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Abstract—Masking is the main countermeasure against side-
channel attacks due to its sound formal proof of security and
the scalability of its protection parameters. However, effective
masking increases the implementation complexity by requiring
additional silicon area, random number generators and higher
latency. Thus, reducing the masking implementation costs while
conserving its robustness under side-channel attacks is a relevant
branch of research in hardware security applications.

Relying on the two-phase bundled-data protocol, this work
presents a low-latency masking implementation with arbitrary
protection order. In particular, we base our approach on the click
elements to control the handshake logic, allowing us to implement
asynchronous circuits using conventional synthesis tools. In this
manner, we are able to obtain an effective single-cycle and
protected implementation of the AES S-box requiring smaller
silicon area and potentially lower power consumption compared
to the state-of-the-art. Additionally, we detail the asynchronous
design methodology that can be applied in different scenarios
to improve the latency of secure hardware designs. Finally, we
assess leakages to evaluate the robustness of our approach against
side-channel attacks.

Index Terms—Side-channel attacks, hardware masking, asyn-
chronous circuits, low-latency, leakage assessment

I. INTRODUCTION

Side-channel attacks [11] represent a threat to electronic
systems designed to manipulate encrypted data. This class
of security exploit allows an adversary to obtain sensitive
information by observing the physical properties of a cryp-
tographic device. In this manner, side-channel traces, such as
power consumption and electromagnetic emanation, can be
statistically analyzed to reveal secret data — e.g., the cipher
key.

To avoid side-channel attacks, various countermeasures ex-
ist. Masking [3], [7], the most relevant among these solutions,
splits secret data into several uniformly distributed shares,
rendering more complex to predict the side-channel behavior
of a cryptographic device. Despite its sound formal proof of
security [3], implementing a secure masking scheme is not a
straightforward task.

Indeed, to satisfy different design and security properties, an
effective masking scheme involves significant implementation
resources. For instance, to avoid exploitable leakages due to
physical hazards such as glitches [15], [16], hardware design-
ers tend to add several register barriers in the circuit [4], which
raises the latency of masked modules, i.e., the number of
clock cycles needed to finish processing the data. In addition,
the protected design requires higher area overhead due to the
increase of the implementation complexity.

With the increasing proliferation of IoT devices, secure
low-latency and area-efficient cryptographic modules become
therefore necessary to satisfy commercial demands. In this
manner, many techniques have been proposed to balance the
masking implementation costs, with recent efforts aiming at
the design of low-latency schemes based on different ar-
chitectural approaches [1], [8], [20], [22], [29], [31]. Nev-
ertheless, the reduction in the overall clock cycle score is
accompanied by higher implementation costs and, in some
cases, lower throughput. In fact, many of these solutions rely
on asynchronous primitives and dual-rail encoding to obtain
low-latency implementations. As a consequence, the overall
silicon area is increased due to the chosen logic wiring. Thus,
maintaining a single-rail channel may be a better option to
achieve superior area efficiency.

Furthermore, designing asynchronous circuits is a challeng-
ing task, as most conventional EDA tools — e.g., Synopsys
Design Compiler — are not suited to this hardware design
approach. For this reason, clockless circuits are not widely
adopted as a solution, despite its potential advantages in low
power consumption and high performance [33]. Nevertheless,
recent works have addressed different methodologies to use
established tools, commonly used in synchronous design flow,
to ease the implementation of asynchronous circuits [5],
[14], [17], [40]. Based on these methodologies, this work
proposes a generic approach to design low-latency and area-
efficient higher-order secure masking built upon the two-phase
bundled-data communication protocol.



We rely on handshake control circuits made of edge-
triggered flip-flops to implement asynchronous masking with
the aid of conventional synthesis tools. To illustrate this design
approach, we present a case study of an asynchronous domain-
oriented masked AES S-box, a single-cycle implementation
that achieves d-glitch-extended security [4] with lower area
requirements compared to related solutions. We also compare
the proposed AES S-box with its equivalent synchronous
design to illustrate the potential advantages in terms of lower
power consumption and higher throughput.

The paper is structured as follows: Sections II and III
present the background and the related works, respectively.
Section IV discusses the asynchronous design methodology.
Then, Section V shows the implementation of the single-
cycle AES S-box relying on the domain-oriented masking.
Section V also examines the implementation results while
Section VI reviews the security robustness of our designs
against univariate and bivariate side-channel analysis. Finally,
Section VII concludes the paper presenting some perspectives
on the future work.

