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Abstract—Maximizing bandwidth utilization of optical on-
chip interconnects is essential to compensate for static power
overheads in optical networks-on-chip. Shared optical buses were
shown to be a power-efficient, modular design solution with
tremendous power saving potential by allowing optical bandwidth
to be shared by all connected nodes. Previous proposals resolve
bus contention by scheduling senders sequentially on the entire
optical bandwidth; however, logically splitting a bus into sub-
channels to allow both sequential and parallel data transmission
has been shown to be highly efficient in electrical interconnects
and could also be applied to shared optical buses.
In this paper, we propose an efficient subchannel scheduling
algorithm that aims to minimize the number of bus utilization
cycles by assigning sender-receiver pairs both to subchannels and
time slots. We present both a distributed and a centralized bus
arbitration scheme and show that both can be implemented with
low overheads. Our results show that subchannel scheduling can
more than double throughput on shared optical buses compared
to sequential scheduling without any power overheads in most
cases. Arbitration latency overheads compared to state-of-the-
art sequential schemes are moderate-to-low for significant bus
bandwidths and only noticeable for low injection rates.

I. INTRODUCTION

Optical networks-on-chip (ONoCs) are widely considered
a promising candidate for future power-efficient on-chip com-
munication. However, static power required at the laser source
and for microring (MR) heating considerably degrades their
overall efficiency and poses a major obstacle that has been un-
der ongoing investigation both on the technology and architec-
tural level in recent years. Although optical interconnects can
provide high bandwidth density thanks to dense wavelength-
division multiplexing (DWDM), both laser and heating power
significantly increase along with link bandwidth, i.e. the num-
ber of wavelengths. This represents a critical issue in the on-
chip domain since many multi-threaded applications exhibit
compute-intensive execution phases in which they underutilize
the NoC, and at the same time require high bandwidth in
communication-intensive phases [1]. Static power would thus
be wasted in low-utilization phases, but at the same time
cannot be avoided due to the bandwidth demands in high-
utilization phases. Architectures utilizing the available optical
bandwidth efficiently are therefore of high interest.
Shared optical buses were shown to be highly efficient in terms
of bandwidth utilization [2]. Like in traditional electrical buses,
multiple nodes are connected to a bus, perform bus arbitration
prior to data transmission, and transmit data through time-
division multiplexing (TDM); however, optical buses do not

have the same limitations as electrical buses: distance does not
play a major role in optical data transmission due to almost
distance-independent dynamic energy consumption and signal
propagation delay of light in silicon. Besides, bandwidth can
be scaled much more efficiently through DWDM within the
same waveguide (rather than adding wires on electrical buses).
State-of-the-art optical bus arbitration proposals schedule
nodes that simultaneously request the bus sequentially on the
entire optical bandwidth [2], and senders/receivers tune in
their modulators/filters in their assigned timeslots. We argue
that large throughput improvements could be achieved by
allowing multiple sender-receiver pairs to utilize the bus both
sequentially and in parallel on different subchannels of the
available wavelengths on the bus. Leveraging subchannels
on the same physical channel is a concept well-known in
electrical interconnects [3][4] and could also be adopted in
shared optical buses since MRs can be tuned/detuned to
respond to different wavelengths individually (or in groups),
allowing for logically dividing the optical bus into subsets of
wavelengths. We believe that this scheduling approach could
tremendously improve throughput and power efficiency of
shared buses if the arbitration mechanism can be implemented
with low overheads in terms of latency and power. This paper
tackles the task of finding an efficient subchannel scheduling
algorithm and low-overhead arbitration schemes, and makes
the following contributions:

• An easy-to-implement subchannel scheduling algorithm
that achieves high bus utilization and is adaptable to any
bus bandwidth, bus size, number of subchannels, and flow
control mechanism.

• A centralized and a distributed arbitration scheme that
implement subchannel scheduling with negligible power
overheads. Arbitration latency overheads are moderate-
to-low and only noticeable at low injection rates.

• Compared to the state-of-the-art sequentially-scheduled
bus LumiNOC [2], our proposal doubles throughput
without incurring any power overheads for significant bus
sizes and bandwidth.

