
HAL Id: hal-04004056
https://hal.science/hal-04004056

Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Insertion of random delay with context-aware dummy
instructions generator in a RISC-V processor

Gaetan Leplus, Olivier Savry, Lilian Bossuet

To cite this version:
Gaetan Leplus, Olivier Savry, Lilian Bossuet. Insertion of random delay with context-aware
dummy instructions generator in a RISC-V processor. IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST 2022), Jun 2022, McLean, VA, United States. pp.81-84,
�10.1109/HOST54066.2022.9840060�. �hal-04004056�

https://hal.science/hal-04004056
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Insertion of random delay with context-aware

dummy instructions generator in a RISC-V

processor

Gaëtan Leplus

Univ. Grenoble Alpes

CEA, Leti,

F-38000 Grenoble, France

gaetan.leplus@cea.fr

Olivier Savry

Univ. Grenoble Alpes

CEA, Leti,

F-38000 Grenoble, France

olivier.savry@cea.fr

Lilian Bossuet

Laboratoire Hubert Curien

Jean Monnet University

F-42000 Saint-Etienne, France

lilian.bossuet@univ-st-etienne.fr

Abstract—Embedded systems are vulnerable to

side channel and fault injection attacks. These two

types of attacks can be slightly complicated by using

temporal desynchronization methods. In this article

we propose a new hardware solution to efficiently

insert dummy instructions in run time for a general-

purpose processor. The main contribution of this

solution is to contextualize these dummy

instructions, making them less distinguishable and

more variable with a minimal spatial overhead of

2.96% and a 4.27% additional consumption and no

code size impact on a CV32E40P RISC V processor.

As a result, they bring a significant resistance to

resynchronization methods.

Keywords—Side channel attacks, Fault injection attack,

countermeasures, random delays

I. INTRODUCTION

 Side-channel attacks such as differential power

analysis (DPA) or fault injection represent a threat to

embedded implementations of cryptographic

algorithms. Most side channel and fault injection

attacks require the adversary to know when the target

operations occur during execution. This allows the

synchronization of multiple traces at the critical event,

as in DPA [1] or template attacks [2], or the introduction

of a perturbation into the computations at the

appropriate time, as in fault injection attacks [3]. The

synchronization can be disrupted by random delays in

the execution, increasing the complexity of the attack.

Therefore a simple but effective physical attack

mitigation strategy is to incorporate random delays into

the execution of a cryptographic algorithm. It is a sort

of concealment countermeasure that adds noise to side

channel leaks (in the time, amplitude, or frequency

domain) without deleting any information from the

signal itself.

 Among the various temporal randomization

techniques proposed in the literature [4] there is a

general distinction between software techniques based

on random delay interrupts (RDI) [5] and hardware

techniques based on increasing clock jitter. In general,

the more countermeasures modify the operating

parameters of the hardware e.g. clock jitter the more the

solutions are focused on signal processing. In this

context, it is worth noting that many evaluations of

countermeasure effectiveness, preprocess the leakage

traces by integrating them [6]. Somewhat influenced by

this evaluation technique, researches are being

conducted to increase the variability of dummy cycle

insertions as much as possible in order to improve the

statistical distribution of the random sample of delays,

resulting in the noisiest dummy cycle insertions [5].

Other pattern recognition-based evaluations, on the

other hand, can eliminate instruction additions [7].

 In [7], the authors propose requirements for an

efficient insertion of dummy instructions, they should

use :

- delays with no regular pattern

- insertions that are not predictable

- delays that look like the surrounding instruction

Regular patterns are difficult to prevent for software

methods since these instructions frequently require

prologues. Furthermore, in many applications, we

cannot afford to increase code size. Only hardware

runtime insertion of dummy instructions allow to avoid

this increase. Nevertheless, hardware solutions from the

state-of-the-art, such as [8], [9], answer the first two

points by randomly inserting instructions without

pattern, but they raise the issue of distinguishing

between dummy and genuine instructions.

 The proposed hardware solution in this article not

only addresses the issue of context-consistent

instruction, but it also addresses how to make our

dummy instructions less differentiable and more

mailto:gaetan.leplus@cea.fr

diversified than other solution with a smaller hardware

footprint and having no impact on the code size.

