
Express Virtual Channels with Taps (EVC-T): A Flow Control Technique for
Network-on-Chip (NoC) in Manycore Systems

Chao Chen, Jie Meng, Ayse K. Coskun and Ajay Joshi

Electrical and Computer Engineering Department, Boston University, 8 Saint Mary’s Street, Boston, MA
{chen9810, jiemeng, acoskun, joshi}@bu.edu

Abstract—Manycore systems require energy-efficient on-chip
networks that provide high throughput and low latency. The
performance of these on-chip networks affects cache access
latency and, consequently, system performance. This paper
proposes solutions to address the performance limitations
related to the use of snoop-based cache coherence protocol on
switched network-on-chip (NoC). We propose a new network
flow control technique, Express Virtual Channel with Taps
(EVC-T), for transmitting both broadcast packets and data
packets efficiently. In addition, we propose a low-latency broad-
cast packet notification tree network that maintains the order
of broadcast packets on an unordered NoC. We evaluate our
technique using both synthetic traffic and parallel benchmark
suites through detailed system simulation. EVC-T reduces the
average network latency by 24% with a negligible change in
power for synthetic benchmarks. For NAS parallel applications,
EVC-T increases the instructions per cycle (IPC) by 9% on
average with minimal increase in power. Our technique reduces
the energy-delay product (EDP) by 13% on average across all
benchmarks.

Keywords-Express virtual channel with taps; Manycore sys-
tems; NoC; Simulation; Snoop based cache coherence.

I. INTRODUCTION

Future manycore systems are expected to have hundreds

of cores integrated on a single chip. These cores communi-

cate with each other through a network-on-chip (NoC). NoC

traffic includes transfer of cache lines and associated control

information among various levels of caches and memory

controllers. The wide distribution of NoC latency, however,

affects the performance of the applications running on the

manycore system. Similarly, power dissipated on the NoC

is an important concern given the power-limited nature of

current and future manycore systems.

The general trend for NoC architectures is towards design-

ing low-radix high-diameter network topologies (e.g., mesh)

that have short router-to-router channels [1], [2]. These

topologies are easier to design from the hardware perspec-

tive. However, mapping an application to these topologies

is difficult due to the large variance in packet latencies.

High-radix low-diameter topologies such as crossbar are

more amenable to application mapping due to low network

diameters, but are difficult to design from the hardware

perspective because of the long wires.

Another issue with NoC-based manycore systems is main-

taining cache coherency across multiple caches. Previously,

snoop-based and directory-based cache coherency protocols

have been investigated for manycore systems [3]. In this

paper, we focus on the snoop-based protocol. Snoop-based

cache architecture uses a broadcasting mechanism for cache

coherency, and is commonly used for bus-based topology

in systems with a small number of cores (e.g., fewer than

10 cores). This protocol, however, does not scale well for

NoC-based manycore systems due to the packet latency

distribution.

To harness the true potential of manycore systems we

need to develop low-cost, high-performance and energy-

efficient NoC architectures. This paper makes two contri-

butions towards achieving this goal. First, we propose a

new broadcasting mechanism for snoop-based cache co-

herency protocol for manycore systems. Each core uses

a dedicated notification tree to rapidly inform all other

cores of an incoming broadcast message. In this way, other

cores can make early decisions to wait for the packet or

to proceed with execution in presence of simultaneously

transmitted packets over the shared network. The proposed

broadcast mechanism has higher performance in comparison

to conventional snoop-based broadcast mechanisms for low

network traffic. For high network traffic, the performance

of the proposed approach is similar to the conventional

approaches.

We also propose a novel network flow-control mechanism:

Express Virtual Channels with Taps (EVC-T). Our flow-

control mechanism, when mapped to a physical concentrated

mesh (cmesh) network, results in a logical topology with

high radix and low diameter. As a result, this NoC is easy to

design from the hardware perspective and easy to program.

The logical topology is similar to multidrop express channel

(MECS) [4]. However, unlike MECS, the proposed logical

topology supports both data and broadcast packets, and does

not use physically separated express channels. Our specific

contributions are as follows:

• To maintain the sequential consistency for snoop-based

cache coherence, we propose using a contention-free

notification tree per core as a supporting network for

broadcasting. These notification trees ensure each core

knows when to expect a broadcast packet and the exact

timestamp when a broadcast packet was generated. This

information guarantees that on average a core has to wait

for less than a cycle before it can make the decision

about processing a broadcast packet and all the broadcast

packets are processed in the correct order.

• To achieve low network latency and save energy, we

propose EVC-T flow control mechanism to transmit both

broadcast and data packets in a snoop-based cache co-

2011 19th Annual IEEE Symposium on High Performance Interconnects

978-0-7695-4537-0/11 $26.00 © 2011 IEEE

DOI 10.1109/HOTI.2011.11

1

herency protocol. For broadcasting, our EVC-T technique

allows intermediate routers to receive and store broadcast

packets while forwarding them to downstream routers

simultaneously. For NAS parallel benchmarks [5], EVC-T

reduces the average packet latency (data and broadcast) by

24% and improves the system energy efficiency, reducing

the energy delay product (EDP) by 13% on average.

• To evaluate the impact of our proposed EVC-T flow con-

trol mechanism and broadcasting technique, we integrate a

NoC simulator, BookSim [6], with an architecture-level

performance simulator M5 [7]. The primary motivation

is that the operations of the NoC and the rest of the

system have strong correlations with each other, and hence

adopting an integrated evaluation process is necessary.

The rest of the paper starts with a discussion of the

related work. Section III provides the details of our target

system. Section IV explains the use of notification trees

as supporting networks for cache coherence. Section V

describes the EVC-T flow control technique. Section VI

evaluates our techniques using synthetic traffic and the NAS

parallel benchmarks, and Section VII concludes the paper.

