
A High Speed Hardware Scheduler for 1000-port

Optical Packet Switches to Enable

Scalable Data Centers

Joshua L.Benjamin, Adam Funnell, Philip M.Watts

University College London

London, United Kingdom,

Email: joshua.benjamin.09@ucl.ac.uk

Benn Thomsen

Microsoft Research

Cambridge, United Kingdom

Abstract— Meeting the exponential increase in the global

demand for bandwidth has become a major concern for today’s

data centers. The scalability of any data center is defined by the

maximum capacity and port count of the switching devices it

employs, limited by total pin bandwidth on current electronic

switch ASICs. Optical switches can provide higher capacity and

port counts, and hence, can be used to transform data center

scalability. We have recently demonstrated a 1000-port star-

coupler based wavelength division multiplexed (WDM) and time

division multiplexed (TDM) optical switch architecture offering a

bandwidth of 32 Tbit/s with the use of fast wavelength-tunable

transmitters and high-sensitivity coherent receivers. However,

the major challenge in deploying such an optical switch to replace

current electronic switches lies in designing and implementing a

scalable scheduler capable of operating on packet timescales.

In this paper, we present a pipelined and highly parallel

electronic scheduler that configures the high-radix (1000-port)

optical packet switch. The scheduler can process requests from

1000 nodes and allocate timeslots across 320 wavelength channels

and 4000 wavelength-tunable transceivers within a time

constraint of 1µs. Using the Opencell NanGate 45nm standard

cell library, we show that the complete 1000-port parallel

scheduler algorithm occupies a circuit area of 52.7mm2, 4-8x

smaller than that of a high-performance switch ASIC, with a

clock period of less than 8ns, enabling 138 scheduling iterations

to be performed in 1µs. The performance of the scheduling

algorithm is evaluated in comparison to maximal matching from

graph theory and conventional software-based wavelength

allocation heuristics. The parallel hardware scheduler is shown to

achieve similar matching performance and network throughput

while being orders of magnitude faster.

Keywords — scalability; data center; optical switch; star

coupler; coherent receiver; scheduler; hardware algorithm;

ASIC synthesis; performance analysis;

I. INTRODUCTION

Over the last two decades, there has been an aggressive
increase in the rate of data being generated and shared around
the world leading to increasing intra-datacenter traffic. Cisco's
Global Cloud Index (GCI) predicts that the annual global data
center IP traffic will increase from 0.39 ZB per month in 2015

to 1.30 zettabyes (ZB) per month by 2020 [1]. In order to
support this data growth rate, data centers have been forced to
scale by increasing the number of servers they support or by
restructuring their interconnect architecture. The scalability of
any data center architecture is defined by the maximum
capacity and port count of the switching devices it employs.
Data centers today use electronic switch ASICs which are
limited in capacity by the product of pin bandwidth and the
number of high-speed signal pins [2], which is only growing at
a slow rate. For example, 256 x 25Gb/s lanes enables
Tomahawk II to handle up to 6.4 Tb/s [3], however such
ASICs have only 64 ports when bandwidth per port scales to
100 Gb/s. Creating a large data center out of low-radix
electronic switches requires a very large number of ASICs and
transceivers in a multi-level network hierarchy which is costly
and difficult to manage. In addition, unused bandwidth is
trapped within specific links even in oversubscribed scenarios.
Optical switches can decouple the relationship between
capacity and port count by building a pool of bandwidth, which
can be shared by an increased number of nodes. The result is
an optical switch which can scale to high port counts while
maintaining high bandwidth per port. The fundamental
limitations in scaling optical switches to high radix are optical
signal loss and scheduling complexity. The benefits of
employing high-radix optical switching devices in data center
networks have been previously identified [4]. However, to
avoid scheduling complexity, complexity has instead been
introduced to the optical switching plane. Some examples
include the use of tunable wavelength converters or multi-stage
optical architectures [5]–[7]. Multi-stage architectures with
distributed scheduling have also been demonstrated [8].