II. BACKGROUND

A. Masking

The masking countermeasure is based on secret sharing: an
algorithm splits the secret data x into several shares xi in such
a way that x = x0 ◦ x1 ◦ · · · ◦ xd, with the symbol ◦ denoting
a mathematical operation.

Knowledge of all shares S = (x0, x1, . . . xd) is required
to recover the secret. Thus, a subset of S cannot reveal the
unshared data x. In this context, the masking of a linear
operation is straightforward, as the shares can be manipulated
separately, that is, without recombining them back together.
However, the same does not stand for non-linear functions,
since recombining the shares may break their statistical inde-
pendence. In fact, masking non-linear functions effectively is
a critical aspect of hardware security.

To illustrate, let us take the domain-oriented masking
(DOM) scheme [9] — which is based on Boolean sharing,
i.e., ◦ = ⊕, the XOR operator — to dth-order mask with
d + 1 shares the multiplication f(a, b) = a ⊗ b = z in
GF (2n), expressed as Z = A⊗B. For a first-order masking,
the sets A = (a0, a1) and B = (b0, b1) represent the input
shares and Z = (z0, z1) the output sharing. Assuming that
the input shares are statistically independent, we want to solve
(z0⊕z1) = (a0⊕a1)⊗(b0⊕b1). A non-linear layer computes
the product terms a0 ⊗ b0, a0 ⊗ b1, a1 ⊗ b0, a1 ⊗ b1 and
adds a fresh random mask r to the cross-domain products,
that is, a0 ⊗ b1 and a1 ⊗ b0. Then, to ensure resistance
against glitches [4], registers (−→) store the resulting shares
(x0, x1, x2, x3), as we can see in (1).

f0(a0, b0) = a0 ⊗ b0 −→ x0

f1(a0, b1) = (a0 ⊗ b1)⊕ r −→ x1

f2(a1, b0) = (a1 ⊗ b0)⊕ r −→ x2

f3(a1, b1) = a1 ⊗ b1 −→ x3

(1)

a0

b0

b1

a1

r

FF

FF

FF

FF

z0

z1

Fig. 1. The first-order DOM multiplier.
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Fig. 2. A bundled-data block diagram.

The non-linear layer produces (d + 1)2 shares and is
followed by a sharing compression layer — as shown in (2)
for a first-order masking — to reduce the number of shares
back to (d+ 1), preventing a quadratic growth of the number
of shares through the computation [28].

z0 = x0 ⊕ x1
z1 = x2 ⊕ x3

(2)

Thanks to the register barrier between both layers and the
ISW random refreshing method [10] to mask the cross-domain
products, d-glitch-extended probing security is satisfied [4]. A
gate-level design of the DOM multiplier is shown in Fig. 1.

B. Two-Phase Bundled-Data Circuits and the Click Elements

The two-phase bundled-data is an asynchronous circuit
implementation style introduced by Ivan Sutherland in [35].
In this design approach, a bundled-data message carries the
single-rail data signal alongside with the handshake logic,
the request and acknowledgement signals, as shown in
Fig. 2. The sender indicates data availability with the request
signal. Then, the receiver uses the acknowledgement channel
to signal the computation of the corresponding data. To meet
data arrival timing requirements, delay elements are inserted
in the request channel between the sender and the receiver.
This delay is necessary to obtain a positive slack on the data
channel, resulting in an effective data propagation.

In this work, the handshake logic triggers the local control
pulse when the correspondent request or acknowledgement
signal transitions, which is known as two-phase protocol.
The local control pulses are generated by click elements, an
asynchronous control circuit introduced in [24] to implement
two-phase bundled-data handshake logic.
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Fig. 4. The handshake logic.

The click element relies on edge-triggered flip-flops and
combinatorial gates available in any standard cell library; it is
thus an alternative to handshake controllers built upon Muller’s
C-elements [21], [35] and latches [32]. In this manner, a
hardware engineer is able to use conventional EDA software
to perform static timing analysis, easing the design of asyn-
chronous circuits with the aid of established tools [14], [40].

A design of the click element is shown in Fig. 3. If req_m
6= ack_m, new data coming from the sender m are available
at the input channel. On the other hand, the receiver n has
collected the output data when req_n = ack_n. When new
input data, derived from the preceding block, are available,
and the current data have been received by the following
neighbor, a local pulse, denoted fire, is generated to trigger
the corresponding flip-flop. Note that, as expected for the two-
phase protocol, both the rising and the falling edges of the
request signal can produce a fire pulse, as shown in Fig. 4.