II. RELATED WORK

A number of techniques have been proposed for main-

taining cache coherence in manycore systems with NoCs.

Ordered broadcast trees and ring topologies address the

cache coherence problem on packet switch NoCs by creating

ordering points [8], [9]. Although the ordering points method

in these techniques is convenient and straightforward, the

technique increases packet latency. A similar approach has

been proposed in [10], where a ring cache coherence pro-

tocol is used for ordering. In this case, in addition to

the snoop request broadcast, the requester also initiates a

response message that collects responses from all nodes as

it travels around the ring. A global ordering of networks

has been proposed using isotach-like networks in [11]–

[13]. To maintain the orders of broadcast packets, some

approaches use snoop ordering [14]. This method avoids

using the ordering points. However, the received broadcast

packets have to wait for other packets with lower snoop

orders, which results in large waiting time overhead. These

techniques affects system performance.

Today’s commercial systems such as Tilera [2] and Intel

Single-Chip Cloud (SCC) [1] use low-radix high-diameter

networks such as mesh due to their ease of hardware design.

Several high-radix and low-diameter network topologies,

such as flattened butterfly, clos, and MECS [4], [15], [16]

have been proposed for lower network latency distribution.

These network topologies provide low network latency

distributions and high network throughput by connecting

distant routers with physical express channels. However, the

hardware and energy overheads of physical express channels

make it difficult to justify their use for current and future

power-limited systems. To improve the performance of low-

radix and high-diameter network topologies, express virtual

channels (EVC) and a corresponding flow control technique

have been proposed in [17]. This technique enables the

intermediate routers to forward received packets immedi-

ately using buffering, arbitration, and crossbar switching.

However, EVC is not efficient for transmitting broadcast

packets due to the multiple transmissions of one broadcast

packet on the same physical channel.

We propose a broadcasting technique with notification

trees as the supporting networks for cache coherence. Our

broadcasting technique allows caches to process received

broadcast packets with much shorter waiting time and lim-

ited hardware overhead. To support effective transmission of

broadcast-packets, we extend the traditional EVC technique

to EVC-T that has multiple taps along the EVC. This

approach transmits both broadcast packets and data packets

with reduced traffic overhead and network latencies.

III. TARGET SYSTEM

We choose a 64-core processor as our target system that is

manufactured using 22 nm technology process as a represen-

tative node for future manycore chips [18]. Each core on the

processor supports 2-way issue out-of-order execution, and

has two integer ALU, one integer multiplication unit, one

floating-point ALU, and one floating-point multiplication

unit. The core architecture is configured based on the cores

used in Intel’s 48-core SCC [1]. The micro-architectural

parameters are listed in Table I. The cores operate at 1 GHz

frequency and have a supply voltage of 0.9 V, while the

on-chip network operates at 2 GHz.

Each core has 16 KB private L1 instruction cache and

16 KB private L1 data cache. We use a shared memory

programming model and explore a distributed L2 cache

architecture. The manycore system uses the snoop-based

MESI protocol for maintaining the cache coherence.

Table I: Micro-architectual parameters of the target system.

Micro-architecture Configuration

Core Frequency 1.0 GHz

Branch Predictor Tournament predictor

Issue 2-way Out-of-order

Reorder Buffer 128 entries

Functional Units 2 IntAlu, 1 IntMult

1 FPALU, 1 FPMult

Physical Regs 128 Int, 128 FP

Instruction Queue 64 entries

L1 ICache 16 KB @ 2 ns

L1 DCache 16 KB @ 2 ns

L2 Cache 4-way set-associative, 64 B block

Distributed 16 x 1 MB @ 6 ns

NoC Frequency 2.0 GHz

2

����

�

���	���
���

���
���
���������
����������

�	������

� �

� � � �

� � �� ��

�� �� �� ��

��

Figure 1: Physical layout of our 64-core target system.

16 L2 cache banks (1 MB each) are uniformly distributed

across the chip. Each L2 bank has one memory controller

physically located next to it. Each router uses a concentration

of 4 cores and one L2 cache bank. It has 13 input and 13

output ports (4 for inter-router interconnect, 8 for L1 I-cache

and D-caches of 4 cores, and 1 for 1 L2 cache bank).

Figure 1 shows the physical layout of our 64-core target

system. There are 64 cores, 16 L2 cache banks (1 MB each),

16 memory controllers that are uniformly distributed across

the chip. Four cores and one L2 bank share one router

and communicate with other cores and L2 banks through

the on-chip network. Each memory controller is associated

with one L2 bank and there is a dedicated channel between

them, which is not shown in Figure 1. Each router has

four-cycle zero-load latency for the four pipelined routing

stages: route computation, virtual channel allocation, switch

allocation, and switch traversal [19]. After energy optimiza-

tion by repeater insertion, each 5 mm channel between two

neighboring routers has single-cycle latency.

IV. NOTIFICATION TREES FOR BROADCASTING ORDER

For network topologies such as cmesh, clos or cross-

bar, where the network enables parallel accesses, multiple

sources can insert packets into the network at the same

time. The latency of each packet varies based on the

traffic workload as well as the physical location of its

source L1 cache. Therefore, a destination L1 cache can

potentially receive broadcast packets in a different order

than the original order in which the broadcast packets were

generated. Hence, a destination L1 cache needs to wait for

all broadcast packets that are on the fly before processing the

received broadcast packet. The worst-case waiting time can

be determined using empirical methods. However, depending

on the size of the manycore system, the waiting period could

be considerably long, which has a negative impact on the

system performance. In our 64-core target system with a

cmesh network, the cores at the corners have to wait for

more than 34 cycles assuming the shared cmesh network

has zero-load latency. As the network traffic becomes high,

the waiting time increases because of network contention.