Recently, we proposed an optical switch that can scale to
over 1000-ports in the data plane with the use of a passive star
coupler core, tunable DS-DBR transceivers and high-
sensitivity coherent receivers [9]. The experiments
demonstrated 25 Gb/s per port with a simplified low cost and
low power receiver, but could scale to 100+ Gb/s per port by
using a full coherent receiver and Digital Signal Processing
(DSP). However, such a switch requires a central scheduler to
avoid contentions in its passive core. Previous high port-count
scheduling work has used a software defined networking
(SDN) approach to compute routing, wavelength and timeslot
allocation (RWTA) for TCP/IP flows, however, the
computation takes 53ms [10] making it unsuitable for
scheduling at the packet level. In this work, we propose a

This work was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) grant EP/I004157/2 and by a PhD studentship

awarded to Joshua Benjamin by the EPSRC-funded UCL-Cambridge Centre

for Doctoral Training in Integrated Photonic and Electronic Systems (IPES).

parallel iterative scheduler algorithm for the 1000-port optical
switch [9] that can compute a schedule on packet timescales.
We evaluate the scheduler scalability, demonstrating that it is
viable to implement on 45nm CMOS ASIC and can compute a
1000-port schedule in 1 µs. Secondly, we assess the matching
performance of the parallel hardware algorithm compared with
conventional software based wavelength assignment
techniques and maximal matching (graph theory). Thirdly, we
evaluate the latency of the scheduling technique over multiple
epochs.

 This paper is organized as follows: Section II describes the
1000-port optical packet switch on which the scheduler design
is based. Section III describes the parallel hardware scheduler
algorithm as well as alternative scheduling algorithms against
which it will be compared. Section IV presents details of the
implementation of the hardware scheduler, providing evidence
that it is viable to fabrication as a CMOS ASIC and will meet
aggressive timing and throughput requirements. Section V
compares the matching and latency performance of the parallel
hardware scheduler against maximal matching and serial
wavelength allocation heuristics, before section VI gives the
overall conclusions.

II. ASSUMED OPTICAL PACKET SWITCH ARCHITECTURE

A. Optical Packet Switch: Data Plane

The proposed switch architecture employs a passive star-
coupler core, tunable DS-DBR lasers for transmission and
coherent receivers with independently tunable local oscillators
for their high sensitivity and fast wavelength selectivity. As
shown in Figure 1(a), each node has up to T tunable lasers and
T coherent receivers, where T is the total number of star
couplers used. The switch scalability is limited by the splitting
loss of each passive star coupler. Using the high sensitivity
coherent receiver, a device now widely used in long-haul
optical communication, it was shown that a single star coupler
can scale to N=1000 ports; using T star couplers in parallel
increases the available connectivity between nodes.

On each star coupler, choosing wavelengths within the
optical C-band and on 50 GHz ITU grid spacing allows the use
of 80 wavelength channels. Each star coupler connects all 1000
nodes, multiplexing and broadcasting W = 80 wavelengths to
all receivers, where a single wavelength is selected to receive

data. Since the number of nodes N is much greater than the
number of wavelengths W, each wavelength can be shared
between multiple transmitters, interleaving data from multiple
nodes in a time-slotted manner (Time Division Multiplexing,
or TDM). The work in [11] demonstrated a low cost simplified
coherent receiver. However, the total capacity of an N = 1000
node optical switch can be as high as 32Tb/s (without
accounting for tuning time), when using T=4 transceivers per
node, W=80 wavelengths and DP-QPSK modulation
transmission at 25Gbaud/s (a line rate of 100Gb/s).

To reconfigure the switch, transceivers are tuned every 2µs,
to enable new connections to be made across the switch. Useful
communication cannot take place while the laser is tuning to a
new wavelength which was shown to take a maximum time of
200ns [11]. This results in a laser tuning overhead of less than
10% of the available time, during which data transmission is
not feasible on the data plane. Figure 1(b) shows the useful
data transmission time (called here an epoch) and the laser
tuning time of the switch data plane.

