four knobs by GA in Neu-
rObfuscator results in the strongest performance. We evaluated
our tool on multiple models taking CIFAR-10 and ImageNet
datasets as input data. On a ResNet-18 ImageNet model, we
achieved a 2.44 LER (translates to 44 layers’ difference) with
a mere 2% inference latency overhead.

B. Dimension Obfuscation Performance

For dimension obfuscation, we use the RF regression testbed
and DER metric (Eq. ) to evaluate the effect of obfusca-
tion. We pick a Conv2D layer (C2) with 64 input channels
and 128 output channels with 3 x 3 kernel from VGG-19
network as an example. The top subfigure in Fig. [I3] shows
the layer operators marked by sequence obfuscation. Here
Cl1 is the input Conv2D layer with 3 input channels and
64 output channels. In this example, the job of dimension
extraction is to correctly predict the number of input channels
and output channels of C2. We use the predictor to predict the
output channel of C1 and input/output channel of C2. Here the
ground-truth 64 is predicted twice: once as output channel of



C1 and once as input channel of C2. The average is taken if
the two predictions do not match. Next, the effect of individual
obfuscating knobs is evaluated. The DER and latency overhead
for each knob are shown in Fig. [T3]

Issued Operations:

parameters. Since the search space is very large, we perform
100 trials of random choices. Fig. (d) plots DER as a
function of increasing latency. We see that there are DER
spikes (value larger than 1.0) at trials 7, 23 and 25, even when
the increase in latency is 1%. Thus, schedule modification is
by far the most effective knob in dimension obfuscation.

nn_conv2d_kernel0 [Cl]
.. %ﬁ nn_contrib_conv2d_winograd_kernel0 Neurobfuscator - Dimension Obfuscation_ We demon—
:L’f:::::ﬁ:iy’:ii;ﬂ/::y’::i:ij*i:::x:l (c2] strate the performance of NeurObfuscator on dimension pa-
(3,3,3,64 (3.3,64,128) ‘ rameter obfuscation. Using the same GA setting as in sequence
c2 DER - Latency obfuscation, and replacing the LER with DER, we obtain the
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channels is extracted to 207 input and 93 output channels.
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Fig. 15. Dimension Obfuscation on a Conv2D layer with 64 input channel
and 128 output channel. Application of (a) layer widening to C1/C2, (b) kernel
widening to C1/C2, (c) dummy addition to only C2, and (d) random schedule
modification that results in highest DER for a given latency overhead.

Layer Widening. We use grid-search on applying widening
factor of 1 to 1.5 (3/2) for C1 and C2. As shown in Fig.[13](a),
generally, applying higher widening factor increases the DER,
and increases the latency. We found a sweet point where
increasing the C1 output channel size by 1.25X can achieve
a 1.20 DER with 1.04x latency.

Kernel Widening. Kernel widening affects both types of
Conv2D operator. However, as shown in Fig. (b), in most
cases the large overhead makes it an expensive option to use
in practice. The exception is that increasing kernel size of C1
from 3 x 3 to 5 x 5 results in 0.88 DER with 1.05x latency.

Dummy Addition. Dummy addition does not affect the
dimension parameters of C2, because dummy operator are
issued after “winograd_kernel2” and will not be fused into
kernell. However for a standard Conv2D such as C1, dummy
addition has a dramatic effect. As shown in Fig. [I3] (c),
DER increases with increasing dummy addition factor and
reaches a sweet point when dummy addition factor is 2; the
corresponding DER is 0.42 and latency is 1.04x.

Schedule Modification. For the schedule modification
knob, we target the schedules of two templates (plain-Conv2D
and winograd-Conv2D), with a total of 13 distinct tunable

all four, NeurObfuscator achieves the best dimension obfus-
cation, as expected. On an example Conv2D layer with 64
input channels and 128 output channels, RF-based dimension
extraction achieves 2.05 DER and 2.51 DER under 1% and
2% inference latency overhead, respectively.

VII. CONCLUSIONS AND FUTURE WORK

To mitigate the neural architecture stealing on GPU de-
vices, we propose NeurObfuscator, a NN obfuscating tool
that provides both sequence obfuscation and dimension ob-
fuscation. We propose to use a total of eight obfuscating
knobs across scripting, optimization and scheduling phases
of a neural network model execution. Application of these
knobs affect the number of computations, latency and number
of memory accesses, thus altering the execution trace. To
achieve the best obfuscation performance for a user-defined
latency overhead, we leverage the genetic algorithm to identify
the best combination of obfuscation knobs. On a ResNet-18
ImageNet model, sequence obfuscation helps achieve a 2.44
LER (which translates to 44 layers’ difference) with merely
2% latency overhead. Similarly, with 2% latency overhead,
dimension obfuscation can achieve 2.51 DER corresponding to
the case when a 64 input channel, 128 output channel Conv2D
gets extracted as 207 input channel and 93 output channel.

While the proposed methodology has been designed for
GPU devices, we plan to extend this to other hardware
substrates, such as FPGAs and ASICs. Furthermore, we plan to



evaluate the end-to-end performance of such a system. Exam-
ples include accuracy evaluation if the obfuscated architecture
is used to train a new model, and the attack success rate of
the transfer adversarial attack if the obfuscated architecture is
used to built a surrogate model.
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