When an L1 cache knows in advance how many cycles to

wait for the broadcast packets that are already on-the-fly, we

can avoid the wasted cycles at the cache.

We propose using notification trees along with the existing

shared network to maintain the sequential consistency of

broadcast packets that are transmitted on unordered intercon-

nects. Each L1 cache in a core has a dedicated notification

tree, connecting it to all other L1 caches. Figure 2(a)

and 2(b) show the notification trees from the L1 caches in

core 0 and core 18, respectively. Each notification tree is

pipelined and each pipeline segment uses energy-optimized

repeater-inserted single-bit wire.

The notification tree for an L1 cache sends a notification

pulse to all other destination L1 caches whenever it has a

read/write cache miss, and a new broadcast packet requesting

the missing cache line is generated. The actual broadcast

packets are transmitted over the shared network. As the

notification trees are contention free, the notification pulses

reach destination L1 caches within fixed latencies. Thus,

each destination L1 cache can determine the exact waiting

time before other received broadcast packet get processed.

The waiting time of any broadcast packet is calculated

by subtracting the broadcast packet transmission time from

the notification transmission time for the farthest network

source. The maximum waiting time in a destination L1 cache

depends on its physical location relative to other L1 caches.

Figure 2(c) shows an example for two broadcast packets:

packet A and packet B from the L1 caches in core 0 and

core 63, respectively. Packet A reaches the L1 cache of core

1 after traveling through one router, resulting in a zero-load

latency of 4 cycles. Packet B reaches the L1 cache in core

1 after traveling through 7 routers and 6 channels, resulting

in a zero-load latency of 34 cycles. On the other hand, the

notification pulses for both packets reach their destinations

much faster. The notification pulse for packet A reaches the

L1 cache in core 1 right after packet A is generated and the

notification pulse for packet B reaches the L1 cache in core

1 in 6 cycles after traveling through 6 wire segments on the

notification tree.

Table II: Timing analysis of the proposed notification tree

architecture for managing broadcasting for snoop-based

cache coherency in our 64-core target system. Notification

arrival time corresponds to the latency of a notification pulse

through the dedicated notification tree. Packet arrival time

corresponds to the zero-load latency of a broadcast packet

traveling through the shared cmesh network.

Packet Source Send Dest. Notification Packet

ID Core Time Core Arrival Arrival

Time Time

A 0 T 1 T T + 4

B 63 T - 1 1 T + 5 T + 33

3

� � � � ���	

 � �	 �� ��������

�� �� 	� 		 	�	����

	� 	� 	
 �� ��	�	�	�

�	 �� �� �
 ��������

�� �� �� �� �������	

�
 �� �	 �� ��������

�� �� �� �	 �������

(a)

� � � � ���	

 � �	 �� ��������

�� �� 	� 		 	�	����

	� 	� 	
 �� ��	�	�	�

�	 �� �� �
 ��������

�� �� �� �� �������	

�
 �� �	 �� ��������

�� �� �� �	 �������

(b)

� �

��

�����	�
��
�	�����������	�
�
�	���� �� � �

��	������

���	����������
����������
������	������
��
�����	�	��

�����	�
��
�	����������	�	��

(c)

Figure 2: (a) Notification tree from core 0. (b) Notification tree from core 18. (c) Example of broadcast packets from core

0 and core 63. They are broadcast to all receivers across the chip, but only one receiver is shown in the figure.

In our analysis, packet A is generated at time ‘T’, while

packet B is generated at time ‘T-1’. The notification pulses

for packet A and B reach the L1 cache in core 1 at time

‘T’ and ‘T+5’, respectively. To maintain cache coherency,

packet B has to be processed before packet A. After the

L1 cache for core 1 receives the broadcast packet A at

‘T+4’, it monitors the notification trees for the remaining

L1 caches for an additional cycle. The 1-cycle waiting time

is calculated based on the fact that the core 63 is farthest

away from core 1, and it takes 6 cycles for a notification

pulse to be transmitted from the L1 cache in core 63 to

the L1 cache in core 1. As the L1 cache in core 1 receives

the notification for packet B at ‘T+5’, it can formulate the

correct order for processing the packets. On average, the

L1 cache in a core has to monitor the notification trees

for less than a cycle before it can decide on the broadcast

packet processing order. The exact time when a broadcast

packet is processed depends on the network latency of the

broadcast packet. Table II shows the timing analysis of these

two broadcast packets at their sources (core 0 and core 63)

and at the destination (core 1) as an example.

The overall hardware overhead for the proposed broadcast

technique includes 64 notification trees, buffers in each core

to store incoming notifications, and combinational logic

in each core to decide on the processing order. The area

overhead of 64 notification trees is 31% with respect to the

wiring area of the existing shared network and the power

overhead is 0.27 W. The area and power overheads for

buffers and combinational logic are negligible. The total

hardware overhead can be reduced by 4× using a shared

architecture, where a group of 4 cores shares a notification

tree.

V. EVC-T FLOW CONTROL MECHANISM

In this section, we propose a novel flow control mecha-

nism that, when used with a low-radix high-diameter phys-

ical network, provides a high-radix low-diameter logical

topology. This reduces the network latency for broadcast and

��������

�	�

�	��

�
���

�
���

������������
������������

�������

Figure 3: The router architecture for EVC [17]. A packet

received at an intermediate router of an EVC is immediately

forwarded to the subsequent physical channel of the same

EVC. A packet received at a destination router of an EVC

is buffered and switched to channels in another direction.

data packets, and therefore improves the manycore system

performance. We introduce the traditional EVC flow control

mechanism as the background at first, and then describe our

proposed EVC-T flow control mechanism and its application

in our target system.