As mentioned above, TDM is used on the data plane to
reduce the overall switch latency by allowing many more
transmitters to access the network in a given epoch than if the
switch was routed by wavelength alone. Our previous
experimental demonstration showed that up to M = 25
transmitters can share a wavelength in a given epoch [9]. In
this switch prototype, there are L=100 timeslots, so each
timeslot is 20 ns long, which at 100 Gb/s, corresponds to 250
bytes. Data center traffic is bimodal and hence, the nodes must
be able to send several mice flow packets (few timeslots) and
elephant flow packets (several adjoining timeslots). The node
specifies the number of slots it needs as part of its request to
the scheduler.

B. Optical Packet Switch: Control Plane

Figure 1(b) shows the working of the data and control plane
in harmony. The nodes send wavelength and timeslot resource
requests to the scheduler during one epoch to perform
allocation for the subsequent epoch, shown as (1) in figure
1(a). The scheduler processes the requests and computes TDM
slot grants for the nodes and laser and receiver wavelength
assignments (2). The generated grants and transceiver
wavelength assignments are then communicated back to the
nodes (3). Finally, the optical switch is configured and the

(a) Central scheduler controlling the optical switch (b) Dataflow: Data and Control Plane

Figure 1: 1000-port Optical Packet Switch Architecture: Control and Data Plane

required data is communicated (4). Hence, the control plane
has 2µs (the duration of an epoch) to collect requests, compute
schedule and send grants. The control plane can send up to
6250 bytes of requests in 0.5µs, when using one wavelength
channel at 100 Gb/s. Hence, allowing a total transit time for
both requests and grants of 1µs, the scheduler has 1µs to
complete the computation of the schedule for a single epoch. A
practical scheduler can only accept a fixed number of requests,
R, from each node, constrained by the control plane bandwidth
and scheduler memory.

III. SCHEDULER ALGORITHMS

This section describes the three scheduling algorithms
examined for the switch architecture described in Section II.
We use maximal matching as the ideal case and serial
wavelength assignment heuristics as typical of a software
implementation. Finally, we describe our parallel scheduling
technique which is optimized to meet the timing requirements.

A. Maximal Matching (A1)

The first algorithm is maximal matching, based on graph
theory. The request or the demand matrix creates a bipartite
graph between a set of source nodes and a set of destination
nodes that has N*R edges. The request also specifies the size or
the number of slots it requires; this is a weighted bipartite
maximal matching problem [12]. Maximal matching, in itself,
is a P-type problem but the restrictions on the number of
wavelength channels, timeslots and stars (edges) make the
resource mapping an NP-hard problem [13]. The maximal
matching discussed in this paper, however, aims to achieve
maximal matching per iteration, allowing the allocation of
W=80 channels to maximal flows. At each iteration, nodes
requesting the highest number of slots are considered; up to W
dominant flows are identified and allocated different
wavelengths. Once maximal matching is achieved on one star,
the algorithm moves to consider requests for the resources on
the consequent star. The purpose of this algorithm is to help us
perceive how large a matching one can achieve and it serves as
the ideal case.

The maximal matching algorithm uses sorting elements and
search functions to achieve its goal. To implement this
technique in hardware for 1000 ports, search and sorting
algorithms must be used at each iteration. The complexity of
these algorithms makes them impractical for hardware
implementation.

B. Serial Wavelength Assignment Heuristics (A2)

The second set of algorithms is derived from conventional

wavelength assignment heuristics which loop through every

request in a serial fashion [14] and would typically be

implemented in software although a serial hardware

implementation is also possible. Considering a single node-

pair at a time, the software scans across all available

wavelengths and stars to schedule.

Three software-based heuristics, random, least used and
least loaded, are adapted for the optical switch described in
section II and differ in the way that they choose wavelengths
and stars for each assignment. The random wavelength
assignment scheme chooses a random available wavelength on

a random star. The least used wavelength assignment scheme,
conscious of the limits of the number of transmitters that can
share a wavelength in any epoch, M (=25), searches across all
stars for the wavelength with minimum number of transceivers
tuned to it. The least loaded wavelength assignment scheme is
similar to the least loaded technique but it searches across all
stars for the wavelength with minimum number of slots used.
The pseudo-code for the software algorithms is described
below:

Software Algorithms – Serial Case

Require: Set of nodes N, set of wavelengths W, demand matrix D, number of
stars T, slots per epoch L, maximum transceivers per wavelength M, Number

of iterations SerI. Circular queue of node pairs with non-zero demand – Q<i,j>
Ensure: Assign timeslots across wavelengths and stars to obtain (a) Random,
(b) Least loaded (LL) or (c) Least used (LU) assignment subject to constraints.
1: mw = 0, slot[w] = 0 wW {mw is the number of transceivers assigned

to wavelength, slot[w] is the next available timeslot in wavelength w}
2: λfull[w] = 0 {wavelength availability: full = 1, available = 0}
3: Tx[n, t] = 0, Rx[n, t] = 0  t, τ T {where Tx is the wavelength assigned

to node n transmitter and Rx is the wavelength assigned to node n
receiver}

4: for i = 1 to |SerI|
5: /* Only one of the following three algorithms is used at a given time: */
6a: [λ,star] = random(~λfull[w],T) {Random w in random star T}
6b: [λ,star] = leastloaded(~λfull[w],T) {Find w using min slots}
6c: [λ,star] = leastused(~λfull[w],T) {Find w using min trasceivers}
7: /* Check for common wavelength first across all stars*/
8: if (Tx[i,t]==Rx[j,t] && Tx[i,t]≠0 && |λfull[i,w]| ≠0)
9: Grant = 1, w = Tx[i], τ = t
10: /* Check if unassigned transceivers are available across all stars */
11: elseif(Tx[i,t]==0 && Rx[j,t]==0 && |λfull[i,w]| ≠0)
12: Grant = 1, w = λ, τ = star
13: /* Check if transmitters are unassigned across all stars */
14: elseif(Tx[i,t]==0 && Rx[j,t]≠0 && |λfull[i,w]| ≠0)
15: Grant = 1, w = Rx[j,t], τ = t
16: /* Check if receivers are unassigned across all stars */
17: elseif (Tx[i,t]≠0 && Rx[j,t]==0 && |λfull[i,w]| ≠0)
18: Grant = 1, w = Tx[i,t], τ = t
19: else Grant = 0;
20: endif
21: /*If request is granted, update slots and wavelength registers*/
22: if(Grant == 1)
23: if(size(i,j) > |L|-slot[w, τ]) /* limited by number of slots available */
24: slot[w, τ] = |L|, size(i,j) = size(i,j) – (|L|-slot[w, τ])
25: Grant = 0 /* Not all the slots that were requested were granted */
26: elseif(size(i,j) ≤ |L|-slot[w, τ]) /* Slots are available */
27: slot[w, τ] = slot[w, τ]+ size(i,j)
28: Q<i,j> = 0 /* Request is fully granted */
29: endif
30: endif
31: if (slot[w, τ] == |L| || mw[w, τ]== |M|)
32: |λfull[w, τ]| = 0 /*Update wavelength full register */
33: endif
34: endif
35: end

The heuristics need at least N*R clock cycles to complete
one pass through all requests. In practice, we found that
10*N*R is required to maximize throughput with these
techniques. Hence, although it is possible to implement these
heuristics in serial hardware, around 80,000 clock cycles would
be required to compute a full epoch schedule with good
matching performance.

C. Parallel Hardware Scheduler (A3)

The parallel hardware scheduler algorithm, optimized to

meet the timing requirements defined in section II, is

discussed in detail here. As shown in figure 1, the first phase

Figure 2: Scheduler algorithm with three stages: 1. Node Contention Resolution (NCR),

2. Wavelength Decision (WD) and 3. Wavelength Contention Resolution (WCR)

of the scheduler is the collection of requests, consisting of

destination and number of TDM slots required, from N nodes.

Once the request collection phase has completed, the

scheduler performs multiple iterations on buffered requests.