We opt to use the click element as a handshake control
circuit because it only requires typical cells present in any
technology library. Furthermore, the generated pulses can be
instantiated as clock objects, allowing us to perform static
timing analysis. We do not use dont_touch constraints on
our click element description.

III. RELATED WORK: LOW-LATENCY MASKING

The first work that borrows asynchronous primitives to
implement low-latency masking was presented by Moradi
and Schneider in [20]. In their work, they implement fully
unrolled first-order Threshold Implementations (TI) [23] of
PRINCE and Midori built upon Wave Dynamic Differential
Logic (WDDL) [36], which relies on dual-rail encoding to
produce bitwise operators.

Sasdrich et al. [29] employed the LUT-based Masked Dual-
Rail with Pre-charge Logic (LMDPL) [13] masking scheme
to implement a low-latency AES. By using the pre-charge /
evaluation logic with monotonic functions they were able to
obtain a glitch-free circuit [25]. Nevertheless, besides being
limited to first-order security, their AES design presents a high
silicon area cost, as the dual-rail blocks are duplicated in order
to perform the evaluation and pre-charge phases in parallel.

More recently, Nagpal et al. [22] presented a low-latency
DOM implementation also built upon WDDL gates, but em-
ploying Muller C-elements [21] as synchronization modules,
whose results have shown to be higher-order secure. A similar
approach is proposed in [31], employing data-driven hand-
shake logic built upon Muller C-elements to replace clocked
register barriers with self-timed latches in a DOM architecture.

In contrast to the dual-rail approach, but also based on the
DOM scheme, Gross et al. proposed the first generic low-
latency masking (GLM) [8]. In their work, they skip the com-
pression of shares after the non-linear layer, eliminating the
register barrier in (1). However, the number of shares shows a
quadratic growth after each masked multiplication. In conse-
quence, the area and randomness costs increase substantially,
and special care has to be taken during implementation to
avoid collisions when composing multiple masked multipliers.

With an algorithmic approach, Arribas et al. proposed the
Low-Latency Threshold Implementations (LLTI) [1]. How-
ever, their AES S-box design brings high area overhead and
is computed in two combinatorial steps, divided by a register
layer, limiting its composability in some low-latency scenarios.

In this paper, we present a secure area-efficient and low-
latency masking design approach with arbitrary protection
order, as a consequence of using the DOM as a case study. To
trigger the register layers, we employ an asynchronous control
circuit whose gate-level implementation requires logic cells
present in any technology library, making it more convenient
to traditional synchronous design flows and easing the appli-
cation of our masking methodology using already established
EDA tools. Also, we focus on bundled-data circuits to avoid
the limitations inherent to the dual-rail encoding [12], [18].
Furthermore, we want to eliminate the need of pre-charging a
glitch-resistant masking, which may improve throughput

IV. CLICK-BASED DESIGN METHODOLOGY

Fig. 5 illustrates a simple bundled-data pipeline with click
elements. When input data are ready, a transition of the request
signal req_m indicates their availability. For instance, the
req_m triggers the fire_1 pulse allowing the register R1
to capture the data_m.
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Fig. 5. A simple bundled-data pipeline with click elements.

After capturing the data and processing them through the
combinatorial circuit C1, the acknowledgement output of the
second handshake controller transitions, signaling the comple-
tion of this step. Now, the next transition of the request signal
can produce a new fire pulse. In this manner, both the rising
and the falling edges of the request and acknowledgement
signals indicate, respectively, data availability and that the
data have been processed. The register barriers neighboring
the combinatorial blocks are triggered by the correspondent
fire signal. The ack_n and req_n of the click i are
the ack_m and req_m of the click j, with j = i + 1.

Note that the timing requirements of a combinatorial circuit
must match the request channel delay between the neighboring
pair of click elements. For example, the block C1 must have
a stable output before the arrival of a fire_2 pulse at the
R2 register. To match the delay between click elements, a
chain of buffers (illustrated as .) is added to the request
channels. We apply a technique based on the works presented
in [40] and in [14] to determine the delay lines. The core
idea behind their approach is defining the fire pulses as clocks
during synthesis in order to report the timing requirements of
a path. Thus, we can design the necessary delay chain of a
request channel.

A. Delay Matching

The process to match the delays of the request channels is
described as follows. First, we declare the variables used to
store the delay values for each request channel. Initially, these
variables are initialized to zero.

Then, we use the command create_clock to define
the first fire signal as a physical clock in the design. Next,
we derive new clock objects for the following fire pulses
from its preceding fire signal as a master clock. For that, we
use the create_generated_clock command to generate
the new clock objects from an existing physical clock in
the design. This command also allows us to define a phase
relationship among the local pulses.

