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Abstract—Point-to-point metrics, such as latency and band-
width, are often used to characterize network performance with
the consequent assumption that optimizing for these metrics is
sufficient to improve parallel application performance. However,
these metrics can only provide limited insight into application
behavior because they do not fully account for effects, such as
network congestion, that significantly influence overall network
performance. Because many high-performance networks use
deterministic oblivious routing, one such effect is the choice
of routing algorithm. In this paper, we analyze and compare
practical and theoretical aspects of different routing algorithms
that are used in today’s large-scale networks. We show that
widely-used theoretical metrics, such as edge-forwarding index
or bisection bandwidth, are not accurate predictors for average
network bandwidth. Instead, we introduce an intuitive metric,
which we call “effective bisection bandwidth” to characterize
quality of different routing algorithms. We present a simple
algorithm that globally balances routes and therefore improves
the effective bandwidth of the network. Compared to the best
algorithm in use today, our new algorithm shows an improvement
in effective bisection bandwidth of 40% on a 724-endpoint
InfiniBand cluster.

I. INTRODUCTION

The focus of network performance assessment and im-

provement is often concentrated on the point-to-point metrics

bandwidth and latency. Techniques such as the use of multiple

transmission channels or operating system bypass are utilized

to increase point-to-point communication performance. How-

ever, it is often the case that large improvements in overall

bandwidth and latency can be achieved with optimized routing

strategies. Practical tests [13] showed that some traffic patterns

can suffer from up to 6.5 times lower bandwidth and 5 times

higher latency in existing InfiniBand installations because of

congestion.

A common measure to assess the performance of a complete

network is bisection bandwidth: the bandwidth of a worst-case

bisection of the physical network graph. This scheme ignores

routing in the network and thus, networks that have full bi-

section bandwidth deliver only 55%–57% effective bandwidth

for random bisections [13]. The effective bisection bandwidth

(Λ, see Section IV-A) models the expected bandwidth if each

network endpoint communicates with exactly one partner. The

effective bisection bandwidth considers the routing strategy

of the network and thus more accurately predicts parallel

application performance.

Routing depends on many parameters, such as crossbar

and buffer size. Additionally, practical constraints (e.g., purely

deterministic destination-based route selection) often prohibit

the use of excellent theoretical results in existing systems.

In this work, we present a simple deterministic, fast and

practical algorithm to generate oblivious routing tables. We

demonstrate the practical applicability to large InfiniBand

networks in comparison to all routing algorithms that are used

by InfiniBand’s Subnet Manager OpenSM.

Routing algorithms can be categorized in oblivious and

adaptive algorithms. An oblivious algorithm determines a

route for each source-destination pair (s, d) without consider-

ing the traffic on the network. An adaptive algorithm tries to

adapt to the current traffic conditions in the network. Oblivious

algorithms are attractive because they can be computed in

advance, even if they are computationally expensive. An

adaptive algorithm must be able to react quickly to changes

in the (global) network and thus is often constrained to fast

suboptimal algorithms. We note that optimal deterministic

routing (with a minimal edge-forwarding index) in arbitrary

networks is NP -hard [20]. Also, oblivious algorithms are

usually unobtrusive (e.g., they do not need to monitor the

network) and can often be implemented in a fully distributed

manner. Online oblivious routing [4] combines oblivious and

adaptive routing techniques and optimizes for a certain traffic

pattern. However, reaction to changing input parameters like

network topology and traffic demands happens slowly.

A routing algorithm must operate within the constraints

of the underlying network architecture that limits several

parameters, such as the number of logical paths in the network.

In this work we use the InfiniBand Architecture (IBA), a com-

monly used high-performance interconnect, as an example.

Several large-scale systems with more than 1000 endpoints use

InfiniBand. The IBA does not mandate any topology, however,

most deployed InfiniBand networks use a k-ary n-tree topology

(e.g., fat tree [15] or Clos [7]). InfiniBand crossbars usually

support virtual cut-through routing [14] with 24 full duplex

links.

