
HAL Id: hal-04004056
https://hal.science/hal-04004056

Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Insertion of random delay with context-aware dummy
instructions generator in a RISC-V processor

Gaetan Leplus, Olivier Savry, Lilian Bossuet

To cite this version:
Gaetan Leplus, Olivier Savry, Lilian Bossuet. Insertion of random delay with context-aware
dummy instructions generator in a RISC-V processor. IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST 2022), Jun 2022, McLean, VA, United States. pp.81-84,
�10.1109/HOST54066.2022.9840060�. �hal-04004056�

https://hal.science/hal-04004056
https://hal.archives-ouvertes.fr


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Insertion of random delay with context-aware 

dummy instructions generator in a RISC-V 

processor  

Gaëtan Leplus  

Univ. Grenoble Alpes 

CEA, Leti, 

F-38000 Grenoble, France 

gaetan.leplus@cea.fr 

Olivier Savry  

Univ. Grenoble Alpes  

CEA, Leti, 

F-38000 Grenoble, France 

olivier.savry@cea.fr 

Lilian Bossuet 

Laboratoire Hubert Curien 

Jean Monnet University 

F-42000 Saint-Etienne, France 

lilian.bossuet@univ-st-etienne.fr 

Abstract—Embedded systems are vulnerable to 

side channel and fault injection attacks. These two 

types of attacks can be slightly complicated by using 

temporal desynchronization methods. In this article 

we propose a new hardware solution to efficiently 

insert dummy instructions in run time for a general-

purpose processor. The main contribution of this 

solution is to contextualize these dummy 

instructions, making them less distinguishable and 

more variable with a minimal spatial overhead of 

2.96% and a 4.27% additional consumption and no 

code size impact on a CV32E40P RISC V processor. 

As a result, they bring a significant resistance to 

resynchronization methods.  

Keywords—Side channel attacks, Fault injection attack, 

countermeasures, random delays 

I. INTRODUCTION  

 

 Side-channel attacks such as differential power 

analysis (DPA) or fault injection represent a threat to 

embedded implementations of cryptographic 

algorithms. Most side channel and fault injection 

attacks require the adversary to know when the target 

operations occur during execution. This allows the 

synchronization of multiple traces at the critical event, 

as in DPA [1] or template attacks [2], or the introduction 

of a perturbation into the computations at the 

appropriate time, as in fault injection attacks [3]. The 

synchronization can be disrupted by random delays in 

the execution, increasing the complexity of the attack. 

Therefore a simple but effective physical attack 

mitigation strategy is to incorporate random delays into 

the execution of a cryptographic algorithm. It is a sort 

of concealment countermeasure that adds noise to side 

channel leaks (in the time, amplitude, or frequency 

domain) without deleting any information from the 

signal itself. 

 Among the various temporal randomization 

techniques proposed in the literature [4] there is a 

general distinction between software techniques based 

on random delay interrupts (RDI) [5] and hardware 

techniques based on increasing clock jitter. In general, 

the more countermeasures modify the operating 

parameters of the hardware e.g. clock jitter the more the 

solutions are focused on signal processing. In this 

context, it is worth noting that many evaluations of 

countermeasure effectiveness, preprocess the leakage 

traces by integrating them [6]. Somewhat influenced by 

this evaluation technique, researches are being 

conducted to increase the variability of dummy cycle 

insertions as much as possible in order to improve the 

statistical distribution of the random sample of delays, 

resulting in the noisiest dummy cycle insertions [5]. 

Other pattern recognition-based evaluations, on the 

other hand, can eliminate instruction additions [7].  

 In [7], the authors propose requirements for an 

efficient insertion of dummy instructions, they should 

use : 

- delays with no regular pattern 

- insertions that are not predictable 

- delays that look like the surrounding instruction 

Regular patterns are difficult to prevent for software 

methods since these instructions frequently require 

prologues. Furthermore, in many applications, we 

cannot afford to increase code size. Only hardware 

runtime insertion of dummy instructions allow to avoid 

this increase. Nevertheless, hardware solutions from the 

state-of-the-art, such as [8], [9], answer the first two 

points by randomly inserting instructions without 

pattern, but they raise the issue of distinguishing 

between dummy and genuine instructions. 

 The proposed hardware solution in this article not 

only addresses the issue of context-consistent 

instruction, but it also addresses how to make our 

dummy instructions less differentiable and more 
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diversified than other solution with a smaller hardware 

footprint and having no impact on the code size. 

II. THE PROPOSED COUNTERMEASURE 

 The proposed countermeasure is a hardware system 

able to insert dummy instructions at random intervals 

while the program is running. The goal is to materialize 

the concept of a dummy cycle, which is used at compile 

time in the vast majority of proposals. To facilitate 

explanations of the realization, we place ourselves in 

the RISC-V architecture with a CV32E40P in order 

processor with four stages. The choice of instruction set 

architecture (ISA) and processor architecture does not 

affect the relevance of the solution.  