A. Express Virtual Channels (EVC)

The EVC flow control mechanism proposed in [17] en-

ables packets to entirely bypass routers. Figure 3 shows the

router architecture supporting EVCs. Each router receives

four types of packets – a packet generated by a core

connected to that router, a packet that will bypass the

router, a packet that will change direction (X → Y) in

the router, and a packet that has one of the attached core

as its destination. The EVC controllers at the input ports

differentiate between the packets that will be buffered by

the router (change direction, get ejected to, or are injected

from an attached core) and those that will bypass the router.

The packets that bypass the router get priority to access the

downstream inter-router physical channel among all packets.

At low network traffic, when using EVCs, a data packet

4

�������

�����

	
���
��
�
������

���

Figure 4: The C-EVC network: physical cmesh layout with

EVC. EVCs use the existing physical channels to establish

express paths between each pair of two distant routers in

both X and Y dimensions. The resulting logical topology is

effectively a flattered butterfly.

effectively passes through a series of inter-router channels as

it bypasses all intermediate routers. As a result, it has lower

latency compared to the equivalent networks with no EVCs.

On the other hand, at high network traffic, the latency and

saturation throughput are comparable to equivalent networks

with no EVCs. Figure 4 shows an example network, where

the network has the same physical layout as cmesh topology;

i.e, it connects the neighboring routers with short physical

channels. By connecting distant routers with EVCs, this

network approaches the low zero-load latency of physical

flattened butterfly topology while maintaining the low energy

cost benefits of the traditional cmesh topology.

The limitation of EVC is that they cannot transmit broad-

cast packets as efficiently as data packets. On a traditional

cmesh network, broadcast packets are transmitted through

multiple hops and at each hop each broadcast packet is

duplicated and transmitted in both X and dimensions. Here,

a broadcast packet is transmitted only once through any

physical channel. However, if the EVC flow control mech-

anism is used, a broadcast packet is transmitted through

multiple EVCs from one source router to several destination

routers, resulting in multiple transmissions through one

physical channel shared by those EVCs. This will increase

the network congestion, which increases the packet latencies

and negatively affects the manycore system performance. We

propose an upgraded EVC-T flow control mechanism that

transmits both broadcast and data packets with low latency

and power consumption on a single shared network.

B. Express Virtual Channels with Taps (EVC-T)

The EVC-T maintains the key feature of EVC: reducing

packet latency through router bypassing. The difference

is that EVC-T establishes an express virtual path from

one source router to multiple receiver routers. For data

transmission, only one target receiver router buffers the data

packet, while other routers are bypassed. For broadcasting,

���������

���	

���

����

�����

������������
�
����������

	���������

	�����
������

Figure 5: The router architecture supporting EVC-T. The

received packets can be buffered in the router and forwarded

to the subsequent channel simultaneously.

�������

�����

	
���
��
�
������

�����

Figure 6: The C-EVC-T network: the physical cmesh layout

with EVC-T. Single EVC-T connects one source router to

all receiver routers in each direction (east, west, north, or

south). The resulting logical topology is similar to MCES.

all receiver routers simultaneously buffer and forward the

broadcast packet. The source router uses one EVC-T to

transmit a broadcast packet to all receiver routers in each

direction (east, west, north, or south). This ensures that

a broadcast packet is transmitted only once through any

physical channel.

Figure 5 shows the router architecture supporting EVC-

T. Each EVC-T has input buffers at all receiver routers,

including the intermediate routers and the destination router.

Thus, an incoming broadcast packet can be simultaneously

forwarded to the subsequent channel in the current direction,

while buffered and switched to channels in other directions.

The EVC-T controllers make decisions for buffering and/or

forwarding the incoming packets. Similar to EVC, the pack-

ets that are bypassing the router will have priority access

to the subsequent physical channel in comparison to other

packets that are switching directions in the router.

Figure 6 shows an example network using EVC-T. Here

we use the same router ID as labeled in Figure 1. On

the top of physical cmesh layout, each router is connected

to multiple receiver routers through a single EVC-T in

5

	�����
���

��������
���	

��
��� �����

�����	
	����

�

���	
	����

���

���	
���	�

	���
�	���

����� �
����

(a)

����	�
���

���

�����	
	
���

�

�
�	
	
���

��� �����

(b)

����	�
���

���

�����	
	
���

�

�
�	
	
���

��� �����

(c)

Figure 7: Flit organization of an EVC-T packet (a) Head flit

(b) Body flit (c) Tail flit

.

each direction (east, west, north, or south). For example, a

broadcast packet injected at router 0 is transmitted to router

1, 2, and 3 through a single EVC-T to the east. Each of

these three routers buffer and transmit the broadcast packet

to three more routers through its EVC-T to the south. The

broadcast packet reaches all network destinations within two

network hops – one in each dimension. For another example,

a data packet from router 0 to router 14 is transmitted

through the same EVC-T to the east used by the above

broadcast packet. Router 2 buffers and transmits the data

packet to router 14 through its EVC-T to the south.

Unlike the data packets, the broadcast packets usually

request the EVC-Ts for multiple output ports at routers.

For example, a broadcast packet injected at router 0 would

request an EVC-T to the south and an EVC-T to the east

at the same time. The routing delay and energy costs will

be reduced if the VC allocator grants both EVC-Ts and

the crossbar transmits the broadcast packet to both output

ports simultaneously. We design our VC allocator based on

the ISLIP routing scheduling algorithm [20]. We change the

grant phase of ISLIP algorithm to grant one EVC-T for each

requested output port. The SW allocator controls the switch

crossbar and grants the switching paths between crossbar

input ports and output ports. We change the traditional

SW allocator to turn on several switches along a crossbar

input wire, which enables one-to-many transmission through

these crossbar switches. With our upgraded VC router, the

broadcast packets have the same zero-load routing delay as

the data packets. In the shared network, broadcast and data

packets have the same priorities; i.e, a broadcast packet has

to wait if another packet is using the requested output port.