InfiniBand uses oblivious destination-based distributed rout-

ing and offers up to 128 virtual paths [25] between two end-

points with the Lid Mask Control (LMC) feature. More than



one path through the network might lead to more flexibility

and alternative paths in case of network errors. Previous re-

search [10] suggested that using multiple predetermined paths

(either picking one randomly or round-robin) does not increase

the average bandwidth. However, more elaborate schemes are

clearly a base for future research. Another important feature of

InfiniBand, the support of up to 15 virtual lanes, can be used

to break routing cycles to avoid deadlocks in the network [16].

The destination-based routing mechanism limits the choice

of algorithms because if two routes to the same endpoint

lead through the same crossbar, then both must use the same

path from that crossbar to the destination. This constrains

algorithms that use distinct routes which can cross each other

in the network (see Section III-B).

In this work, we focus on oblivious deterministic routing

with a single route between any two endpoints. We define

the two most important goals of our work: (1) minimize the

path length between any two endpoints and (2) minimize

the expected congestion (maximize the bandwidth). Minimal

path lengths lead to smaller latencies under low load whereas

minimal congestion leads to a higher throughput at medium

and high load.

A. Background and Related Work

We model a physical network consisting of C crossbars and

P endpoints as a connected graph G = (V, E). The vertices

V = VP ∪ VC can be split into VP and VC which are the

sets of endpoints and crossbars in the graph respectively. Each

endpoint VP has exactly one neighboring crossbar VC .

A complete routing R of a network consists of P · (P − 1)
paths among all ordered pairs u and v 6= u, (u, v) ∈ VP ×VP .

A route from u to v, r(u, v), is represented as a vector of t+1
vertices r(u, v) = (r0, r1, . . . , rt) with r0 = u, rt = v, and t
being the length of the path.

A route rm(u, v) is said to be minimal if it is an unweighted

shortest path between u and v (i.e., spans a minimum number

of vertices). A routing Rm is said to be minimal if all

routes rm ∈ Rm are minimal. Minimal routes are important

for maintaining minimal communication latency between the

endpoints under low traffic.

To evaluate the routing behavior and network congestion

situations, we define the number of routes leading though an

edge e ∈ E as its load l(e) [6], [11].

The edge-forwarding index π(G, R) of network G and

routing R, introduced in [11], is defined as the maximum edge

load in G

π(G, R) = max
∀e∈E

l(e)

A communication pattern S is defined as a set of streams

between the endpoints. The congestion of an edge (physical

channel) can be derived by counting the number of streams

that utilize routes that lead through the edge.

It seems intuitive that the edge-forwarding index defines the

balancedness and thus the quality of the oblivious routing.

However, we will show that this is not generally sufficient to

model average bandwidths.

Another way to assess the quality of a routing in general

networks would be to determine the worst-case pattern as

described in [27]. Though, this method requires O(P 5) time

and the worst-case pattern often fails to represent the common

case. We argue that the effective bisection bandwidth Λ is a

much more accurate measure for the quality of a set of routes

R.

Many research groups have worked on optimal oblivious

routing, but, most results are not directly applicable to Infini-

Band. Räcke et al. [19] solved the congestion-minimization

problem for arbitrary undirected networks close to optimal.

Nevertheless, this algorithm needs to solve several NP -hard

problems and requires randomization in the network which

makes it impractical. Bienkowski [5] proposes a method

that does not assign deterministic routes to sender/destina-

tion pairs, but solves a combinatorial multi-commodity flow

(MCF) problem. Azar et al. [3] improved Räcke’s work and

propose a polynomial-time algorithm based on MCF with

similar performance. However, this algorithm is based on

linear programming and is also not suitable for large-scale

systems due to its high computational demand [2]. In the

MCF model, each crossbar only knows what fraction of

the traffic has to use a certain edge in the graph. As this

would require non-deterministic routing schemes, it is not

applicable to InfiniBand. Towles et al. [28] discuss the trade-

offs between minimal path length and high throughput on k-

ary n-cube networks. They also use linear programming to

solve the routing problem as a MCF-problem and end up with

a probability distribution over the paths in the network for

each source-destination pair.

Many other schemes that are used in practice are bound to

a particular network architecture, for example k-ary n-cubes

or fat tree networks [29]. Generic algorithms do often not find

good routes or are too computationally expensive to be used

in practice [1].

In the following, we focus on practically used oblivious

routing algorithms within the constraints of the InfiniBand

Architecture.