 The architecture of the proposed countermeasure, 

presented on Figure 1, is divided into two parts: the 

generation of the instruction with the register "dummy 

opcode" and the block “Generate random instr”. Then 

the injection of the instruction into the processor 

pipeline with a multiplexer is controlled by a 

programmable frequency divider “Variable div clock” 

and a random bit “RNG”. There is also the propagation 

of a “flag dummy” signal to warn the following stages 

if a dummy instruction is in progress. 

A. Instruction generation 

 Dummy instructions generation should conduce to 

obtain instructions similar as much as possible to valid 

instructions, but it is challenging. The most common 

solution is to create the dummy instructions from 

predefined arithmetic opcodes. This solution generates 

those using already processed instructions, allowing to 

take advantage of almost the entire ISA as dummy 

instructions. Only the elements necessary for 

determining the type of instruction should be saved. 

Looking at the various types of instructions in Figure 2, 

we can see that only 17 bits of field opcode, funct3, and 

funct7 are useful during instruction decoding. It is 

important to pay attention to the instructions requiring 

a particular level of privilege. In RISC-V architecture 

these instructions are grouped in the SYSTEM opcode 

and are ignored in our solution to avoid any privilege 

inconsistencies.  

 Thus, if only these 17 bits are saved and the 

remaining bits can be chosen at random, the decoding 

should always be valid. But generating 15 random bits 

requires a costly RNG implementation. It is, therefore, 

preferable to choose these 15 bits in an internal state of 

the processor (from the control/status register (CSR), 

the registers, the program counter (PC), etc.). Its 

selection has few constraints; it just needs to change 

quite frequently among a large set of values. It has also 

few security problems because the manipulated data is 

used for register or immediate selection; it allows 

different inputs for the instructions at each run, and adds 

variability by randomizing the Hamming weight of the 

dummy instruction and the Hamming distance with the 

next and previous genuine instructions.   

B. Instruction insertion 

 The insertion of the instructions must not be 

predictable. It is necessary to add randomness in the 

decision to insert dummy instructions. In our solution, 

a variable clock divider provides a clock signal at the 

frequency 𝐹 ∗ 2  when 𝐹  is the targeted frequency of 

insertion of dummy instructions. 𝐹 Can be defined by a 

configuration register, for example a CSR. In our 

implementation, for practical reason we use a 32-bit 

register, outside the processor core, modifiable by 

JTAG. The insertion of an instruction is conditioned by 

a multiplexor controlled by the output of a AND gate 

with the output of a random number generator and the 

output of the clock divider as inputs. There is a 50/50 

chance that the output signal of the clock divider crosses 

the AND gate, resulting in an average frequency of 

dummy instruction insertion equal to 𝐹. At each period 

of the clock divider signal, the system recovers one 

instruction and stores it in the “dummy opcode” 

register. The variability has increased again because 

stored opcodes are used only once. 

  The insertion of the dummy instructions is done at 

the DECOD stage. At this moment the IF stage is 

frozen. The execution is resumed in the next cycle in a 

transparent way for the core. Thus, the normal flow of 

execution is not disturbed and interruptions are always 

functional. 

 With a dummy instruction and the generated signals 

during its running, we have to make sure that it does not 

disrupt the normal flow of execution. The “dummy 

flag” signal informs the processor that it is executing a 

dummy instruction. 
 

Figure 2: RISCV instruction types 

 

 

 

Figure 1: Architecture dummy instruction insertion 

 



III. PROCESSOR ARCHITECTURE MODIFICATION 

 It is difficult to define all of the changes because they 

are heavily dependent on processor architecture and 

implementation. However, some general considerations 

can be raised. First, when the processor runs a dummy 

instruction, no writing to memory or legitimate registers 

is permitted for obvious memory integrity reasons. In 

addition, it is necessary to avoid that the processor 

modifies the control registers, flags, or the PC; for 

example, jump and branch instructions. It is also 

required to prevent results from being bypassed. As 

proposed below, it might be interesting to change the 

architecture so that these dummy cycles are more 

similar to legitimate instructions. 

A. Writing to registers and memory 

Writing to the register bank is a distinguishing factor 

that can be used to detect dummy instructions. To avoid 

this, we only write to registers that are not used by the 

normal flow of execution. There is no need to change 

anything for the reads in register because only the writes 

influence on the genuine control flow. Because all of 

the registers are likely to be used, it is necessary to plan 

for two additional destination registers (shadow 

register). In the CV32E40P processor at each cycle, two 

registers can be written at the same time, one for the 

result of the ALU and another for memory accesses. 

However, writing always in the same registers is 

identifiable. Then, it is possible to implement a dynamic 

register bank, as shown in [10], to use the same physical 

registers for dummy and legitimate instructions.  
 The dynamic register bank, in Figure 3, is made 

possible by separating the register indexes targeted by 

the ISA from the physical registers. The index refers 

now to a lookup table pointing to a physical register 

location. A validity table of the physical registers must 

be kept in order to determine which register is utilized. 

 The validity table consists in adding a validity bit to 

each register in the bank. When a physical register is 

written, it is considered valid.  There are two ways to 

invalidate a register, the first is when a function return. 