C. Flit orgnization for EVC-T

Figure 7 shows the flit organization of an EVC-T packet.

The EVC-T controller uses this information to decide be-

tween buffering and/or forwarding a packet. Because there

are 6 EVC-Ts in each row or column, each EVC-T uses a

unique 3-bit identification number (EVC-T ID). The EVC-T

controller uses this identification number to store the packet

in the appropriate input buffer of a router as each router

maintains a dedicated input buffer for each incoming EVC-

T. The 2-bit FLIT TYPE identifies the type of the received

flit: header flit (10), body flit (00), or tail flit (01). The EVC-

T controllers make buffering and/or forwarding decisions

based on the data in the header flit and keep the decisions for

the following body flits and tail flits. The PACKET TYPE

identifies whether the received packet is a broadcast packet

(1) or a data packet (0). The 8-bit RECEIVER LIST (4-bits

for each dimension) indicates the routers along the EVC-

T path where the packet has to be buffered. For example,

for a broadcast packet, RECEIVER LIST has a value of

1111 1111. For a data packet, there is only one receiver

router and two bits (one for each dimension) will be set

in the RECEIVER LIST field. For example, a data packet

from router 0 to router 14 uses 0010 0001 to notify router

2 and router 14 to buffer the received data packet. The 4-bit

DEST PORTS indicates the ejection ports at the destination

routers for data packets. In our target system, 9 ejection

ports are used because 4 cores (4 L1 ICache caches and 4

L1 DCache) and 1 L2 bank share one router. For broadcast

packets, the DEST PORTS is not used because the receiver

routers must forward broadcast packets to all ejection ports.

The 10-bit TIME STAMP is the packet generation time used

for our proposed cache coherence technique in Section IV.

The 10-bit length is designed to cover the time interval

between notification arrival time and broadcast packet arrival

time, which is variable due to the potential contentions in the

shared network. When broadcast packets reach their desti-

nations, they are matched with corresponding notification

pulses by comparing the TIME STAMP with the stored

notification pulse generation time. The remaining bits in the

packet are used for data.

D. Credit channels for EVC-T

For avoiding buffer overflow, a source router maintains

the buffer status of all receiver routers of connected EVC-

Ts. Each receiver router has a dedicated credit channel to

the source router. For the C-EVC-T network in Figure 6,

each pair of routers in the same row or column is connected

with a pair of credit channels. The overhead of these credit

channels are minimal because they are 1 to 2-bit wide. A

source router grants an EVC-T after making sure that all

target receiver routers have available credits. For example,

a broadcast packet injected at router 0 is granted with an

EVC-T to the east only when router 1, 2, 3 have available

credits, and a data packet (from router 0 to router 14) is

granted with the above EVC-T only when router 2 has at

least one available credit. The source router deducts a credit

for each target receiver router after sending every flit and

increments a credit after receiving a new credit through a

dedicated credit channel.

6

VI. EVALUATION

In this section, we evaluate our proposed EVC-T tech-

nique using both synthetic traffic running on BookSim

simulator, and NAS parallel benchmarks running on an

integrated M5-BookSim full-system simulator. We compare

four networks as shown in Table III. The first three networks

have the same cmesh physical layout but different logical

topologies. VC type is the flow control techniques used to

build various logical topologies. VC count is the number

of VC, EVC, or EVC-T channels used between one source

router and any of its destination routers. The C-VC network

uses three VCs to connect neighboring routers and has

a cmesh logical topology. The C-EVC network uses a

dedicated EVC to connect each pair of routers in both

X and Y dimensions, as shown in Figure 4, and has a

flattened butterfly (flatfly) logical topology. The C-EVC-

T uses a single EVC-T to connect one router to multiple

routers in each direction (east, west, north, or south), as

shown in Figure 6, resulting in a logical topology similar

to the MECS network proposed in [4]. The MECS network

has a logical and physical MECS topology that uses a one-

to-many communication model enabling a high degree of

connectivity in a bandwidth-efficient manner. However, the

logical MECS topology in the C-EVC-T network supports

more efficient broadcast packet transmission and has less

hardware overhead than the physical MECS network.

All four networks support both broadcast and data pack-

ets. The data packets in the C-EVC network and C-EVC-T

reach the destination routers through virtual express paths,

while the data packets in C-VC reach the destination routers

through multiple hops. The broadcast packets in C-EVC-T

reach multiple destination routers through a single virtual

express path, while the broadcast packets in C-VC and C-

EVC network reach destination routers through multiple

hops. The C-EVC-T is the only network that uses virtual

express paths to transmit both broadcast and data packets.

A. Evaluation Platform

We use BookSim network-on-chip simulator to evaluate

synthetic network traffic patterns. To evaluate the impact of

the proposed EVC-T technique on the whole manycore sys-

tem, we integrate BookSim into M5 full-system simulator.

M5 is an event-based manycore simulator that uses Alpha

instruction set architecture (ISA), while BookSim is a cycle-

precise network simulator. BookSim is integrated as a sub-

Table III: Network architecture details.

Network Physical Logical VC VC

Layout Topology Type Count

C-VC cmesh cmesh VC 3

C-EVC cmesh flatfly EVC 1

C-EVC-T cmesh MECS EVC-T 1

MECS MECS MECS N.A N.A.

module of M5, and we add a network interface for handling

the communication between the two simulators. The packets

generated by M5 are converted to the BookSim format and

injected into the network instantiated by BookSim. The

injected packets are preserved in a flying packet list in

the network interface for tracking. M5 schedules events

for checking the network output ports at every cycle if

there are outstanding packets in the flying packet list. When

completed network packets are detected by M5 events, they

are converted back to the M5 format by referencing the

flying packet list and are processed at the destination caches.