II. THE SHARED OPTICAL BUS

On-chip buses enable all-to-all communication between all
connected nodes. In the optical domain, these have conven-
tionally been implemented by assigning either one Single-
Writer-Multiple-Reader (SWMR) or Multiple-Writer-Single-
Reader (MWSR) bus to each node to form a crossbar [5].



Fig. 1: Shared Optical Bus

The major drawback of these designs is that both wavelengths
(λ) and the number of links scale linearly with the number of
nodes, leading to limited scalability and large static power.

A. Motivation

The shared optical bus (see Fig. 1) has been proposed
to tackle these problems by connecting all N nodes to one
waveguide on which they share the available optical bandwidth
(λ0..λ63) [2]. This significantly reduces the total number of λ
and in turn laser power and scalability. Besides, it reduces
the number of waveguides from N to 1. Enabled by a U-
shaped waveguide, each node modulates on the transmit side
(tx path, in red) and receives on the receive side (rx path,
in green). In contrast to a crossbar, this approach requires
TDM to avoid data corruption when two nodes transmit
simultaneously. Therefore, shared optical buses work in two
phases: An arbitration phase in which nodes request the bus
and are granted access by an arbitration mechanism; and
a data transmission phase in which nodes transmit data in
their assigned timeslot. If multiple senders request the bus
simultaneously, bus arbitration and scheduling is required.
Sharing wavelengths on the same waveguide is enabled by the
capability of controlling the resonance wavelength of MRs–
the nanophotonic building block for modulators and filters–
through MR tuning: dynamically decide to either filter a
certain wavelength or let it pass. For instance, if node 0 owns
the bus and wants to send to node 7, node 7 would tune in its
filters while all other nodes keep theirs detuned.

III. SUBCHANNEL SCHEDULING

State-of-the-art proposals of shared optical buses resolve
bus contention by scheduling all requesting nodes sequentially
on the entire optical bandwidth [2]; however, MRs typically
have integrated heaters [6] and can be tuned/detuned either
individually or in groups, which would allow to schedule
requesting nodes both sequentially and in parallel on different
λ-subsets – subchannels. In this section, we introduce our

Fig. 2: Utilization example of a shared optical bus during data
transmission phase with subchannels

subchannel scheduling approach, discuss the latency of optical
data transmission, and analytically show the superiority of our
approach compared to sequential scheduling.

A. Bus Splitting into Subchannels

Subchannels are formed by splitting the optical bandwidth
available on the bus logically into non-overlapping subsets.
This allows multiple sender-receiver pairs to communicate
simultaneously on the same bus by utilizing different sub-
channels. For instance, in Fig. 2, node 0 sends to node 8
on subchannel C0 and C1, while node 7 sends to node 15
on subchannel C3, and node 8 to node 0 on C2. This is
enabled by each node tuning in sets of modulators (M1-
M3, in red) and filters (D0-D3, in green) according to their
assigned subchannel(s), while detuning all other MRs (gray).
In the example, the optical bandwidth of 64λ is divided into
four subchannels with 16λ each, i.e each set of modulators
and filters consists of 16 MRs each. To identify the ideal
number of subchannels and bus widths, we will now study
the components that add to the total latency on optical links.

B. Minimizing Bus Utilization Cycles

Optical data transmission includes 1) electrical-to-optical
(E/O) data conversion through modulation, 2) signal propaga-
tion delay on the waveguide, and 3) optical-to-electrical (O/E)
data conversion through detection. E/O depends on the core
frequency, modulation rate, and the number of λs available
for modulation. Assuming a modulation rate of 10 Gb/s and
5 GHz core frequency [5], 2 bits can be modulated on one
λ per clock cycle, or, for instance, 64-bit could be modulated
in two clock cycles by 16λs. Signal propagation of light in a
waveguide is estimated to take 10.45 ps/mm [7], which means,
at a 5 GHz clock (i.e. 200 ps cycle duration), the propagation
delay on optical links <19 mm is one processor clock cycle,
which is a wide range for common tile widths of 1-2 mm [8].
Delay in the detector and O/E backend circuitry often adds
another clock cycle [9].
Tuning speeds of MR resonators–i.e., the time it takes to shift
and stabilize their resonance wavelength–have been subject to
extensive research [10][11][12]. Previous studies assume tun-
ing to be executed within one core clock cycle at 5 GHz [13].
Tuning times lower than 500 ps have been reported [11], which
would take up to 3 clock cycles at 5 GHz. As this is a worst
case upper limit, and faster tuning times are expected, we



Fig. 3: Data transmission phase on a bus for 64-bit data packets with varying numbers of subchannels.