II. THE PROPOSED COUNTERMEASURE

 The proposed countermeasure is a hardware system

able to insert dummy instructions at random intervals

while the program is running. The goal is to materialize

the concept of a dummy cycle, which is used at compile

time in the vast majority of proposals. To facilitate

explanations of the realization, we place ourselves in

the RISC-V architecture with a CV32E40P in order

processor with four stages. The choice of instruction set

architecture (ISA) and processor architecture does not

affect the relevance of the solution.

 The architecture of the proposed countermeasure,

presented on Figure 1, is divided into two parts: the

generation of the instruction with the register "dummy

opcode" and the block “Generate random instr”. Then

the injection of the instruction into the processor

pipeline with a multiplexer is controlled by a

programmable frequency divider “Variable div clock”

and a random bit “RNG”. There is also the propagation

of a “flag dummy” signal to warn the following stages

if a dummy instruction is in progress.

A. Instruction generation

 Dummy instructions generation should conduce to

obtain instructions similar as much as possible to valid

instructions, but it is challenging. The most common

solution is to create the dummy instructions from

predefined arithmetic opcodes. This solution generates

those using already processed instructions, allowing to

take advantage of almost the entire ISA as dummy

instructions. Only the elements necessary for

determining the type of instruction should be saved.

Looking at the various types of instructions in Figure 2,

we can see that only 17 bits of field opcode, funct3, and

funct7 are useful during instruction decoding. It is

important to pay attention to the instructions requiring

a particular level of privilege. In RISC-V architecture

these instructions are grouped in the SYSTEM opcode

and are ignored in our solution to avoid any privilege

inconsistencies.

 Thus, if only these 17 bits are saved and the

remaining bits can be chosen at random, the decoding

should always be valid. But generating 15 random bits

requires a costly RNG implementation. It is, therefore,

preferable to choose these 15 bits in an internal state of

the processor (from the control/status register (CSR),

the registers, the program counter (PC), etc.). Its

selection has few constraints; it just needs to change

quite frequently among a large set of values. It has also

few security problems because the manipulated data is

used for register or immediate selection; it allows

different inputs for the instructions at each run, and adds

variability by randomizing the Hamming weight of the

dummy instruction and the Hamming distance with the

next and previous genuine instructions.

B. Instruction insertion

 The insertion of the instructions must not be

predictable. It is necessary to add randomness in the

decision to insert dummy instructions. In our solution,

a variable clock divider provides a clock signal at the

frequency 𝐹 ∗ 2 when 𝐹 is the targeted frequency of

insertion of dummy instructions. 𝐹 Can be defined by a

configuration register, for example a CSR. In our

implementation, for practical reason we use a 32-bit

register, outside the processor core, modifiable by

JTAG. The insertion of an instruction is conditioned by

a multiplexor controlled by the output of a AND gate

with the output of a random number generator and the

output of the clock divider as inputs. There is a 50/50

chance that the output signal of the clock divider crosses

the AND gate, resulting in an average frequency of

dummy instruction insertion equal to 𝐹. At each period

of the clock divider signal, the system recovers one

instruction and stores it in the “dummy opcode”

register. The variability has increased again because

stored opcodes are used only once.

 The insertion of the dummy instructions is done at

the DECOD stage. At this moment the IF stage is

frozen. The execution is resumed in the next cycle in a

transparent way for the core. Thus, the normal flow of

execution is not disturbed and interruptions are always

functional.

 With a dummy instruction and the generated signals

during its running, we have to make sure that it does not

disrupt the normal flow of execution. The “dummy

flag” signal informs the processor that it is executing a

dummy instruction.

Figure 2: RISCV instruction types

Figure 1: Architecture dummy instruction insertion

III. PROCESSOR ARCHITECTURE MODIFICATION

 It is difficult to define all of the changes because they

are heavily dependent on processor architecture and

implementation. However, some general considerations

can be raised. First, when the processor runs a dummy

instruction, no writing to memory or legitimate registers

is permitted for obvious memory integrity reasons. In

addition, it is necessary to avoid that the processor

modifies the control registers, flags, or the PC; for

example, jump and branch instructions. It is also

required to prevent results from being bypassed. As

proposed below, it might be interesting to change the

architecture so that these dummy cycles are more

similar to legitimate instructions.