The scheduler must process requests from 1000 nodes,

allocating timeslots (TDM) across 320 wavelength channels

and 4000 transceivers (WDM) (assuming T=4 star couplers)

within a time constraint of 1µs. To meet this time constraint, a

high degree of parallelism is required, as serial looping

algorithms will take thousands of iterations to compute a

complete schedule. However, parallel schedulers introduce

contention in the assignment of network resources in the same

clock cycle. In general, situations in which there is contention

for resources in the same clock cycle in a digital circuit are

known as hazards. Our general approach to maximizing

parallelism without hazards is to use round-robin arbiters to

fairly select up to W requests with unique input port, output

port and wavelength which can be assigned TDM timeslots in

the same clock cycle without contention. The technique

operates sequentially for each star coupler (I/T iterations),

running the entire algorithm T times. After performing up to I

iterations in 1µs, the scheduler sends the TDM grants and

wavelength assignments to the nodes. There are three key sub-

modules within the scheduler to achieve this, as shown in

figure 2:

1) NCR - Node Contention Resolution
 Considering one request from a node per iteration, the

scheduler performs output node contention resolution in the
NCR stage. In a parallel hardware algorithm, only requests
with a unique source/destination pair can be granted in a single
clock cycle. Hence, the NCR stage uses round robin (RR)
arbiters to select one request per input/output node pair. The
scheduler uses N parallel N-bit arbiters and generates up to N
contention-free node pairs.

2) WD - Wavelength Decision
The wavelength decision block works on contention-free

node pairs, from the Stage 1 buffer, and cross checks with the
wavelength registers, to verify if the transmitter or receiver in
question has already been assigned any wavelengths on
previous iterations. If contradicting wavelengths have already
been assigned, the request is invalidated for the current epoch.
If the current wavelength assignments are consistent with
fulfilling the request, the request moves to the WCR stage. If
both the transmitter and the receiver have never been granted a
wavelength before, then a random wavelength is chosen.

3) WCR - Wavelength Contention Resolution
The wavelength contention resolution block considers the

wavelength requests made by the WD sub-module and resolves
wavelength contention, allowing a maximum of W grants to be
successful in any iteration. The WCR module uses W N-bit
round robin arbiters to resolve contention. The successful
requests are granted and assigned all the required TDM
timeslots. Any new wavelength assignments are stored.

IV. IMPLEMENTATION OF THE HARDWARE SCHEDULER

In this section, we demonstrate that the proposed parallel
hardware scheduler is viable for implementation on a CMOS
ASIC. First, the scalability of round robin arbiters, one of the
key circuit blocks, is evaluated. Following this, we describe the
implementation techniques used to enhance the speed of the
scheduler. Finally, we review the scalability, timing and area
characteristics of the different parallel scheduler sub-modules
on 45nm CMOS technology.

A. Arbiter Scalability

A key component of our parallel hardware scheduler is the
round robin arbiter. The arbiters are used to fairly identify non-
contending destination requests and non-contending
wavelength requests for scheduling. As the arbiter is in the
critical path for large port counts, to enable a scalable scheduler
design overall, it is very important that the arbiters are scalable.
The round robin arbiter, based on the design proposed in [15],
was coded in SystemVerilog hardware description language
with configurable size and look-ahead value. An N-port round
robin arbiter consists of a circular programmable priority
encoder (PPE) in which the priority is given to the last granted
port plus one (the last granted port has the lowest priority).
The critical path in the arbiter is through the carry chain in the
PPE, rather like the carry chain in an adder circuit. As for
adders, carry look-ahead can be employed to reduce the critical
path. Unlike adders, the carry chain is circular, starting at the
priority request cell and extending through N cells. The work
in [15] shows how to implement the arbiter without using
circular PPEs. The arbiter code was synthesized for various
values of port-count and look-ahead using Synopsys Design
Compiler and the 45nm CMOS NanGate standard cell library
to extract timing and area characteristics. Figure 3 shows the
best clock period achieved for arbiters with between 2 and
1024 ports for carry look-ahead chain of different lengths. The
results show that a 1024-bit arbiter needs a minimum clock
period of 4.7 ns, when using an optimum look-ahead of 16. The
1024-bit arbiter occupies an area of 0.031mm2 on 45nm ASIC.

The critical path of the round robin arbiter scales sub-linearly
with port count and hence appears promising for the
implementation of large port-count schedulers.