II. CURRENT PRACTICAL ROUTING ALGORITHMS

InfiniBand uses oblivious destination-based distributed rout-

ing. Each switch has a lookup table (Random- or Linear

Forwarding Table) that defines which port leads to which

endpoint. On startup or after topology changes, the Subnet

Manager (SM) discovers the topology, computes the for-

warding tables for each switch, and uploads them to the

switches. The current implementation, OpenSM, offers five

different routing algorithms: MINHOP, UPDN, FTREE, DOR

and LASH. Additionally, it can load the forwarding tables

from a file.

MINHOP finds minimal paths among all endpoints and

tries to balance the number of routes per link locally at each

switch (under the constraint of minimal routes). However, this

method can lead to circular dependencies among the switch

buffers [8] which might lead to a deadlock of the network.
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Fig. 1. Credit loop in a network with four crossbars.

UPDN uses the Up*/Down* routing algorithm [22] to avoid

circular buffer dependencies by restricting the number of

possible paths in the network [21].

FTREE implements a routing scheme optimized for fat

trees [29] which is also deadlock-free but requires a fat tree

network topology.

DOR (Dimension Order Routing) routes along the dimen-

sions of a k-ary n-cube to determine shortest paths [24] and

might create circular buffer dependencies.

LASH routing [23] uses Virtual Lanes (VL) to break cyclic

dependencies among channels of the underlying DOR scheme.

Refer to the OpenSM documentation for a detailed descrip-

tion of each routing algorithm.

A. Credit Loops and Deadlocks

In the design of routing algorithms, one has to be

careful to avoid deadlock situations. Deadlocks are well

known in wormhole routing schemes [8]. However, Infini-

Band routing presents a slightly different problem. Infini-

Band uses a credit-based flow control scheme in hardware.

This means that each output port can only send packets

if it has credits at the destination input port. This avoids

packet loss at congested switches. Though, cyclic depen-

dencies among input buffers can lead to a situation where

all clients are waiting for credits and the network is ef-

fectively deadlocked. Those cyclic dependencies are called

credit loops and should be avoided by the routing algorithm.

Figure 1(a) shows a small network with four crossbar switches

(A, B, C, D), four endpoints (1, 2, 3, 4) and three routes

R = {(2, D, C, B, A, 0), (0, A, D, C, 3), (1, B, A, D, 2)}. The

crossbars have three ports each with input buffers to store three

packets. A packet is only sent if an element in the input buffer

at the destination is free. This makes the progression of the

input buffer which has a route leading to another buffer de-

pendent on the availability of a free slot. The full dependency

graph for the buffers (ports) is shown in Figure 1(b). This

graph has a cycle, which means that there is a potential for

deadlock (depending on the injection pattern) in the system.

This cycle is called credit loop in InfiniBand terms.

The above problem is similar to the well-known deadlock

problem [8] of wormhole routing. One possible solution is

implemented by the Up*/Down* algorithm that constrains the

number of possible paths. Another method, which is used

by the LASH algorithm, is to find a good routing for a

network and then break the cycles by assigning different VLs

to routes in the cycle. This is possible because each VL

has its own logical buffers. Some OpenSM algorithms, like

MINHOP and DOR simply ignore the issue that might lead

to network instabilities. However, the necessary constellations

for deadlocks happen rarely and deadlocks can be broken with

packet timeouts (this method is not favorable).

III. ROUTING BASED ON SHORTEST PATHS

As discussed before, different strategies can be used to

optimize oblivious routing. Though, most practical algorithms

seem to optimize for path length and only insufficiently for

throughput (e.g., with only local optimizations as MINHOP

does). A routing algorithm also has to be fast so that it can

be used in large-scale systems. Thus, we propose a new and

simple routing strategy based on a single source shortest path

(SSSP) algorithm (one possible implementation is Dijkstra’s

algorithm [9]). We also analyze two different greedy heuristics

to minimize the edge-forwarding index.

A. P -SSSP Routing

The first variant starts with the graph G and edge weights

of all edges e ∈ E are one. The algorithm iterates in

unspecified order over all endpoints u ∈ VP and finds reverse

shortest paths from u to all other endpoints v ∈ VP . In

undirected networks we use the single destination shortest

path algorithm, which is equivalent to the reverse SSSP, to

satisfy the constraints of oblivious destination-based routing.