Using our integrated M5-BookSim full-system simulator,

we run 8 benchmarks from the NAS parallel benchmark

suite (mg, ep, is, cg, lu, sp, ua, and ft) with

class B problem set. We fast-forward 2 billion instructions

to warm up the system for avoiding cold-start effects and

to reach the parallel execution phase of these applications.

We execute 1 billion instructions after the fast-forward

phase using the detailed out-of-order CPUs in M5 for all

benchmarks to quantify their performance. The performance

statistics are also used as inputs for our power model.

We use application IPC, defined in Equation (1) [21], as

the metric to evaluate the performance of the benchmarks.

This metric considers the variations of the execution time

among different threads. It accumulates all the instructions

executed across all threads and then divides the total instruc-

tion count by the number of cycles for the longest thread,

as the longest thread determines the application finish time.

IPCapp =

Pnum core
i=1 Committed instructionscore[i]

max1≤i≤num core Number of cyclescore[i]

(1)

To estimate power for the cores in our target system,

we utilize McPAT 0.7 [22] that computes the power costs

based on the performance statistics collected by M5. We

calibrate the McPAT outputs to match the published core

power values of the Intel SCC [1] using the scaling method

introduced in [21]. The L2 cache power is computed using

CACTI 5.3 [23]. Since the current version of CACTI does

not support 22 nm process technology, we calculate L2 cache

power in 32 nm technology and calibrate it using the same

scaling method used for calculating core power.

The power for the network is estimated using detailed cir-

cuit modeling. For the 64-core target system, we use energy-

optimized repeater-inserted wires for inter-router channels.

The power dissipated in the SRAM array and crossbar of the

router is calculated using the methodology described in [24]

and [25], respectively. We design the network channels and

routers using PTM for 22 nm technology [18]. The static

power consumed by the network depends on the physical

layout and the dynamic power is determined by the flow

control mechanism and network traffic workloads.

We use EDP defined in equation (2) as a metric to

evaluate system energy efficiency. System power includes

core power, cache power and NoC power. The running time

7

0 0.5 1 1.5 2 2.5
10

20

30

40

Offerred Bandwidth (Kb/cycle)

La
te

nc
y

(c
yc

le
) C−VC

C−EVC
C−EVC−T
MECS

(a)

0 0.025 0.05 0.075 0.1 0.125
10

20

30

40

Offerred Bandwidth (Kb/cycle)

La
te

nc
y

(c
yc

le
)

(b)

0 0.1 0.2 0.3 0.4 0.5
10

20

30

40

Offerred Bandwidth (Kb/cycle)

La
te

nc
y

(c
yc

le
)

(c)

0 0.5 1 1.5 2 2.5
4

8

12

16

Offerred Bandwidth (Kb/cycle)

N
et

w
or

k
P

ow
er

 (W
)

(d)

0 0.025 0.05 0.075 0.1 0.125
4

8

12

16

Offerred Bandwidth (Kb/cycle)

N
et

w
or

k
P

ow
er

 (W
)

(e)

0 0.1 0.2 0.3 0.4 0.5
4

8

12

16

Offerred Bandwidth (Kb/cycle)

N
et

w
or

k
P

ow
er

 (W
)

(f)

Figure 8: Network latency and network power vs. offered bandwidth for a 64-core system with uniform random traffic. (a)

and (d) Data traffic. (b) and (e) Broadcast traffic. (c) and (f) Mixed traffic of both packet types.

is calculated by dividing the maximum number of execution

cycles among all the cores by the system frequency.

EDP = System power · Application running time2
(2)

= System power · (Longest thread execution cycles

System frequency
)
2

B. Synthetic benchmarks

For synthetic network traffic, we assume uniform random

(UR) traffic pattern, which is widely used for NoC evalua-

tions. We consider UR selection of sources and destinations

for data packets and UR selection of sources for broadcast

packets. We assume the same number of broadcast and data

packets are injected into the network. However, for real-

world network traffic, a higher number of broadcast packets

may exist in comparison to the number of data packets due to

operations such as write back and global status update. For

example, an L1 cache requests exclusive access of a cache

line by sending a broadcast packet to all other L1 caches.

The receivers remove the local cache lines without sending

response packets. Such packets are ignored in the synthetic

traffic simulation but are included in the M5-BookSim full-

system simulation.

Figure 8 compares the latencies and power costs of the

four networks listed in Table III for data traffic, broadcast

traffic, and mixed traffic of broadcast and data packets.

For data traffic, in Figure 8(a) and Figure 8(d), the C-

EVC and C-EVC-T networks have lower latencies than the

C-VC network because some data packets are bypassed

at several intermediate routers. The C-EVC-T and MECS

network have comparable low latencies when the network

traffic is not high. The MECS network has higher saturation

throughput than the C-EVC-T network but the physical

express channels in the MECS network consumes lots of

fixed power, which is inefficient for low network traffic.

The C-VC, C-EVC and E-EVC-T networks have comparable

power costs because they are using the same numbers of

physical channels, router buffers and crossbar sizes. The

slight power difference is due to their respective router

control logic. When the network traffic increases, the C-EVC

and C-EVC-T networks have lower power costs than the C-

VC network because the dynamic power is not consumed in

buffering and crossbar switching at the bypassed routers in

the C-EVC and C-EVC-T networks.