B. Complexity Analysis and Synthesis Results

 Each of the three scheduler sub-modules, discussed in
section III C, have different complexity levels. The NCR block
requires the implementation of N×N-bit arbiters; this has an
area/component scaling of O(N2), although the critical path
length scales much more slowly as demonstrated in the
previous section. The WD block is based on the
implementation of N×(W:1) multiplexers with a complexity of
O(Nlog2W). The third WCR module uses W×N-bit arbiters to
resolve wavelength contention and hence, has an
area/component scaling of O(NW). As shown in figure 2, each
of the 3 sub-modules is placed in a separate pipeline stage to
minimize the overall critical path.

The three sub-blocks, NCR, WD and WCR, were
synthesized using Synopsys Design Compiler on 45nm CMOS
technology using the NanGate standard cell library.

Figure 4 shows the scalability of the sub-modules with respect
to minimum clock period. As the arbiter is the dominant logic
in determining the critical path of the NCR and the WCR stage,
the optimized round robin arbiter results from figure 3 are also
shown for comparison. Figure 4 shows that, in a 1000-port
scheduler system, the NCR sub-module contains the overall
critical path, meeting timing at a clock period of 7.2ns This
corresponds to I=138 scheduler iterations which can be carried
out in 1µs (shown in figure 4 by the right-hand y-axis). The
total area consumed by the three scheduler sub-modules, using
the 45nm standard cell library without considering other
peripheral circuits such as SERDES, is 52.7mm2. For
comparison, a typical 64 x 10 Gb/s switch die consumes an
area of 200-400mm2 in 45nm CMOS technology [16]. These
scalability results show the feasibility of scheduler
implementation on digital hardware.
 Given the large number of scheduler iterations possible, to
avoid duplication of the scheduler logic, we propose to time
share the scheduler circuit between stars. For example, for
T=4, each star uses one quarter of the iterations available per
epoch. The performance results in section V take into account
this time sharing.

V. PERFORMANCE ANALYSIS

In this section, we compare the performance of the parallel

hardware scheduler with ideal maximal matching and the

software heuristics. The three algorithms, along with the

traffic generators described in subsection A below, were coded

in MATLAB. To increase confidence in our models and

design, we simulated the SystemVerilog code for the hardware

scheduler using the digital design simulator, Mentor Graphics

Modelsim, importing the scheduler request inputs from

MATLAB, and verified that the outputs were consistent. The

switch parameters used for performance analysis are as

follows. The number of ports in the switch, N = 1000. The

maximum number of requests that can be made per node, per

epoch, R = 8 initially. The average number of timeslots

requested (per request) is 4. The number of wavelength

channels, W = 80. The number of timeslots per epoch, L =

100. The number of stars or the number of transceivers per

node, T = 4. 100% offered load (in Fig. 5) corresponds to

making requests for the total capacity of the switch (32Tb/s).

A. Traffic Patterns

Three different traffic patterns were used to analyze the
matching performance of the wavelength allocation schemes.
The traffic patterns mentioned below generate requests for up
to 30 epochs; the results are averaged and presented.
Uniform Random: Under uniform random traffic, each node
requests a destination node with a probability of 1/N. Figure
5(a) shows the performance of the scheduling algorithms under
uniform traffic for increasing network load. At lower loads, all
three scheduling algorithms grant close to all offered load. As
the offered load increases, all algorithms achieve less
matching, as expected. At 100% offered load, the hardware
scheduler has 10% lower matching than the maximal matching
case. However, the parallel scheduler performs better by 8-
10% compared to the serial scheduling heuristics. The parallel
scheduler collects non-conflicting assignments to minimize the