For instance, in our work we use the configuration below to
derive a generated clock fire shifted by t time units from
the source clock clk.

create_generated_clock -name fire \
-source clk -edges {1 2 3} -edge_shift {t t t}

Once the fire pulses are defined as clocks, we can report
the timing constraints of a combinatorial path between two
of them. For example, let us take the timing path between
fire_1 and fire_2 in Fig. 5, whose start point is the output
of R1 and the end point is the input of R2. The setup and the
hold time of R1 and R2 have to be satisfied to ensure the
correct functioning of the circuit. Equation (3) shows a rough
way to estimate the necessary delay tdelay,req of a request

tdelay,req > tclk→q + tlogic + tsetup (3)

With tclk→q the propagation delay of the flip-flop, tlogic
the propagation delay of the combinatorial circuit and tsetup
the setup time of the flip-flop. Similarly, the hold time thold
is expressed in (4).

thold < tdelay,ack + tclk→q,cd + tlogic,cd (4)

With tdelay,ack the delay in the acknowledgement chan-
nel, tclk→q,cd the contamination delay of the flip-flops and
tlogic,cd the contamination delay of the combinatorial logic.
In general, tclk→q,cd > thold and, due to the gate-level design
of the click element, tdelay,ack > thold. Therefore, no buffer
is needed in the acknowledgement channel.

To ensure appropriate setup time and hold time, we can
for instance report the slack of a timing path using the
report_timing command from fire_1 to fire_2. The
slack, expressed in (5), is the difference between the data
required time and the data arrival time, see Fig. 6. If the
static timing analysis reports a negative slack, the delay in
the correspondent request channel is not enough and has to be
increased.
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tslack = trequired − tarrival (5)

Based on the reported value, we use the set_min_delay
command to redefine the delay of the request channel. This
command adds a chain of buffers on the defined path in order
to satisfy the desired delay. To avoid the suppression of the
delay lines during the ASIC synthesis, we add — manually —
a single buffer with set_dont_touch constraints to each
request channel. Then, we are able to define the buffer chain
length using the set_min_delay command, to set a delay
of t time units from the req_n output to the req_m input
between two click elements.

Initially, we report the slack values without adding the
appropriate delay elements. Hence, we could perform a first
synthesis following the definition of the clock pulses. After the
first compilation, we report the timing requirements in order
to obtain the slack values for each timing path. Based on these
values, we redefine the delay lines with a 10% margin [40] and
the created clocks to match the data required time. Then we
can re-synthesize the design with the correct delays. In general,
two iterations are necessary to meet the timing requirements.
The flowchart in Fig. 7 illustrates the synthesis flow described
in this section.

V. MASKED IMPLEMENTATION: DOM CASE STUDY

Since this work focuses on the design methodology of low-
latency masking, we rely on a secure scheme with arbitrary
protection order. Thus, we can evaluate the effectiveness of
our approach against side-channel analysis and estimate the
implementation overheads. Indeed, this methodology can be
applied to any masking scheme containing register barriers in
order to obtain a single-cycle circuit.

For benchmark reasons, our low-latency AES S-box im-
plementation is based on the Canright’s design [2], which
is composed of eight combinatorial stages. Each stage is
preceded by a barrier of registers, as shown in Fig. 8.
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Fig. 7. Synthesis flow with delay matching process.

To obtain a single-cycle design, we trigger each register
barrier with a local clock pulse derived from a click element.
There are eight click elements Ci in total, one for each register
barrier. To match the timing of each combinatorial block, we
add a chain of buffers between the control circuits in such a
way that the request signal propagation delay is higher than
its corresponding data arrival time.

Our AES architecture is locally asynchronous and globally
synchronous. To shift the circuit out of steady state into normal
operation, we introduce a clocked element, named source,
that produces the first request signal, triggering the handshake
logic to process the current data. Therefore, the asynchronous
pipeline is triggered by a synchronous clock, whose period
must satisfy the throughput of the click-based pipeline. The
last click element, identified as sink, does not output a request
signal. Fig. 9 shows the design of the source and sink blocks
used in our design.

Since the input of the S-box remains constant during the
computation of the masked byte, we remove the registers after
the inner-domain operations of the DOM multiplier, as shown
in Fig. 10. Moreover, note that we do not use registers to
store the LSB and MSB in GF (22) and GF (24), as shown
in Fig. 8. This results in a smaller design — compared with
the original DOM implementation in [9] — by reducing the
number of flip-flops in our click-based masked version of the
Canright’s AES S-box.