The tree structure of the shortest path tree automatically

generates valid destination-based routes. After each endpoint,

the algorithm replaces the edge weights with the updated

number of routes that pass through each edge. The main

difference between OpenSM’s MINHOP and P -SSSP is that

our algorithm performs a global optimization of the edge loads

wheareas MINHOP does it only locally at each switch.

The pseudo code for the algorithm is shown in Figure 2(a)

and Figure 2(b)–2(d) show the three steps of the algorithm

for routing from endpoint 0, 1, and 2. The figure is drawn

as an undirected graph for readability, however, P -SSSP

uses a directed graph. The routes determined on round 1, 2,

and 3 are R1={(1,E,B,A,0), (2,C,B,A,0)}, R2={(0,A,D,E,1),

(2,C,D,E,1)}, and R3={(0,A,B,C,2), (1,E,B,C,2)} respectively.



Input: Network G = (Vp ∪ Vc, E)
Output: Routes R

foreach u ∈ Vp do1

comp. shortest paths from u to all v ∈ Vp2

add reverse paths to forwarding tables (R)3

update edge weights along paths4
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Fig. 2. The P -SSSP algorithm and an example with three endpoints.

The final values at each edge, e, represent the edge loads

l(e). To determine the edge-forwarding index of the network,

we must ignore edges leading to and coming from endpoints

(in this network (0,A), (1,E), and (2,C)), because their edge

load l(e) = P − 1 in all cases (they must connect to all P −
1 other endpoints). Thus, the edge forwarding index of our

example network X is π(X, R) = 2 (the maximum edges are

(D,E) and (B,A)).

This algorithm optimizes Λ(G, R) by balancing the routes

and minimizing π(G, R). However, this optimization might

not choose shortest paths between every pair of endpoints

which might impact the latency under low load. To force the

implementation to choose shortest paths (minimal routes), we

initialize the edge weights not with one but rather with P 2 so

that it is always cheaper to increase the utilization of an edge

than to take a longer path.

B. P 2-SSSP Routing

It seems that the variant with P SSSP runs does not balance

the edge-forwarding index ideally because it only considers

and updates the edge weights P times. Thus, a more accurate

greedy heuristic to minimize the edge-forwarding index would

be to perform the SSSP for each source-destination pair and

update the edge weights P (P − 1) times (one for each pair

of endpoints). The pseudo code for the algorithm is shown in

Figure 3(a).

P 2-SSSP needs 6 rounds in our example network X and

results in the routes R1={(0,A,B,E,1)}, R2={(0,A,D,C,2)},

R3={(1,E,D,A,0)}, R4={(1,E,B,C,2)}, R5={(2,C,B,A,0)},

R6={(2,C,D,E,1)}. The final edge weights are shown in

Figure 3(b). The figure looks more balanced than Figure 2(d)

from P -SSSP and has a lower forwarding index π(X, R) = 1.

Figure 3(c) and Figure 3(d) give another example network

X̂ for a network routed with P -SSSP and P 2-SSSP and

forwarding indexes π(X̂, R) of 3 and 2 respectively.

C. Computational Complexity

Dijkstra’s SSSP algorithm can be implemented with a

Fibonacci heap. With m = |E| and n = |V |, it has a

complexity of O(m+n log n). The P -SSSP algorithm is called

n times—once for each endpoint u ∈ VP and the P 2-SSSP

algorithm is called n2 times—once for each pair of endpoints

(u, v) ∈ VP ×VP . Thus, the overall complexity of P -SSSP and

P 2-SSSP are O(nm + n2 log n) and O(n2m + n3 log n) re-

spectively. The complexity can further be reduced with linear-

time SSSP algorithms specialized to integer edge weights [26].

D. Handling Credit Loops

P -SSSP and P 2-SSSP do not inherently prevent credit

loops. This means that, as with MINHOP, a generated routing

could contain credit loops. We note that, if shortest paths

are enforced, P -SSSP routing is credit-loop free on some

topologies, such as two-stage fat trees. However, the generated

routes for other topologies like tori are not guaranteed to be

free of credit loops. In this case, we propose to use a strategy

similar to LASH [23], i.e., break the credit loops by splitting

routes that contribute to a loop into different virtual lanes (VL).