Fig. 4: Scheduling Multiple Packet Sizes

assume tuning delays of one clock cycle. Longer tuning delays,
however, would further increase the efficiency of subchannel
scheduling compared to sequential scheduling as in total fewer
consecutive tuning cycles are required compared to sequential
scheduling only (see Fig. 3).
These latencies are illustrated in Fig. 3, which depicts the
way the bus timeslots are utilized for transmitting several 64-
bit packets1. The leftmost example demonstrates sequential
data transmission over one channel comprising the entire
bandwidth. Each packet (P0, P1, etc.) occupies the bus for 4
cycles (including MR tuning delay between the packets). Note
that, for a 64-bit packet, only 32λ are needed for modulating it
in one clock cycle, effectively wasting half of the bandwidth in
this case–one of the weaknesses of strict sequential scheduling.
As we increase the number of subchannels to 2, 4, and 8
we notice a positive effect on the total utilization cycles.
Halving the bandwidth of each subchannel from e.g. 32λ
(2 subchannels) to 16λ (4 subchannels) leads to twice the
modulation latency, so the overall modulation time in the
parallel and sequential case is the same; however, propagation,
detection, and MR tuning overheads are parallelized, which
leads to large latency savings overall. For instance, in the 8
subchannel case, propagation/detection/tuning delay of each
packet is only impacting the total latency once, while e.g. in
the 1 subchannel case, this latency is added up for every single
packet scheduled on the bus. These overheads are independent
from – and thus applicable to – any packet size. The ideal case,
from an analytic perspective, is to provide one subchannel
for each node attached to the bus (i.e. maximum number
of simultaneous requests), with a total bus bandwidth that is

1Packet sizes in chip multiprocessors typically vary between 64-bit for
simple requests and coherence traffic, and 576-bit for cache line transfers.
We chose 64-bit in this example for simplicity/illustration purposes.

divisible by N (to prevent uneven subchannel widths).

C. Subchannel Scheduling Algorithm

The previous subsection revealed the benefits of scheduling
packets both in time slots and on subchannels. We will now
discuss our light-weight subchannel scheduling algorithm that
achieves near-minimal bus utilization with a simple, low-
overhead implementation, and flexible enough to accommo-
date to any bus widths, number of subchannels, number of
nodes, and flow control mechanism.
Since scheduling computation is performed in the arbitration
phase, it should ideally take only one cycle to determine an ef-
ficient scheduling of the incoming requests. While computing
the minimal latency for nodes requesting the bus for the same
packet size is simple and straight-forward, this is not the case
if the bus is requested for multiple packet sizes, e.g. 64 bit and
576 bit, which is an NP-hard problem that could potentially
take considerably longer to compute than one clock cycle.
Fig. 4 illustrates this: Assume the bus is requested for one 576-
bit packet (P0) and four 64-bit packets (P1-P4) and that four
subchannels are available (on the right). On the left, sequential
scheduling takes 24 cycles in total. The top right figure depicts
the ideal scheduling of these packets which schedules packets
of different sizes in parallel and minimizes the latency down to
12 cycles. This requires to determine all possible combinations
of these packets on all possible time slots and subchannels,
leading to a computation complexity that has factorial growth
with the number of requests.
During our study, we identified that grouping requests ac-
cording to the packet sizes they are requesting the bus for
and parallelizing only packets of the same size tremendously
simplifies the scheduling algorithm and only leads to small
bus cycle overheads that are neutralized by the latency saved
during scheduling computation in the arbitration process.
The bottom right figure in Fig. 4 illustrates this scheduling,
which, in this example, sends the 576-bit packet on the entire
bandwidth and parallelizes the 64-bit packets subsequently,
resulting in just one additional cycle. While this is a simple
example for illustration purposes, this trend was observed to
hold true for higher quantities of requests and combinations.
Alg. 1 shows the algorithmic definition of our allocation
circuitry. This extends to multiple packet sizes by having a
separate queue for each and applying the allocation separately.
At this point we make no assumption on which packet sizes
should go first, and leave this for future analysis as our