A. Synthesis Results

We use Synopsys Design Compiler to synthesize our design
using a STM40 nm standard cell library. The area results are
normalized in terms of gate equivalent metric (GE) with a
two-input NAND gate from the selected library as reference.
We do not use compile_ultra scripts.
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Table I reports the performance figures of different masked
AES S-box designs. We show several first-order designs, but
we focus on the low-latency solutions to compare the higher-
order approaches whose results are available. We present
the implementation outcomes of our design up to the third
protection order.

Our click-based implementation is very competitive in terms
of gate counting. Indeed, by employing the two-phase bundled-

data protocol, instead of the dual-rail encoding, we present the
smallest design — with a significant margin — among the low-
latency solutions. The removal of the flip-flops formerly used
to store inner-domain products combined with the withdrawn
of the LSB and MSB registers contributes with the reduction
of the overall silicon area of our masked AES S-box based on
Galois-field arithmetic. Therefore, applying our technique to
the AES S-box shown in [37], which relies on a similar ap-
proach to achieve higher efficiency compared to the Canright’s
proposal, could result in an even more compact and efficient
design.

References [22] and [31] eliminate glitches as a result of
a monotonic pre-charge / evaluate logic. However, the use of
Muller cells may require engineering tricks in order operate
correctly under conventional design flows, as it is not a default
element in most technology libraries. Moreover, they rely on
the DOM multiplier, which is designed to be secure even in
the presence of glitches, diminishing the benefits of using
complex glitch-free techniques. Furthermore, despite allowing
to completely eliminate glitches, dual-rail circuits tend to be
significantly larger and may be susceptible to exploitable side-
channel leakages due to unbalanced routing [18] and early
propagation effect [12].

A few low-latency solutions eliminate the need of fresh
random masks. Arribas et al. [1] presents two low-latency TI
without online randomness. In addition to the four input shares
— which requires three random variables to mask the secret
— to achieve first-order masking, the resulting implementation
costs preclude its use in area-efficient scenarios. Further-
more, higher-order TI needs fresh random masks in order to
be higher-order secure [27]. Similarly, the dth-order “zero-
latency” implementation, by Gross et al. [8], brings unpractical
area costs and requires the duplication and random re-sharing
of the inputs to avoid exploitable side-channel leakages due
to collisions of shares.



TABLE I
PERFORMANCE FIGURES OF DIFFERENT MASKED S-BOX

IMPLEMENTATIONS.

Design Input Area Refresh Latency
Shares [kGE] [bits/cycle] [cycles]

First-order masked implementations
Ueno et al. [37] 2 1.39 64 5
Wegener and Moradi [38] 4 4.20 0 16
Sugawara [34] 3 3.50 0 3
Gross et al. [9] 2 2.60 18 8
Gross et al. [8] 2 6.74 416 2
Gross et al. [8] 2 60.73 2048 1
Gross et al. [8] 2 17.83 0 0
Arribas et al. [1] 4 25.78 0 1
Arribas et al. [1] 4 58.41 0 1
Simões et al. [31] 2 6.10 36 1
Sasdrich et al. [29] 2 3.48 36 1
Nagpal et al. [22] 2 3.98 34 1
Nagpal et al. [22] 2 7.59 18 1
this work 2 1.64 36 1
Second-order masked implementations
Gross et al. [8] 3 57.11 4446 2
Simões et al. [31] 3 11.40 108 1
Nagpal et al. [22] 3 9.34 102 1
Nagpal et al. [22] 3 14.78 51 1
this work 3 3.43 108 1
Third-order masked implementations
this work 4 5.84 216 1

Our implementation requires 18(d2 + d) fresh random bits
to achieve dth-order masking, as the Canright’s design has 36
AND gates [10]. The original DOM design in [9] uses half
of the same amount as 18 AND gates are computed within a
single combinatorial circuit between two register layers. Note
that computing one AES round within a single cycle requires
twenty times this amount of randomness — if the AES key
schedule is masked.

We refer to Table II for the timing performance figures
of several first-order low-latency masking implementation
of the AES. Despite achieving secure single-cycle masking
computation, the maximum frequency of our solution is lower
compared to the low-latency masking techniques present in the
state-of-the-art. Indeed, there are eight synchronization stages
within our AES S-box, whose delays have to be matched
correctly and with a security margin. Thus, applying the click-
based masking to a more compact architecture with lower
synchronization stages may improve the throughput.