Skeie et al. argue in [23] that the total number of needed VLs

grows sublinearly with the network size.

This technique can be used until the 15 VLs of InfiniBand

are exhausted and the remaining endpoints can be routed using

a less efficient but inherently deadlock free algorithm, for

example Up*/Down*. Another workaround, which is used in

many systems, is to ignore credit loops and set the packet

timeout in the switches to break deadlocks. This is workable in

practice because even if credit loops exist, the probability that

all buffers run full and the network deadlocks is small (much

smaller than in wormhole-routed systems) and the resulting

deadlock can be resolved by packet timeouts.

In the next section we show simulation results that compare

the algorithms implemented in OpenSM and our SSSP-based

algorithms for several different networks. We enforced mini-

mal paths for P -SSSP and P 2-SSSP in all our examples such

that the latencies are minimal like in MINHOP.

IV. NETWORK CONGESTION SIMULATIONS

In order to compare the quality of different routing strate-

gies, we simulate the bandwidth of random communication

patterns in the network (we ignore the latency because our

routing strategies are restricted to minimal routes Rm). To do

this, we require a connected network G and routing R which

contains a valid route between any two endpoints. We model

an ideal flow control mechanism, i.e., each stream s = (u, v)
gets 100% of the bandwidth B divided by the maximum

congestion along the path r(u, v) ∈ R.



Input: Network G = (Vp ∪ Vc, E)
Output: Routes R
foreach u ∈ Vp do1

foreach v ∈ Vp do2

comp. shortest path u → v3

/* the path is constrained by4

destination-based routing! */

add path to forwarding tables (R)5

update edge weights along path6
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Fig. 3. Different networks with P 2-SSSP and P -SSSP routing.

A. Simulating Effective Bisection Bandwidth

The effective bisection bandwidth Λ(G, R) of a network G
is computed by simulating the congestion of N random bisect

patterns. In a bisect pattern Sbi, all endpoints are divided into

two subsets of size P/2 and each endpoint in the first subset

sends to exactly one endpoint in the other subset (cf. perfect

matching).

The bisection bandwidth of such a pattern is computed in

two steps. In step one, each stream (u, v) ∈ Sbi is routed

along r(u, v) ∈ R through the network and a congestion

counter τ(e) of each traversed edge e (representing a physical

link) is increased. The bandwidth of a stream s = (u, v)
is, according to our linear model, the link bandwidth B
divided by the maximum congestion τ(ei) along the path

r(u, v) = (e1, . . . , el). The second step computes the sum

of all bandwidths along all streams:

Γ(Sbi) =
∑

(u,v)∈Sbi

B

max{τ(ei)|ei ∈ r(u, v)}

The effective bisection bandwidth Λ(G, R) is now com-

puted as the average of N different bisection bandwidths for

random bisection patterns Sbi:

Λ(G, R) =
1

N

∑

N rand Sbi

Γ(Sbi)

The number N of different patterns should be large. Prac-

tically, only a very small fraction of the O(P !) search space

can be covered. However, extensive simulations showed that

the average bisection bandwidth with random bisect patterns

stabilizes quickly [13]. We used N = 10000 and the Mersenne

Twister algorithm [17] to generate random bisections for our

simulations and benchmarks.

The effective bisection bandwidth Λ(G, R) is often reported

as a fraction of the full bisection bandwidth B · P/2. For

example Λ(G, R) = 1/2 means that, on average, the network

delivers half of the theoretical bandwidth if all endpoints

communicate.

The edge-forwarding index can be computed in a similar

way. Step one walks all P (P−1) routes and increases a usage-

counter for each visited edge. Step two simply records the

maximum edge usage along each route.

It is obvious that for all edges e ∈ E holds: l(e) ≤
π(G, R) ≤ τ(e). Thus, a routing r that reduces the edge-

forwarding π(G, R) also reduces the maximum possible con-

gestion. However, it remains unclear how the average case is

affected.