ALGORITHM 1: Subchannel and Slot Allocation

Queue sorted reqs = sortReqsBasedOnCredits(requests in);
while (!sorted reqs.empty()) do

if (num reqs >= num subchannels) then
num current reqs = num subchannels;

else
num current reqs = sorted reqs.size();

#SC = num subchannels / num current reqs;
for (int i = 0; i < num current reqs; i++) do

assign(sorted reqs.pop(), C(i*#SC, #SC*(i+1)-1),
slot start cycle);

end
slot start cycle += current slot duration;

end

focus is on maximizing bus utilization. Our greedy algorithm
attempts to schedule as many packets in parallel as possible. If
there are more requests than subchannels, each subchannel is
assigned to a different packet, and the remaining packets will
be scheduled in the next time slot. The pointer to the starting
point of the time slot in Alg. 1 is the ‘slot start cycle’ variable,
which is determined by the time occupied by the current (and
all previous) time slots (‘current slot duration’) based on the
packet size and number of λ, subchannels, and requests. For
instance, in the ‘2 Subchannels’ example in Fig. 3, the first
slot would start at cycle 0, the second at 4, the third at 8,
etc. Before time slot and subchannel allocation, the incoming
requests are stored in a queue (‘sorted reqs’) based on their
priorities/credits. This ensures that the flow control mechanism
is obeyed by ensuring priorities are maintained. If there are
less requests than subchannels, i.e. not all subchannels can be
filled with requests, the optical bandwidth must be assigned
evenly to minimize bus latency. The number of subchannels
assigned to each requester (‘#SC’) is thus the total number of
subchannels divided by the number of requests–e.g., if only
one request remains it will use all subchannels, if there are
< #subchannels/2 requests each will use two subchannels,
< #subchannels/4 requests each will use four subchannels,
etc. Each allocation is executed by the function assign(request,
subchannel-range, starting slot).

IV. BUS ARBITRATION MECHANISMS

The arbitration phase is the default state of the bus and is
entered by each node once data transmission is over and the
bus free again. Arbitration can be centralized or distributed,
with both approaches entailing different opportunities and
trade-offs. In both cases, the exchange of control messages
manages bus access. After the arbitration phase, each node
must know the time slot and subchannel(s) on which it 1) is
allowed to send its data (in case it contended for sending on
the bus), 2) has to tune in its MR filters (in case it is a receiver)
3) has to keep its filters detuned (otherwise).
Control messages should be small while carrying enough
information to enable correct scheduling of time slots and
subchannels. Section III showed that sequential scheduling is
inefficient; however, it simplifies arbitration as allocation is

Fig. 5: Optical bus during arbitration phase

unidimensional (time slots only, not subchannels). In this sec-
tion, we introduce both a centralized and distributed arbitration
scheme for subchannel scheduling that exhibit low overheads
compared to the sequential approach.