For broadcast traffic, in Figure 8(b), the C-VC and

C-EVC network have higher latencies than the C-EVC-

T network because of the multiple hop transmission of

broadcast packets in these two networks. Here, we assume

that broadcast packets complete network transmission after

reaching all destinations. In a traditional MECS channel, a

data packet has one target receiver router and only the target

receiver router drops the passing packet. For comparison

of broadcast traffic in the C-EVC-T and MECS networks,

we modify the packet format and router architecture of

the MECS network to support broadcasting. A broadcast

packet in MECS channel has multiple target receivers, and

multiple target routers drop the passing broadcast packet.

Figure 8(e) shows that the EVC-T and MECS networks have

comparable latencies and saturation throughput for broadcast

traffic. The C-EVC-T and MECS networks get saturated

by high broadcast traffic because of increased contentions

inside the routers. The higher bisection bandwidth of the

MECS network does not increase its saturation throughput

for broadcast traffic.

The mixed traffic of broadcast and data packets provides

a realistic comparison of the four networks. In Figure 8(c),

8

cg ep ft is lu mg sp ua
0

0.07

0.14

0.21

0.28

0.35

Benchmarks

O
ffe

re
d

B
an

dw
id

th
(K

b/
cy

cl
e)

(a)

cg ep ft is lu mg sp ua
0

5

10

15

20

25

Benchmarks

La
te

nc
y(

cy
cl

e)

(b)

cg ep ft is lu mg sp ua
0

10

20

30

40

50

Benchmarks

A
pp

lic
at

io
n

IP
C C−VC

C−EVC−T

(c)

cg ep ft is lu mg sp ua
70

75

80

85

90

95

Benchmarks

S
ys

te
m

 P
ow

er
 (W

)

(d)

cg ep ft is lu mg sp ua
0

0.4

0.8

1.2

1.6

2

Benchmarks

E
D

P
 (J

*s
)

(e)

Figure 9: Comparison of C-VC and C-EVC-T networks using NAS benchmarks running on the 64-core target system. (a)

Offered bandwidth. (b) Average network latency. (c) Application IPC. (d) System power. (e) EDP. The detailed system

configuration is given in Table I. BookSim was integrated into M5 to enable a detailed cycle-accurate comparison.

the latency is the average value for all broadcast and data

packets. The C-EVC-T shows better performance than the

C-VC and C-EVC networks because it is the only network

that uses virtual express paths for both broadcast and data

packets. The saturation throughput of the C-EVC-T network

is similar to the C-VC network. In Figure 8(f), the C-

EVC-T network has the similar power costs to the C-

VC network. In summary, the MECS network provides the

best performance–low network latency and high saturation

throughput because of its physical express channels and high

bisection bandwidth. The C-VC network provides the best

energy efficiency–low power cost, due to its short channels

and simple control logic. The proposed C-EVC-T network

can achieve the similar high performance to the MECS

network while maintaining the similar low energy costs to

the C-VC network.

C. NAS benchmarks

We next evaluate our EVC-T technique by running the

NAS parallel benchmark suite on our M5-BookSim simula-

tor. In the full-system simulation, we compare the C-EVC-

T and C-VC networks to demonstrate that EVC-T can help

improve the system IPC and reduce the EDP of parallel

applications. Figure 9 shows the full-system simulation

results for NAS parallel benchmarks. Figure 9(a) shows the

offered bandwidth for each benchmark. For our distributed

L2 cache architecture, the offered bandwidth is calculated as

the number of transmitted packet per cycle multiplied by the

packet size. We assume that one data packet consists of four

128-bit flits and one broadcast packet consists of single 128-

bit flit. The offered bandwidth shows that NAS benchmarks

have various network demands, but none of them reaches

the saturation region of the C-VC and C-EVC-T networks

(see Figure 8(c)). For the offered bandwidth, the C-EVC-T

network has lower average latency as shown in Figure 9(b).

On average, the C-EVC-T network reduces the latency by

24%. If the C-EVC-T network runs benchmarks that have

higher offered bandwidth, then the performance and power

will be comparable to C-VC, which still outperforms than

C-EVC.

Figure 9(c) shows the application IPC for each bench-

mark. The ‘ep’ and ‘ua’ benchmarks show an application

IPC improvement of 31% and 24%, respectively, after us-

ing EVC-T. This improvement is a result of the reduced

execution time of the longest thread (see Equation 1). The

‘ep’ benchmark is one of the highly parallel benchmarks in

NAS benchmark suite and has the greatest improvement on

application IPC. The application IPC of other benchmarks

improve by up to 6%. Some benchmarks, such as ‘cg’

and ‘is’, have very high application IPCs, however, their

low offered bandwidth indicates that they are relatively

less dependent on network performance; i.e., they are not

memory bound. Figure 9(d) shows the system power costs

for each benchmark, which includes the power of networks

and cores and caches. The ‘ep’ benchmark shows 3%

power increase because of the improved IPC, while other

benchmarks show less than 1% power increase because of

the relatively non-uniform workload distribution. Figure 9(e)

shows the EDP for each benchmark. The ‘ep’ and ‘ua’

benchmarks show 40% and 34% EDP reduction after using

EVC-T. The average EDP reduction by EVC-T is 13%. The

system simulation results show that our proposed EVC-T

improves the system energy efficiency as well as the system

performance.

9

VII. CONCLUSION

In this paper, we have proposed a new flow control tech-

nique: express virtual channels with taps (EVC-T) for NoC

architectures in manycore systems. When used with cmesh

physical layout, EVC-T helps create a logical topology with

low diameter. This provides a NoC architecture which is

easy to design from the hardware perspective and easy

to program from the software perspective. In addition, we

have also proposed a contention-free tree architecture that

supports broadcasting on unordered on-chip interconnects

for snoop-based cache coherency protocols. The notification

trees enable a core to wait for less than one cycle after

broadcast packet is received on average to make decisions

on the correct processing order of broadcast packets.