In the following sections, we simulate different network

topologies and routings. We used OpenSM version 3.2.2

with the InfiniBand Simulator ibsim in order to compute

the routes for our network topologies. OpenSM implements

all algorithms that we discussed in Section II. Because the

performance of the LASH algorithm was similar to DOR in all

simulated results, we omitted it in several plots. The FTREE

implementation did not run1 on any of our real-world system

inputs, thus, we only report FTREE results on artificially

generated fat tree networks.

B. Real-World Systems

In this section we discuss the simulation results for several

of today’s largest InfiniBand-based clusters. We queried the

network topology and routing tables of each system with

the tools ibdiagnet and ibnetdiscover. The systems

under consideration are:
a) Thunderbird: at Sandia National Laboratories is, with

4390 endpoints, the system with the biggest endpoint-count.

It has a half-bisection bandwidth fat tree network.
b) Ranger: at Texas Advanced Computing Center is,

with 4080 endpoints and 16 processing cores per endpoint, the

fastest (peak floating-point performance) of the systems under

consideration. It has two Sun Magnum 3456 port switches

with five fat tree stages offering full bisection bandwidth.
c) Atlas: at Lawrence Livermore National Laboratory

has 1142 endpoints, connected with a full bisection bandwidth

fat tree.
d) Deimos: at the Technical University of Dresden rep-

resents a mid-sized system with 724 endpoints. It consists of

three 288-port switches, connected in a 30 link-wide chain (cf.

Figure 7). We use this system for simulations and benchmarks.
e) Odin: at Indiana University is a small 128 endpoint

cluster with a single switch (fat tree). We use this system for

simulations as well as for benchmarks.

Figure 4(a) shows the simulated effective bisection band-

width with different routing schemes on the real-world sys-

tems. We see that P -SSSP significantly improves the effective

1it seems that the implementation only accepts fully populated fat trees
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Fig. 4. Comparison of routing algorithms on different topologies.

bisection bandwidth for all systems by balancing the routes

globally. However, P 2-SSSP performs worse, even though

it balances the routes better and often finds a set of routes

with a smaller edge-forwarding index. We will discuss this

phenomenon later.

Figure 4(b) compares the running times of the different

routing algorithms on the tested systems. It is important to

mention that the runtimes for the algorithms in OpenSM

represent runs with the InfiniBand simulator while the P -

SSSP and P 2-SSSP implementations are simply implemented

in C++. This means that quantitative comparisons are not

possible, but trends can be assessed from those graphs. We see

that P -SSSP has a similar scaling behavior to the OpenSM

algorithms. P 2-SSSP does not scale as well and did, like

LASH, not terminate after several hours with the biggest

system inputs.

In the next section, we analyze the performance of the rout-

ing algorithms for different topologies supported by special

algorithms in OpenSM.

C. Fat Tree Networks

We investigate the different routing strategies on generated

ideal fat tree networks. We consider fat trees based on 24-

port crossbars with different bisection bandwidths. Figure 4(c)

shows the results for fat trees of different sizes. The bisection

bandwidth is indicated by the oversubscription ratio, e.g., “1:2”

means half bisection bandwidth. We see that the P -SSSP

routing is able to increase the effective bisection bandwidth

significantly comparable to the fat-tree optimized routing. The

FTREE algorithm did not run on the fat tree networks with

more than two levels2.

D. k-ary n-cube Networks

In this section we show results for artificially generated hy-

percube (2-ary n-cube) networks and 2D/3D torus (k-ary 2/3-

cube) networks constructed with 24-port InfiniBand crossbars.

We assume that the DOR algorithm delivers better results on

those topologies.

Figure 4(d) shows that the routing for different Torus

networks can also be enhanced with the P -SSSP algorithm.

However, the gain is rather small because the local decisions

made by MINHOP are similarly good on those topologies.

Figure 4(e) shows the simulation results for hypercube

topologies. We see also a minimal increase in effective bisec-

tion bandwidth. We see that the P -SSSP is again performing

best, even better than the DOR and LASH algorithms which

are optimized for the network type. This is again due to the

better balancing of routes.

Figure 4(f) shows the runtime of the routing algorithms.

P 2-SSSP quickly passes everything and is not feasible for

large-scale networks. The P -SSSP implementation is again

scaling similar to the other algorithms. However, we conclude

that none of today’s routing algorithms scales well to larger

endpoint-counts (> 4096).