A. Centralized Arbitration

In centralized arbitration, an arbiter computes the scheduling
and notifies all nodes about when and how they can access the
bus, implemented by exchanging request (REQ) and acknowl-
edgment (ACK) packets between the nodes and the arbiter.
We propose to connect the arbiter to the bus as shown in
Fig. 2, and perform arbitration and data transmission on the
same optical bus, which allows to reuse optical resources for
arbitration as opposed to having a separate control network.
At the beginning of the arbitration phase, nodes request the
bus by simultaneously sending a REQ to the arbiter on a
unique subset of (bus width/#Nodes)- wavelengths. For
instance, in Fig. 5, a bus of 64λ bandwidth and 16 nodes
would provide each node with 4λ for modulating its REQ
(λ0..λ3 for node 0, λ4..λ7 for node 1, etc.). The arbiter has
filters to receive REQs from each node tuned to the according
λ-subsets. Requests sent from the nodes to the arbiter contain
fields indicating the packet’s destination ID (Dst) and length
(Len). The source ID is implicitly known by the arbiter as
each node sends on a unique set of λs. For N nodes and
S packet sizes, Dst is log2(N) and Len log2(S) bits long.
Once the arbiter received all REQs, it knows all senders,
receivers, and packet sizes - all the information needed to
compute subchannel slot allocation. This allows for a very
compact REQ size that can be modulated quickly with little
optical bandwidth. Acknowledgments are sent from the arbiter
to each node on their according λ-subsets upon scheduling
computation in order to notify senders about their subchannel
time slots and receivers about when to tune/detune their filters.
In addition, all nodes are informed about when the next
arbitration phase begins. An ACK contains different fields
based on the node’s role in the transmission phase:
Senders ACKs contain 1) a subchannel bitmap with the
assigned subchannel(s) set to ‘1’ and 2) the time slot when
they have to start sending.
Receivers ACKs contain 1) a similar subchannel bitmap, 2)
the time slot to tune in, and 3) the packet length used by the
receivers to compute the duration of the time slot, i.e. when
they have to detune.



Fig. 6: Control message exchange in centralized arbitration
and all possible REQ/ACK fields

Nodes sending and receiving within the same arbitration
round will receive all info appended, e.g. if a node is receiving
i packets, i receiver fields are appended. The sender fields
will always be sent first as each node knows if it is a sender.
Receiver fields are appended to the sender fields as needed.

Fig. 6 shows example REQ/ACK packets for a 64λ bus
with 16 nodes – e.g, the ACK encodes a node sending and
receiving one packet. While REQs have constant size, ACK
size depends on the bus utilization rate (more requests lead
to more fields being sent) and on the traffic pattern (multiple
receptions in the same node require many receiver fields). With
the information contained in the ACKs, every node knows
when and on which subchannel(s) it can send, and when and
to which subchannel(s) it has to tune in its filters. During
data transmission phases, the arbiter detunes its MRs to avoid
filtering the optical signals, and only tunes them in again for
the next arbitration phase.
The ‘max cyc’ field is appended to indicate when the next
arbitration phase starts, and will be sent to every node. For
instance, for 16 nodes, this could be up to 84 cycles if each
node requests the bus for a 576 packet, in which case this
field would be 7 bits. In case none of the nodes sends a
REQ in an arbitration phase, the arbiter sends an ACK to each
node with the ‘max cyc’ field set to ’0’, indicating that the
next arbitration phase can start immediately. REQs and ACKs
thus increase along with the number of nodes, and modulation
delay depends on the number of λs per node.
A separate arbitration unit naturally imposes certain hardware
overheads. An example arbiter design is depicted in Fig. 7.
Keeping control packets small is therefore not only key to
low-latency arbitration, but also reduces buffer area in the
arbiter. Assuming REQ sizes of R bits and N nodes, this would
require (N×R)-bit buffer space, which is negligible for relevant
bus sizes (e.g. 8-16 nodes). The scheduling computation
unit outputs the according ACK packets for each node and
must therefore provide enough output buffers. Receiving and
sending data on the optical bus also requires corresponding
MRs and E/O and O/E backend circuitry.

B. Distributed Arbitration

Distributed arbitration does not require a separate arbiter,
leading to savings in area and power. Not having a central-
ized unit, however, makes implementing more sophisticated
arbitration schemes more challenging as more information has
to be encoded in the control messages, potentially increasing
arbitration latency and energy. Previous studies propose an ef-

Fig. 7: Example arbiter design. Slots and subchannels are
computed based on the incoming requests and assigned based
on scheduling/flow control credits