Indeed when a ''RET'' instruction is executed a part of 

the registers is saved and the other one is not. These 

unsaved registers can be considered as invalid. The 

other way to disable a physical register is to maintain 

the dynamic nature of the register bank. When writing 

to the register bank, the physical register associated 

with the ISA register to be written is first invalidated, 

and then a new physical register is chosen from the free 

registers. Thus at each writing in an ISA register, this 

one is written in a different physical register. Figure 4 

illustrates a writing in an ISA register already assigned 

to a physical register. 

 The “Nxt_register block” draws a register index at 

random from the invalid registers. The complex logic of 

selection is disclosed  in [10] with an implementation 

closed to ours. In our case, we have up to two writes in 

the registers per cycle, so we have to draw randomly 

two different registers. This drawing was created with 

the assistance of a second “Nxt_register block” with 

different input parameters.  

When dummy instructions write to registers, the written 

register should not be validated. Moreover, it is not 

required to perform the aforementioned invalidation 

step. As a result, with dynamic register, the only 

discernible difference, from the attacker's perspective, 

for dummy register manipulation is in the management 

of the validity bits.  

 The management of Load/Store instructions is a 

concern because of the difficulty of determining free 

memory spaces. We solve this issue by assigning a 

unique address to memory reading and writing.  

B. Jumping and branching 

 Because branches and jumps are common 

instructions, we must find a way to execute them while 

remaining as close to the original behavior as possible. 

We use the same operation for jumps, but instead of 

jumping to the address indicated in the operand or 

register, we go to the next instruction.  

 The same approach cannot be used for branches; in 

fact, if the branch is taken, the processor must cancel 

the instructions that were executed prior to the result of 

the branch. As a result, instructions would be re-

executed, posing a problem not only of detection but 

 

Figure 4: Register validity update 

 

Figure 3 : Dynamic register bank 

 



also of leakage via side channels. As a result, we were 

forced not to consider the branches as dummy 

instructions. 

IV. DISCUSSION 

 Like most hardware solutions, the proposed solution 

of dummy instruction insertion, deals with both non-use 

of regular patterns and unpredictable insertion. 

However, it is the first solution which makes dummy 

instructions consistent with the current program with 

the reuse of already executed legitimate instructions and 

then able to reach the requirements for an efficient 

insertion of dummy instructions as defined by [7] and 

without increasing the code size.  

 In comparison to other hardware methods, our 

solution allows us to insert all logical and arithmetic 

operations, jumps, branches, and memory accesses, 

whereas other solutions insert only a few arithmetic 

instructions which limits their use to cryptographic 

primitives. In addition to time desynchronization, our 

solution includes dynamic register implementation, 

which complicates side-channel and fault attacks on the 

register bank. We implemented our architecture in RTL 

based on RISCY CV32E40P processor and synthesized 

it by RTL synthesis based on GF22FDX 

(GlbalFoundries 22nm FD-SOI) Standard Cells RVT 

process library. The results showed that it needed 15395 

GEs with shadow register or 17540 GE with dynamic 

register to implement our secure processor core. There 

was about respectively 2.96% and 14.83% additional 

area that was required and is also an increase in total 

power consumption of 4.27% and 10.19% over the 

original RISCY core which has an area of 14938 GE. 

As a comparison the overhead is 6.33% for softRIJJD 

and 8% for ERIST for an implementation on an ARM7 

architecture of initial size 30081GE synthesized it 

through the Synopsys Design Compiler based on a 

UMC 0.18 µm standard cell process library[8]. 

 As far as the performance overhead is concerned, it 

depends on the level of security that needs to be reached 

and the overhead of execution time that is willing to 

accept. The most common ratio in other solutions is 

between 15 and 25% [8], [9]. 

 Another issue that has received little attention and 

evaluation is distinguishing between dummy and 

genuine instructions in hardware. The classical methods 

of resynchronization such as cross-correlation or hidden 

Markov models do not seem to be able to differentiate 

them [8]. However, neural networks could be trained to 

suppress these instructions by learning the induced 

difference, in the same way of what is done for the clock 

jitter based countermeasures [11]. Although we propose 

improvements to make it more difficult, it remains to be 

assessed whether this difference is significant enough 

for the various types of instructions to be used to 

resynchronize the traces. 

V. CONCLUSION 

 In this paper, we presented a hardware solution to 

insert dummy instructions at run time that is optimized 

for general-purpose processors and has a low overhead. 

It consists in inserting a random delay based on dummy 

random instructions depending on the execution 

context. To perform it, the proposed solution involves 

the insertion of randomized instructions that have 

already been used without prologue or preamble, places 

us in an optimal framework that software solutions 

cannot reach. Unlike other hardware solutions, we 

propose instructions that are consistent with the 

execution context, and our instructions are highly 

variables.  

 The remaining work is to assess the impact on 

leakage of greater variability in the dummy instructions, 

but more importantly, assessing the feasibility of 

resynchronizing the traces based on the distinction 

between genuine and dummy instructions. 
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