E. Random Networks

We also investigate randomly connected networks as exam-

ples for grown infrastructures. We generate random networks

2it aborted with a segmentation violation



with relatively high bandwidth by using 24-port crossbars

with 12 endpoints attached to each of them. The remaining

12 ports of each switch are connected randomly to other

crossbars. Figure 5 shows the performance for eight randomly

generated networks with 3000 and 516 endpoints. Again, the

P -SSSP algorithm performs better than all others even though

the difference is not as significant as in the other examples.

This is due to the high connectivity in our random networks.

We expect a bigger difference if we add more endpoints per

switch.
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The most important question now is why P 2-SSSP has a

lower effective bisection bandwidth than P -SSSP even though

it lowers the edge-forwarding index.

F. Influence of the Edge-Forwarding Index

Simulations show that the P -SSSP algorithm performs

better than the P 2-SSSP algorithm even though the edge-

forwarding index of the generated routes is smaller in the latter

case. We note that the edge forwarding index only provides

an upper bound for the congestion but does not allow any

reasoning about average bandwidths or the effective bisection

bandwidth. Thus, we argue that even though the forwarding

index has long been used as a metric to asses routes [6], its

influence on practical communication patterns might be low.

We discuss this with an example network, shown in Fig-

ure 6, where P 2-SSSP computes a routing with a lower

forwarding index (and lower edge loads) than P -SSSP , but

the effective bisection bandwidth is also lower.

B

A
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F

D

E

3

2 1

6

5

4

Fig. 6. Example Topology for P vs P 2-SSSP .

We only discuss the parts of the routing that are significant

to the problem. We assume that the algorithms discover routes

in numerical order, i.e., P -SSSP generates all routes to end-

points 1, 2, 3, . . . , 6 in this order and the P 2-SSSP generates

the routes (1, 2), (1, 3), . . . , (1, 6), (2, 0), (2, 1), . . . , (6, 5). P -

SSSP and P 2-SSSP would place all routes between 1 and

4, 5, 6 and between 2 and 4, 5, 6 on edge (E,D) (if we constrain

it to minimal path-lengths). Now, when P 2-SSSP tries to

find all routes from 4, 5, 6 to 3, both algorithms use different

approaches. P -SSSP uses the upper path (D,C,B,A) for all

routes while P 2-SSSP balances the routes between upper and

lower path (remember that the graph is directed, so the load on

edge (D,E) is initially zero). The problem is that this balancing

of paths having a single destination is not beneficial for bisect

patterns (and most application patterns) because the single

destination will be in at most one pair. However, the balanced

routes could lead to a congestion on edge (F,E) if the lower

path is taken for the pair (6, 3) and 1 and 2 are communicating.

This does not happen in the P -SSSP case. Thus, this difference

is mostly an artifact of the greedy heuristic.

V. BENCHMARKING REAL-WORLD SYSTEMS

We implemented our new routing scheme with the file-based

routing in OpenSM in order to show the practical benefits

for real-world clusters. We benchmarked and compared the

effective bisection bandwidth of different routing strategies on

two systems, the 724-endpoint Deimos cluster at Technical

University of Dresden and the 128-endpoint Odin cluster at

Indiana University. Deimos is equipped with PCIe 1.1 HCAs

which deliver a point-to-point bandwidth of 946 MiB/s. The

Odin system has older PCI-X HCAs which deliver 584 MiB/s

(only ≈ 60% of the InfiniBand line rate). Thus, we expect to

see the influence of congestion very clearly on Deimos while

the influence of congestion on Odin is expected to be small (as

a congestion of two will have nearly no performance impact).

Odin is connected to a single 144 port InfiniBand switch

which is an internal fat tree with 12 leaf-switches and full

bisection bandwidth. Deimos consists of a chain of three 288

port switches, which are internal fat tree networks with 24

leaf switches, connected with 30 cross-cables each resulting

in a rather low bisection bandwidth. The network topology of

Deimos is shown in Figure 7.

30 30

288 fat tree 288 fat tree 288 fat tree

258 228 258

Fig. 7. Deimos Network Topology.