ficient distributed mechanism for bus scheduling [2]; however,
they are merely capable of supporting scheduling of nodes in
time slots, and not subchannels. Our mechanism provides an
efficient solution for both.
Like in our centralized approach, each node is assigned to
its unique set of λs in the arbitration phase. Each node
receives control packets from other nodes on its own λ-set
and modulates its control packets on each of the other nodes’
λ-sets. Control packets are based on 1-hot encoded bitmaps
where each bit represents one node. To provide each node
with the necessary information to perform scheduling, two
arbitration packets are sent subsequently in two phases:
1) Ctrl 1: [Src Bitmap | Length Bitmap]: Each node wish-
ing to send broadcasts Ctrl 1 on the bus with its bit set
to ’1’ in the Src Bitmap field. At the same position in the
Length Bitmap field, it sets its bit to ’1’ to indicate a 576-bit
packet, and leaves it to ’0’ for a 64-bit packet. All nodes must
send Ctrl 1 simultaneously, so that correct bitmaps are created
that carry the scheduling information.
2) Ctrl 2: [Src Bitmap]: Every node wishing to send mod-
ulates a packet containing the same Src Bitmap fields once
again right after it sent Ctrl 1, but this time it will only
modulate it on the λ-set assigned to its receiver, rather than
broadcasting it. This allows receivers to identify their senders.
As each receiver already knows the scheduling of the sending
nodes from phase 1, it can look at this scheduling to see when
it has to tune/detune its filters.

In phase 1, each node receives a bitmap that contains all
sending nodes (‘Src Bitmap’), and another bitmap to indicate
their packet sizes (‘Length Bitmap’). This suffices to compute
our scheduling algorithm at each node, allowing each node to
know the starting slot and subchannels for sending. In addition
to that, information is required at each receiving node to know
when MR filters have to be tuned/detuned. This information
is provided in phase 2. After phase 1, each node knows the
starting slot of each sender, the subchannel(s) it will send on,
and the duration from the packet sizes. At this point, however,
the receivers are not known. This information is obtained in
phase 2, where each node will receive another ‘Src Bitmap’.
If none of the bits in this bitmap is set to ’1’ at a receiver, this



means it will not receive any packets during this transmission
phase and will keep its filters detuned. If one or more bits
are set to ’1’, each receiver knows its senders as each bit is
assigned to one node on the bus. Receivers can now look up
in the scheduling results the senders’ allocation of time slot
and subchannel(s).
This arbitration should save power as no centralized arbiter
with additional MRs and E/O and O/E circuitry is required,
thereby reducing optical static power requirements. NoCs con-
figured with more than two packet sizes (uncommon) would
double the ‘Length Bitmap’ in phase 1, potentially leading to
considerable arbitration latencies. In this case, our centralized
approach would offer higher efficiency and flexibility.

V. EVALUATION

A. Methodology

In order to evaluate the efficiency of subchannel schedul-
ing compared to sequential scheduling, we compare both
our distributed and centralized arbitration mechanism to Lu-
miNOC [2] in terms of latency, throughput, and power con-
sumption. LumiNOC represents the state-of-the-art shared op-
tical bus proposal and outperforms a large number of recently
proposed ONoCs as well as electrical baselines [2]. It uses
a distributed arbitration approach in which each requesting
node broadcasts a bitmap with its respective source address
bit set to ’1’ in case it would like access to the bus, along
with a destination and packet length field to notify receivers to
tune in. Leveraging a bus layout like in Fig. 2, each requester
receives its own arbitration packet and detects, based on the
bitmap, whether there are other nodes requesting. If so, each
requester will be scheduled sequentially on the entire bus
bandwidth based on a priority-based algorithm. LumiNOC
reduces arbitration latency for cases with only one requester
through speculation: nodes speculatively start sending data
packets right after transmitting the control packet and only
abort data transmission if multiple requesters are detected in
the bitmap. A comparison to LumiNOC allows to identify the
both overheads of more complex arbitration schemes and the
benefits of subchannel scheduling.
We use DSENT [14] with a 22 nm technology library for
energy and power estimations. Laser was extracted based
on the loss parameters listed in Table I [15] and an off-
chip laser with 25% wall-plug efficiency [16]. We assume
20 µW/MR heating power [9], 1 mm tile widths/lengths, 5
GHz core, router, and link clock frequency, and 10 Gb/s
modulators/detectors. For performance simulations, we used
the cycle-accurate simulator HNOCS [17], uniform random
traffic, 256-bit packets, and 10000 packets per node injected
with an exponentially-distributed inter-packet gap.