We have evaluated the EVC-T flow control technique and

the new broadcast mechanism for snoop-based cache co-

herency protocols using BookSim network simulator that is

integrated into M5 full-system simulator. We have explored

both synthetic traffic and parallel benchmarks from the NAS

suite. The synthetic benchmark analysis shows the potential

of our proposed techniques where the average packet (data

and broadcast) latency is reduced by 24%, while consuming

the same amount of power as a conventional cmesh network.

For NAS parallel benchmarks, our techniques increase the

application IPC by 9% on average with negligible changes

in power. The system energy efficiency (quantified by EDP)

is increased by 13% on average.

REFERENCES

[1] J. Howard et al., “A 48-core ia-32 message-passing
processor with dvfs in 45nm cmos,” in Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC),
2010 IEEE International, 2010, pp. 108 –109.

[2] S. Bell et al., “Tile64 - processor: A 64-core soc with
mesh interconnect,” in Solid-State Circuits Conference,
2008. ISSCC 2008. Digest of Technical Papers. IEEE
International, 2008, pp. 88 –598.

[3] D. Culler, J. Singh, and A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, 1st ed.
Morgan Kaufmann, 1998, the Morgan Kaufmann Se-
ries in Computer Architecture and Design.

[4] B. Grot, J. Hestness, S. Keckler, and O. Mutlu, “Ex-
press cube topologies for on-chip interconnects,” in
Proc. IEEE 15th Int. Symp. High Performance Com-
puter Architecture HPCA 2009, 2009, pp. 163–174.

[5] D. Bailey et al., “The NAS parallel benchmarks,” Tech.
Rep. RNR-94-007, 1994.

[6] W. Dally and B. Towles, Principles and Practices of
Interconnection Networks. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2003.

[7] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt, “The m5 simulator: Modeling networked
systems,” Micro, IEEE, vol. 26, no. 4, pp. 52 –60, 2006.

[8] A. Charlesworth, “The sun fireplane interconnect,”
IEEE Micro, vol. 22, no. 1, pp. 36–45, 2002.

[9] M. R. Marty and M. D. Hill, “Coherence ordering for
ring-based chip multiprocessors,” in Proc. MICRO-39
Microarchitecture 39th Annual IEEE/ACM Int. Symp,
2006, pp. 309–320.

[10] K. Strauss, X. Shen, and J. Torrellas, “Uncorq: Un-
constrained snoop request delivery in embedded-ring
multiprocessors,” in Microarchitecture, 2007. MICRO
2007. 40th Annual IEEE/ACM International Sympo-
sium on, 2007, pp. 327 –342.

[11] J. Reynolds, P.F., C. Williams, and J. Wagner, R.R.,
“Isotach networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 8, no. 4, pp. 337 –348,
1997.

[12] E. Bilir et al., “Multicast snooping: a new coher-
ence method using a multicast address network,” in
Computer Architecture, 1999. Proceedings of the 26th
International Symposium on, 1999, pp. 294 –304.

[13] C. Williams, P. F. Reynolds, and B. R. de Supin-
ski, “Delta coherence protocols,” IEEE Concurrency,
vol. 8, pp. 23–29, 2000.

[14] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-network
snoop ordering (inso): Snoopy coherence on unordered
interconnects,” in Proc. IEEE 15th Int. Symp. High Per-
formance Computer Architecture HPCA 2009, 2009,
pp. 67–78.

[15] J. Kim, J. Balfour, and W. J. Dally, “Flattened butterfly
topology for on-chip networks,” in IEEE/ACM Int.
Symp. on Microarchitecture (MICRO-40), 2007, pp.
172–182.

[16] A. Joshi, B. Kim, and V. Stojanovic, “Designing
energy-efficient low-diameter on-chip networks with
equalized interconnects,” in Proc. 17th IEEE Symp.
High Performance Interconnects HOTI 2009, 2009, pp.
3–12.

[17] A. Kumar, L.-S. Peh, P. Kundu, and N. Jha, “Toward
ideal on-chip communication using express virtual
channels,” IEEE Micro, vol. 28, no. 1, pp. 80–90, 2008.

[18] K. Kuhn, M. Liu, and H. Kennel, “Technology options
for 22nm and beyond,” in Junction Technology (IWJT),
2010 International Workshop on, 2010, pp. 1 –6.

[19] T. Krishna, A. Kumar, L.-S. Peh, J. Postman, P. Chiang,
and M. Erez, “Express virtual channels with capaci-
tively driven global links,” IEEE Micro, vol. 29, no. 4,
pp. 48–61, 2009.

[20] N. McKeown, “The iSLIP scheduling algorithm for
input-queued switches,” IEEE/ACM Trans. Netw.,
vol. 7, no. 2, pp. 188–201, 1999.

[21] J. Meng, C. Chen, A. K. Coskun, and A. Joshi, “Run-
time energy management of manycore systems through
reconfigurable interconnects,” in Proceedings of ACM
Great Lakes Symposium on VLSI, ser. GLSVLSI ’11,
2011.

[22] S. Li et al., “McPAT: An integrated power, area, and
timing modeling framework for multicore and many-
core architectures,” in MICRO-42, 2009, pp. 469 –480.

[23] S. Thoziyoor et al., “CACTI 5.1,” HP Laboratories,
Palo Alto, Tech. Rep., 2008.

[24] X. Liang, K. Turgay, and D. Brooks, “Architectural
power models for sram and cam structures based
on hybrid analytical/empirical techniques,” in Inter-
national Conference on Computer Aided Design (IC-
CAD), 2007, pp. 824 –830.

[25] H. Wang, L.-S. Peh, and S. Malik, “Power-driven de-
sign of router microarchitectures in on-chip networks,”
in IEEE/ACM International Symposium on Microarchi-
tecture (MICR0-36), 2003, pp. 105 – 116.

10