As mentioned, despite adopting asynchronous techniques,
a synchronous clock signal triggers the S-box computation.
Thus, our AES S-box is processed within a single-cycle and
allows the computation of the shift rows, mix columns and add
round key functions during the same period. Therefore, we
could classify our implementation as a “zero-latency” one, as
defined in [8], since no globally-clocked registers are required
once the AES S-box computation is started. This is not the
case for the LLTI [1] and for the single-cycle masking with
arbitrary protection order shown in [8].

Therefore, our S-box design allows the secure computation
of an AES round within a single cycle. However, the clock
period must match the circuit’s critical path. Since we perform
one round per cycle with locally clocked layers, the maximum

TABLE II
TIMING PERFORMANCE OF DIFFERENT LOW-LATENCY FIRST-ORDER

MASKED AES128 ENCRYPTION.

Design Technology S-box Latency Frequency
[cycles] [MHz]

Gross et al. [8] UMC 90nm 0 288
Gross et al. [8] UMC 90nm 1 356
Gross et al. [8] UMC 90nm 2 584
Sasdrich et al. [29] UMC 90nm 1 400
Arribas et al. [1]a NanGate 45nm 1 277
Arribas et al. [1]b NanGate 45nm 1 40
Nagpal et al. [22] UMC 65nm 1 192
Simões et al. [31] STM 40nm 1 5
this work STM 40nm 1 55

aLow-Latency Threshold Implementation
bThreshold Implementation

operation frequency of our application is limited. For the first-
order masking, our synthesized AES S-box design achieves a
frequency of 55 MHz, while its synchronous counterpart can
operate at 250 MHz. Considering the synthesis of both designs
under the same technology, the maximum frequency is reduced
by a factor of five, approximately.

Certainly, a traditional synchronous design may achieve
higher clock frequency due to the smaller critical path. Never-
theless, our approach considers the local propagation time of
a combinatorial block instead of using a global clock whose
frequency is defined by the worst-case critical path. Moreover,
eight clock cycles are needed to compute the synchronous S-
box, while our design can output the correct byte in one clock
cycle, which makes our solution more suitable in low-latency
scenarios with an appropriate clock frequency.

From the click-based AES S-box, we implemented three
dth-order masked AES128 encryption variants: 8-bit, 32-bit
and 128-bit serialized data path. We refer to Table III for
the performance figures of our different AES128 encryption
implementations.

The appropriate length of the bit serialized data path de-
pends on the application. Thus, the current comparison aims
at presenting the performance figures — in terms of area, fresh
randomness and encryption latency — of a click-based AES
architecture for different cases. We also present the Area ×
Latency product as a metric of the trade-off between both
characteristics.

The 8-bit and 32-bit versions have an architecture similar
to [19]. The 8-bit variant has only one S-box, which is also
used during the key schedule, as well as the 32-bit case,
which contains four S-boxes. The 128-bit variant performs
a round function within one clock cycle and solves the
sixteen SubBytes in parallel alongside with the key schedule,
totaling twenty S-boxes. Therefore, the round keys used in
the encryption are masked in all variants. Unmasking the key
would improve the area and latency results, but we decide to
maintain the key masked for benchmark reasons.



TABLE III
PERFORMANCE FIGURES OF OUR MASKED AES ENCRYPTION

IMPLEMENTATIONS BASED ON CLICK ELEMENTS.

Data Path Area Refresh Latency Area vs Latency
[bits] [kGE] [bits/cycle] [cycles] [GE×cycles×10-6]
First-order masked implementations
8 6.42 36 216 1.39
32 12.73 144 54 0.69
128 43.45 720 11 0.48
Second-order masked implementations
8 10.64 108 216 2.30
32 22.77 432 54 1.23
128 83.82 2160 11 0.92
Third-order masked implementations
8 15.35 216 216 3.32
32 35.25 864 54 1.90
128 136.92 4320 11 1.51

B. Toggle Rate

With the objective of gauging the power consumption of our
approach compared to the clocked implementation, that is, the
original design proposed in [9], we observe the toggle rate
of the synchronous and click-based DOM of the Canright’s
AES S-box. We use a hundred thousand traces to compute
the average signal toggle rate of the simulated devices during
the computation of a SubBytes; thereupon, we integrate the
resulting toggle activity to compute the mean, which gives us
a rough estimation of the power consumption. The results are
shown in Fig. 11.