B. Latency and Throughput

Fig. 8 and Fig. 9 illustrate the average packet latency for
buses utilizing our centralized (Centr) and distributed (Distr)
approach compared to LumiNOC for varying bus bandwidth
(i.e. number of wavelengths (λ)). The number of utilized sub-
channels is indicated by ’#SCh’. We assume 10.45 ps/mm [7]

TABLE I: Optical Loss Parameters

Parameter Value Parameter Value

Splitter loss 0.2 dB Ring: Through 0.01 dB
Coupler 1 dB Waveguide prop. 0.3 dB/mm
Ring: Drop 0.5 dB Photodetector loss 0.1 dB

optical signal propagation delay, one cycle for OE, and one
cycle for control packet processing.
Subchannel scheduling becomes increasingly superior with
increasing number of λs and number of subchannels. Lu-
miNOC shows smaller packet latency for low loads due to its
speculation mechanism and less arbitration complexity. The
differences to subchannel scheduling shrink as the number
of nodes and λs decreases. As the injection rates increase,
subchannel scheduling becomes increasingly superior, out-
weighing the arbitration overheads. Particularly as the number
of nodes and wavelengths increases, subchannel scheduling
improves throughput significantly (>1.6× for 64λ and >2×
for 128λ for both bus sizes).

C. Power Consumption

Recent studies showed that there is a practical limit of
< 64λ within one waveguide [18] and that laser power
increases tremendously along with the number of λs on a
shared bus due to excessive ring-through losses [19]. We thus
scale bandwidth on the buses by implementing 32λ buses and
physically adding buses to increase bandwidth (logically, all
nodes would still see the bus as one bus). For instance, a
128λ bus consists of four parallel 32λ buses. Leakage power
includes the static electrical power for buffering arbitration
packets and the E/O and O/E backends at the nodes and in
the arbiter (in the centralized approach). Each node requires
buffers to store one REQ and one ACK packet, and the
centralized arbiter buffers for N REQs and N ACKs (for
No nodes). We apportion a pessimistic 32-bit buffer for each
control packet. Dynamic power was captured at the saturation
point of LumiNOC (see Fig. 8/9)
Fig. 10 and Fig. 11 show the power breakdowns of 8-
node and 16-node buses for the arbitration mechanisms under
investigation for different bus widths (i.e. number of λs). As
commonly known in ONoCs, static power consumed at the
laser source and for MR heating is the major contributor to the
total power, and our centralized arbitration approach exhibits
slight overheads in terms of both these two metrics due to
the additional number of MRs at the arbiter and the ring-
through losses incurred by them. Moreover, the circuitry in
the centralized arbiter causes higher leakage power. However,
communication with the centralized arbiter allows for smaller
arbitration packets and does not require broadcasting like in
LumiNOC or our SCh Distr. This translates to less arbitration
energy, and in turn savings in dynamic power that cancels
out the static power overheads of the centralized arbiter.
In addition, dynamic power scales significantly better for
larger bus sizes (see Fig. 11). This is because arbitration
packets increase with log2(#nodes) in SCh Centr, while both
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Fig. 8: Bus Latency 8 Nodes
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Fig. 9: Bus Latency 16 Nodes

LumiNOC and SCh Distr require broadcasting bitmaps of the
source addresses and thus scale with #nodes.
SCh Distr consumes the least power for 8 nodes. At this size,
the static power overhead of the centralized arbiter is more
significant than its energy savings due to smaller arbitration
packets. Somewhat surprisingly, SCh Distr also consumes less
dynamic power than LumiNOC, although requiring two arbi-
tration rounds to propagate information about both time slots
and subchannels. This is due to multiple reasons: First, while
both approaches require broadcasting, senders in SCh Distr
do not need to send the arbitration packets to themselves.
Moreover, for synthetic traffic with just one packet size, the
’packet length’ fields are not needed in both mechanisms,
which leads to a smaller control packet size in SCh Distr as
this decreases the control packet to (dst id + Src bitmap)
(LumiNOC) and (Src bitmap) (SCh Distr). As these packets
are broadcasted by each sender, the difference in control packet
size becomes significant and outweighs the energy required for
the unicast control packet of in phase 2. We aim to study the
impact on dynamic power of two packet sizes (as common in
multi-processors) on SCh Distr in the future.