A. Writing to registers and memory

Writing to the register bank is a distinguishing factor

that can be used to detect dummy instructions. To avoid

this, we only write to registers that are not used by the

normal flow of execution. There is no need to change

anything for the reads in register because only the writes

influence on the genuine control flow. Because all of

the registers are likely to be used, it is necessary to plan

for two additional destination registers (shadow

register). In the CV32E40P processor at each cycle, two

registers can be written at the same time, one for the

result of the ALU and another for memory accesses.

However, writing always in the same registers is

identifiable. Then, it is possible to implement a dynamic

register bank, as shown in [10], to use the same physical

registers for dummy and legitimate instructions.
 The dynamic register bank, in Figure 3, is made

possible by separating the register indexes targeted by

the ISA from the physical registers. The index refers

now to a lookup table pointing to a physical register

location. A validity table of the physical registers must

be kept in order to determine which register is utilized.

 The validity table consists in adding a validity bit to

each register in the bank. When a physical register is

written, it is considered valid. There are two ways to

invalidate a register, the first is when a function return.

Indeed when a ''RET'' instruction is executed a part of

the registers is saved and the other one is not. These

unsaved registers can be considered as invalid. The

other way to disable a physical register is to maintain

the dynamic nature of the register bank. When writing

to the register bank, the physical register associated

with the ISA register to be written is first invalidated,

and then a new physical register is chosen from the free

registers. Thus at each writing in an ISA register, this

one is written in a different physical register. Figure 4

illustrates a writing in an ISA register already assigned

to a physical register.

 The “Nxt_register block” draws a register index at

random from the invalid registers. The complex logic of

selection is disclosed in [10] with an implementation

closed to ours. In our case, we have up to two writes in

the registers per cycle, so we have to draw randomly

two different registers. This drawing was created with

the assistance of a second “Nxt_register block” with

different input parameters.

When dummy instructions write to registers, the written

register should not be validated. Moreover, it is not

required to perform the aforementioned invalidation

step. As a result, with dynamic register, the only

discernible difference, from the attacker's perspective,

for dummy register manipulation is in the management

of the validity bits.

 The management of Load/Store instructions is a

concern because of the difficulty of determining free

memory spaces. We solve this issue by assigning a

unique address to memory reading and writing.

B. Jumping and branching

 Because branches and jumps are common

instructions, we must find a way to execute them while

remaining as close to the original behavior as possible.

We use the same operation for jumps, but instead of

jumping to the address indicated in the operand or

register, we go to the next instruction.

 The same approach cannot be used for branches; in

fact, if the branch is taken, the processor must cancel

the instructions that were executed prior to the result of

the branch. As a result, instructions would be re-

executed, posing a problem not only of detection but

Figure 4: Register validity update

Figure 3 : Dynamic register bank

also of leakage via side channels. As a result, we were

forced not to consider the branches as dummy

instructions.

IV. DISCUSSION

 Like most hardware solutions, the proposed solution

of dummy instruction insertion, deals with both non-use

of regular patterns and unpredictable insertion.

However, it is the first solution which makes dummy

instructions consistent with the current program with

the reuse of already executed legitimate instructions and

then able to reach the requirements for an efficient

insertion of dummy instructions as defined by [7] and

without increasing the code size.

 In comparison to other hardware methods, our

solution allows us to insert all logical and arithmetic

operations, jumps, branches, and memory accesses,

whereas other solutions insert only a few arithmetic

instructions which limits their use to cryptographic

primitives. In addition to time desynchronization, our

solution includes dynamic register implementation,

which complicates side-channel and fault attacks on the

register bank. We implemented our architecture in RTL

based on RISCY CV32E40P processor and synthesized

it by RTL synthesis based on GF22FDX

(GlbalFoundries 22nm FD-SOI) Standard Cells RVT

process library. The results showed that it needed 15395

GEs with shadow register or 17540 GE with dynamic

register to implement our secure processor core. There

was about respectively 2.96% and 14.83% additional

area that was required and is also an increase in total

power consumption of 4.27% and 10.19% over the

original RISCY core which has an area of 14938 GE.

As a comparison the overhead is 6.33% for softRIJJD

and 8% for ERIST for an implementation on an ARM7

architecture of initial size 30081GE synthesized it

through the Synopsys Design Compiler based on a

UMC 0.18 µm standard cell process library[8].

 As far as the performance overhead is concerned, it

depends on the level of security that needs to be reached

and the overhead of execution time that is willing to

accept. The most common ratio in other solutions is

between 15 and 25% [8], [9].