Our first-order solution has a toggle rate ≈77% smaller than
the synchronous implementation operating in pipeline mode.
When the synchronous design operates without a pipeline,
similar to our application, this gap is reduced to ≈ 57%.
Indeed, besides operating without a pipeline, this synchronous
design updates the random refresh bits every positive clock
edge, which explains the difference in the toggle rate despite
its similarity with the click-based design. Therefore, our asyn-
chronous solution shows a lower toggle rate, which indicates
a potential reduction in power consumption.

C. FPGA Implementation

We managed to set minimum path delays on the request
channel using an ASIC synthesis flow with Synopsys De-
sign Compiler. By adding a buffer manually and applying
dont_touch constraint on it, we prevent the tool from
modifying the buffer chains during optimization. However, we
were not able to do the same for the FPGA implementation
using Xilinx Vivado. To solve this issue, we describe the chain
of buffers whose length is a user-defined parameter. We report
the slack in the same manner to find the parameter values
that meet the timing requirements. Fig. 12 shows a hardware
description of a delay line used to implement a chain of buffers
in an FPGA.

VI. SIDE-CHANNEL ANALYSIS

We simulate the signal switching activity of our low-latency
AES S-box to evaluate its robustness against side-channel
attacks.
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Fig. 11. Comparison of the toggle rate of the click-based and synchronous
DOM implementations of the Canright’s AES S-box.

module delay_line #( parameter LENGTH = 1)
( input A, output Z);

genvar i;
(* dont_touch = "true" *) wire [ LENGTH :0] channel ;

assign channel [0] = A;
assign Z = channel [ LENGTH ];

generate
for (i = 0; i < LENGTH ; i = i + 1) begin : BUFFER

LUT1 #(.INIT(2'h2))
LUT1_inst (.O( channel [i+1]), .I0( channel [i]));

end
endgenerate

endmodule

Fig. 12. Hardware description of a chain of buffers using LUTs.
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Fig. 13. Modeling power traces from VCD files generated after back-
annotated simulation.

Our back-annotated analysis considers the standard cell
timing characteristics in order to perform a realistic modeling,
taking into account the occurrence of glitches. We use Mentor
Graphics QuestaSim to perform logic simulations; the tool
outputs VCD files which are parsed to obtain the toggle
behavior of all internal wires of the masked circuit. This
method allows us to model the system’s side-channel behavior
in a noiseless manner with a sampling frequency of 10 GHz.
Fig. 13 shows the block diagram illustrating the acquisition of
simulated traces used in our side-channel leakage assessment.
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Fig. 14. First-order t-test results for the first-order masked AES S-box using
ten million traces.

0 50 100 150

−400

−200

0

Samples

2n
d
o
rd
er

t-
st
a
ti
st
ic
s

Fig. 15. Second-order t-test results for the first-order masked AES S-box
using ten million traces.

We apply the fixed vs random t-test methodology1 proposed
by Goodwill et al. [6]. It uses the t-statistics, as expressed
in (6), to determine whether the difference in the means of
two distributions provides sufficient evidence to reject the null
hypothesis. Thus, a distribution Q0 represents the set of traces
corresponding to a random input and a second population Q1

groups the traces obtained after computing the pre-defined
input.

t =
µ0 − µ1√
v0
n0

+ v1
n1

(6)

Where µi represents the expected value of the population
Qi, while vi denotes its variance and ni the cardinality of
the associated set. In short, a side-channel leakage can be
potentially exploited during an attack when the resulting t-
statistics exceeds a threshold of ±4.5 [30].

A. Univariate analysis

In the univariate analysis, all samples are processed in-
dependently as the shares were manipulated in parallel and
leaked at the same instant, which is typically the case for
hardware designs. Fig. 14 shows the first-order t-test on
the first-order masked AES S-box using ten million traces.
No exploitable side-channel leakages were identified in the
first-order analysis. Nevertheless, second-order leakages were
spotted for this implementation, as we can see in Fig. 15. Both
results were expected outcomes.

1We use SCALib for side-channel analysis: github.com/simple-crypto/scalib
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Fig. 16. Second-order t-test results for the second-order masked AES S-box
using ten million traces.
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Fig. 17. Third-order t-test results for the second-order masked AES S-box
using ten million traces.
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Fig. 18. Third-order t-test results for the third-order masked AES S-box using
ten million traces.

To protect the system against second-order analysis, we
increased the number of shares up to three to obtain a second-
order masked implementation. Fig. 16 shows the second-
order t-test on our second-order masked AES S-box using
ten million traces. No exploitable side-channel leakages were
detected, indicating the effectiveness of our implementation
against higher-order attacks.