D. Discussion

Although subchannel scheduling requires more complex
arbitration and more information to be exchanged prior to
data transmission, both of our proposed schemes only incur
small power and latency overheads for low network loads.
In low-utilization scenarios, LumiNOC’s speculative sending
approach is superior since the arbitration latency becomes
large compared to the actual data transmission, particularly
for small packet sizes. For moderate and high utilization rates,
both of our subchannel approaches are superior to LumiNOC
both in terms of power, latency, and throughput.
For small number of nodes, distributed arbitration is the pre-
ferred design as the static power caused by the resource over-
heads of a centralized arbiter is more significant in these cases.
For larger number of nodes, however, centralized arbitration
is the preferred choice since arbitration packets are smaller
which allows for significant dynamic power savings that justify
the overheads of a separate arbitration circuitry. Besides, a
centralized arbiter would facilitate the implementation of more
sophisticated flow control mechanisms (e.g. requesting the
bus for multiple packets), which is difficult to implement in
distributed arbitration.
Our results confirm the effectiveness of scheduling senders

in both time slots and subchannels, and that power over-
heads are negligible compared to the throughput gains. This
can be leveraged to either provide higher performance to
bandwidth-critical NoCs, or to enable low power designs
since fewer number of buses are necessary to offer the same
bandwidth to a NoC. As buses are typically the backbone
of higher-order topologies in optical NoCs, we believe that
these improvements would carry over to improve the overall
power efficiency of a NoC implementing them. In addition,
subchannel scheduling is not restricted to the on-chip domain
and could likely improve link utilization of optical buses for
inter-chip communication, too. For instance, recent proposals
connecting multiple chiplets with optical buses to form a
’virtual chip’ would also benefit from our proposal [20].

VI. RELATED WORK

Bandwidth sharing techniques were shown to be an efficient
architectural approach to decrease laser power by a number
of studies, which all aim to keep arbitration overheads low
and bandwidth utilization high [21], [22], [23], [24]. Some
wavelength-routed ONoCs [9], [25] share bandwidth by shar-
ing the address space to reduce the number of wavelengths in
the network while providing collision-free routes. Contention
resolution at the destination node is managed by a separate
global control network on which senders perform destination-
checking.
Other studies investigate token-based arbitration schemes:
FlexiShare [26] is a channel sharing architecture that improves
channel utilization; however, parallel wavelength channels are
necessary for arbitration for both sender and receiver sides,
causing additional costs in power and area. ‘Channel Bor-
rowing’ [27] simplifies Flexishare’s token arbitration scheme
by restricting the number of senders on a shared channel to
two, which leads to a more light-weight design. Corona [22]
assigns dedicated channels to each node, but other nodes can
compete for transmitting on other node’s channels, too. These
approaches report large utilization improvements, however,
token-based arbitration is fundamentally limited in scalability
as nodes have to wait in line until they receive a token.
‘Wavelength Stealing’ [28] is an arbitration-free channel shar-
ing mechanism that uses erasure coding to recover from
collisions. GASOLIN [29] implements an arbiter at each node
to enable pipelined distributed global arbitration for MWMR
crossbars. FeatherWeight [30] is a feedback-controlled arbitra-
tion scheme with QoS support through adaptive source throt-
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tling. Although these approaches provide interesting studies to
efficiently utilize bandwidth, they often apply them within the
framework of a whole NoC design. Our proposed subchannel
scheduling for shared buses offers higher flexibility as buses
are a modular design that can be scaled conveniently both in
size and bandwidth based on the system demands.

VII. CONCLUSION

This paper showed that scheduling transmissions on shared
optical buses both in time slots and subchannels can be
implemented efficiently by both distributed and centralized
arbitration schemes and improves throughput tremendously.
Power overheads of more complex subchannel arbitration are
negligible, and latency is only degraded for small network
loads. The higher the number of nodes connected to the bus
and/or the higher the optical bandwidth on the bus, the more
effective and superior our subchannel scheduling approach
becomes. Implementing our approaches in buses that form
the backbone of larger NoCs would provide higher bandwidth
within the same power budget or could be leveraged to save
power by lowering bandwidth without decreasing throughput
compared to sequential-only scheduling.
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