 Another issue that has received little attention and

evaluation is distinguishing between dummy and

genuine instructions in hardware. The classical methods

of resynchronization such as cross-correlation or hidden

Markov models do not seem to be able to differentiate

them [8]. However, neural networks could be trained to

suppress these instructions by learning the induced

difference, in the same way of what is done for the clock

jitter based countermeasures [11]. Although we propose

improvements to make it more difficult, it remains to be

assessed whether this difference is significant enough

for the various types of instructions to be used to

resynchronize the traces.

V. CONCLUSION

 In this paper, we presented a hardware solution to

insert dummy instructions at run time that is optimized

for general-purpose processors and has a low overhead.

It consists in inserting a random delay based on dummy

random instructions depending on the execution

context. To perform it, the proposed solution involves

the insertion of randomized instructions that have

already been used without prologue or preamble, places

us in an optimal framework that software solutions

cannot reach. Unlike other hardware solutions, we

propose instructions that are consistent with the

execution context, and our instructions are highly

variables.

 The remaining work is to assess the impact on

leakage of greater variability in the dummy instructions,

but more importantly, assessing the feasibility of

resynchronizing the traces based on the distinction

between genuine and dummy instructions.

ACKNOWLEDGMENT

 This work was supported by the French National

Research Agency in the framework of the

"Investissements d’avenir” program (IRT Nanoelec,

ANR-10-AIRT-05).

REFERENCES

[1] P. Kocher, J. Jaffe, et B. Jun, « Differential Power Analysis », in

Advances in Cryptology — CRYPTO’ 99, Berlin, Heidelberg, 1999,

p. 388‑397. doi: 10.1007/3-540-48405-1_25.
[2] S. Chari, J. R. Rao, et P. Rohatgi, « Template Attacks », Lect. Notes

Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinforma., vol. 2523, p. 13‑28, 2003, doi: 10.1007/3-540-36400-
5_3.

[3] N. F. Ghalaty, B. Yuce, M. Taha, et P. Schaumont, « Differential

Fault Intensity Analysis », in 2014 Workshop on Fault Diagnosis
and Tolerance in Cryptography, sept. 2014, p. 49‑58. doi:

10.1109/FDTC.2014.15.

[4] C. Clavier, J.-S. Coron, et N. Dabbous, « Differential Power
Analysis in the Presence of Hardware Countermeasures », in

Cryptographic Hardware and Embedded Systems — CHES 2000,

Berlin, Heidelberg, 2000, p. 252‑263. doi: 10.1007/3-540-44499-
8_20.

[5] J.-S. Coron et I. Kizhvatov, « An Efficient Method for Random

Delay Generation in Embedded Software », in Cryptographic
Hardware and Embedded Systems - CHES 2009, Berlin,

Heidelberg, 2009, p. 156‑170. doi: 10.1007/978-3-642-04138-9_12.

[6] S. Mangard, « Hardware Countermeasures against DPA – A
Statistical Analysis of Their Effectiveness », in Topics in

Cryptology – CT-RSA 2004, Berlin, Heidelberg, 2004, p. 222‑235.

doi: 10.1007/978-3-540-24660-2_18.
[7] F. Durvaux, M. Renauld, F.-X. Standaert, L. van Oldeneel tot

Oldenzeel, et N. Veyrat-Charvillon, « Efficient Removal of

Random Delays from Embedded Software Implementations Using
Hidden Markov Models », in Smart Card Research and Advanced

Applications, Berlin, Heidelberg, 2013, p. 123‑140. doi:
10.1007/978-3-642-37288-9_9.

[8] Z. He, T. Ao, M. Wan, K. Dai, et X. Zou, « ERIST: An Efficient

Randomized Instruction Insertion Technique to Counter Side-
Channel Attacks », IAENG Int. J. Comput. Sci., vol. 43, p. 65‑71.

[9] J. A. Ambrose, R. G. Ragel, et S. Parameswaran, « Randomized

Instruction Injection to Counter Power Analysis Attacks », ACM
Trans. Embed. Comput. Syst., vol. 11, no 3, p. 69:1–69:28, sept.

2012, doi: 10.1145/2345770.2345782.

[10] D. May, H. Muller, et N. Smart, « Non-deterministic Processors »,
juill. 2001, vol. 2119, p. 115‑129. doi: 10.1007/3-540-47719-5_11.

[11] E. Cagli, « Feature Extraction for Side-Channel Attacks », 2018.