However, by increasing the order of the side-channel anal-
ysis to d = 3, exploitable leakages were detected, as shown
in Fig. 17, which demonstrates the vulnerability of a second
order masked design against third-order side-channel attacks.

We also perform the same third-order univariate analysis
on our AES S-box masked with four shares, Fig. 18. As
expected, no side-channel leakages were detected in this case,
indicating that our single-cycle S-box is robust against higher-
order attacks.
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Fig. 19. Second-order bivariate analysis results for the second-order masked
low-latency implementation of the AES S-box. The lower triangle shows the
t-test results when the random mask refreshing is enabled. The upper triangle
shows the t-test results when the random mask refreshing is turned off.

From these results, we can confirm that our approach does
not weaken the DOM and can be potentially applied in dif-
ferent cryptographic systems in order to achieve single-cycle
implementation without penalizing its security properties. We
highlight that, the higher the masking order, the more complex
it is to perform a successful side-channel attack in practice.

B. Bivariate analysis

The univariate setting considers the case in which the shares
are processed in parallel, resulting in the sum of the share’s
exploitable side-channel leakage at the same sample point.
However, if different shares leak at different spots, a univariate
analysis is not capable of proving reliable side-channel leakage
assessment. In this case, the different sample points of the set
of traces have to be combined prior to the t-test. [30].

To ensure the robustness of our click-based approach, we
also perform bivariate analysis on our second-order design.
Fig. 19 shows the bivariate analysis for the second-order AES
S-box using ten million traces. The upper triangle shows
the results when the random mask refresh is disabled, while
the lower triangle illustrates the side-channel analysis when
fresh randomness is employed. The result obtained for the
unprotected setting uses only 0.1% of the number of traces
used in the protected scenario, that is, ten thousand against
ten million traces.

The blue and red dots shown in Fig. 19 represent sample
points in which the multivariate t-statistics exceeds the ±4.5
threshold. As expected, without refreshing the random masks,
exploitable leakages were detected in our design, confirming
the need of online randomness to obtain a secure masking
implementation. It also reaffirms that our click-based approach
does not bring any weakness to the secure design, even in
bivariate analysis.

VII. CONCLUSION

Low-latency masking is an important topic in secure hard-
ware implementation. Indeed, given the growth of IoT applica-
tions, many embedded systems require cryptographic solutions
offering lower latency and better area efficiency. In this con-
text, this work presents the smallest masking implementation
of a single-cycle AES S-box with arbitrary protection order to
date.

To achieve low-latency, we rely on a click-based asyn-
chronous design methodology, allowing hardware engineers
to use a conventional synthesis flow to implement single-
cycle cryptographic blocks that are secure against dth-order
side-channel analysis. Also, despite the potential low-power
and high performance of asynchronous circuits, this design
approach is not widely used in secure hardware applications
yet. Therefore, this work also helps to bridge the gap between
asynchronous circuit design and hardware masking schemes.

Compared to similar asynchronous low-latency solutions
based on the dual-rail protocol, we achieve a smaller sili-
con area of the AES S-box by employing the bundled-data
protocol. Furthermore, the logic depth is reduced, which may
improve the overall performance of our design compared to
these dual-rail implementations under the same technology
and circuit logic. Also, bundled-data circuits resemble tra-
ditional synchronous design, which eases the application of
this methodology by hardware security engineers familiar with
already established synthesis flows.

Lower latency comes at the cost of larger critical path,
which limits the maximal operation frequency of the system.
However, instead of waiting several clock cycles to compute a
secure function, our approach reduces the latency to a single
clock while satisfying the necessary formal security properties.
Additionally, one can potentially improve the throughput of the
AES S-box by applying our click-based approach to a more
compact design, with lower synchronization stages, which
could also result in an even smaller implementation, depending
on the chosen architecture.

We present the case study of the domain-oriented masking
scheme to illustrate the methodology employed in this work.
By relying on a known secure implementation, we aim at
measuring the overheads of converting a synchronous design
into an asynchronous circuit based on the two-phase bundled-
data protocol. Moreover, we were also interested in assessing
the leakages to evaluate the robustness of our click-based
solution against side-channel attacks. Indeed, our implementa-
tion approach does not reduce the reliability of the originally
synchronous design against exploits, indicating an efficient
way to implement higher-order secure low-latency masking
based on synchronous dth-order protected implementations.

Compared to its synchronous counterpart, the overall toggle
rate of our DOM implementation is reduced, which indicates
a potential advantage in low power scenarios.

Finally, despite presenting an AES S-box use case, the
proposed method can be applied to different cryptographic
modules to improve latency.
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