In our benchmark, we first generate a random bisection

pattern for all processes in the communicator (we started all

jobs with one process per endpoint). The bisection generation

on rank 0 is performed as described in Section IV-A. Rank

0 distributes the pairing information to all other processes.

Then, all pairs of processes synchronously start to exchange

50 messages for size 1 MiB (bidirectional) and measure the
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Fig. 8. Measured and simulated effective bisection bandwidths on Odin.

achieved bandwidth. This procedure is repeated with 1000
random mappings for each communicator size and the average

result (an estimation of Λ(G, R)) is reported. The benchmark

is implemented in the open-source measurement tool Net-

gauge [12].

Figure 8(a) shows the benchmark results on the Odin

system. The effective bisection bandwidths are rather high

because the endpoints can not utilize the full network speed

and are thus less affected by congestion. However, we see

that the bandwidth is decreasing with an increasing number of

endpoints. We also clearly see the benefits of the new P -SSSP

routing, which improves the benchmarked effective bisection

bandwidth by 18% with regards to the best OpenSM routing at

full scale. We also see that the simulation in Figure 8(b) shows

correct trends for all routing algorithms. The absolute values

are slightly different due to various effects in the network (i.e.,

flow control [18] and the slow PCI-X link).

Benchmark results for the effective bisection bandwidth on

the 724-endpoint Deimos system are shown in Figure 9(a).

Those results also show that our new routing strategy outper-

forms all routing algorithms in OpenSM significantly while

maintaining minimal-length routes. The relative performance

improvement increased with the number of endpoints up to

40% on 724 endpoints. Thus, we conjecture that the gain for

larger networks would be even higher.
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Fig. 9. Measured and simulated effective bisection bandwidths on Deimos.

Figure 9(b) shows the simulation results on the Deimos

system. The simulated bandwidths are higher than the real

bandwidths because Deimos has, as opposed to Odin, full

bandwidth at the endpoints. The difference between simulation

and benchmark can be explained with effects in flow-control

schemes, which can reduce the throughput to 60–75% [18].

VI. CONCLUSIONS AND FUTURE WORK

We proposed two simple oblivious routing algorithms for

networks with distributed destination-based routing (e.g., In-

finiBand). Both algorithms use a single-source shortest pairs

algorithm to minimize the edge-forwarding index (the maxi-

mum number of routes per edge) of the network. Compared

to other implementations, such as OpenSM’s MINHOP, opti-

mization in our approach is done globally instead of locally

at each switch. Thus, the proposed algorithms achieve a better

balance of routes in the network.

We simulated the congestion and effective bisection band-

width of all algorithms that are implemented in OpenSM

on different real-world and artificial network topologies. The

simulations showed that the P 2-SSSP algorithm, which bal-

ances the edge loads better and thus finds a routing with a

lower edge-forwarding index, performs slightly worse than

the P -SSSP algorithm. This shows that while the edge-

forwarding index serves well as a theoretical lower bound to

the minimal point-to-point bandwidth in the networks, it is not



necessarily a good predictor for effective (average) bisection

bandwidth. However, we can clearly see that our algorithms

(which are based on a heuristic that strives to minimize the

edge-forwarding index) improve the balance of routes and

the effective bisection bandwidth significantly relative to the

routing schemes in OpenSM.

We showed that our routing improves the effective bisection

bandwidth up to 11% on the 4390 endpoint Thunderbird

cluster, 25% on the 4080 endpoint Ranger cluster and 15%

on the 1142 endpoint Atlas cluster. We used the OpenSM

file-based routing method to deploy our routing scheme on

the 128 endpoint Odin cluster and the 724 endpoint Deimos

system. The benchmarked effective bisection bandwidth on

those systems could be increased by 18% on Odin and 40% on

Deimos. As discussed in Section IV-A, our linear congestion

model underestimates the effects of congestion. For example,

the simulation predicted only an improvement of 23% for

Deimos and 5% for Odin. Thus, it is reasonable to also expect

higher practical gains on Ranger and Atlas than the simulation

predicts.

In future works, we are trying to improve routing to support

different (collective) patterns efficiently while retaining the

high effective bisection bandwidth. We are also investigating

better mapping strategies and collective communication algo-

rithms optimized to a particular set of routes.
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