Figure 3: Scalability of an N-port arbiter on 45nm ASIC

where N is the number of servers

Figure 4: Scalability of N-bit NCR, WD and WCR sub-

modules on 45nm ASIC, where N is the number of servers

effect of hazards. In addition to this, the parallel and maximal
matching algorithms aim to maximize resource allocation in
each star, enhancing the throughput; the hazards are collected
and processed in the next star.
Hotspot Traffic: In this case, a specific number of hotspot
nodes request a percentage of the resource. This scenario
simulates heavy application traffic patterns where few nodes
request a large portion of the switch capacity. Figure 5(b)
shows the performance of the scheduling algorithms in hotspot
traffic patterns, when 5% of nodes are hotspots (50 nodes in the
1000-port system). An increased presence of hotspot traffic
decreases the overall throughput, even for the maximal
matching algorithm. This occurs because the number of
hotspots is less than the number of wavelengths. For example,
at 100% load, although there are 80 available wavelength
channels in the network, only 50 destination nodes are
requested repeatedly. The parallel scheduler performs worse by
12% compared to least loaded and least used allocation
techniques and by 15% compared to maximal matching.
Efficient matching performance in hotspot traffic requires
careful allocation of available resources. Hence, least loaded,
least used and maximal matching algorithms achieve a higher
throughput compared to random wavelength selection in the
parallel scheduler and the serial random scheme.
Clustered Traffic: In clustered traffic, the network is partitioned
into several clusters and sets of nodes request only within their
cluster. This simulates the scenario in which several nodes are
connecting servers working on the same application. Figure
5(c) shows the performance of the scheduling algorithms in
clustered traffic. There is an increase in the performance of all
algorithms as the number of clusters increases, as sub-networks
can be mapped onto the same wavelength(s). Achieving higher
throughput with more clusters, the parallel scheduler algorithm
achieves close to maximal matching when more than 50
clusters exist in the network.

B. Latency vs Load

 To measure the latency using the three scheduling
algorithms, we carried out simulations for the uniform random
traffic pattern for up to 50 epochs, in which requests that were
not granted in the current epoch are buffered and carried
forward to the next epoch, adding to new requests. A buffer
system was introduced to the scheduler algorithms to store the
requests that were not granted in the current epoch. In
consequent epochs, the buffer has priority to the requests from

nodes; the requests are not invalidated completely until
granted.

 Figure 6 shows the performance of the scheduling
algorithms in terms of packet latency for increasing network
load. The minimum latency for any packet is one epoch. The
load saturation point for the scheduling algorithms occurs
between 60-70%, beyond which, the packet latency increases.
The parallel scheduler and maximal matching scheme perform
better than the software allocation schemes. The overall packet
latency in the parallel scheduler is less than 4 epochs, which
corresponds to 8.8µs (including 200ns tuning time for each
epoch), for the given system parameters, even at 100% offered
load.

C. Number of Requests per Node

The results obtained so far are presented for a scenario where

the number of requests per node, R, is limited to 8. A practical

scheduler implementation can only accept a fixed number of

requests, constrained by the bandwidth of the control plane,

scheduler memory and area consumption. However, to test the

limits of the scheduling algorithms, the performance was

evaluated for different values of R. In every epoch, the

scheduling algorithms receive a maximum of N*R requests.

Figure 6: Latency of the scheduling algorithms

Figure 5: Performance analysis of scheduling algorithms under different traffic patterns

As shown in figure 7, as the number requests per node

increases, there is a decrease in throughput for all scheduling

algorithms. In these measurements, the request capacity for

the switch resources was kept the same (32 Tb/s). Lower

numbers of requests represent a high concentration of elephant

flows, where each request is for large number of slots. The

higher numbers of requests correspond to a high concentration

of mice flows, where many small slots are requested. In this

scenario, when R increases to high values the matching

performance decreases due to the increasing number of

hazards. The parallel scheduler algorithm performs worse by

10-15% compared to the ideal maximal case, when the

number of requests is greater than 10. The parallel scheme

also achieves a small performance gain compared to serial

software scheduling schemes.

D. Summary

In summary, the parallel hardware scheduler achieves an

equivalent matching performance to serial software

wavelength allocation techniques on packet timescales. The

load-latency results in section V.B show that the parallel

scheduler performs better than conventional schemes by 2-3

epochs, making an efficient use of each star available. Finally,

as expected, the scheduling algorithms are shown to achieve

higher throughput for lower number of requests, showing the

limitation of the optical switch plane.

VI. CONCLUSION

The scalability of data center optical switches is limited by

the complexity of the control plane. The optical switch

architecture demonstrated in [9] scales to over 1000 ports on

the data plane but requires a scheduler performing dynamic

wavelength assignment that is also scalable to 1000 ports and

also achieves high throughput consistent with packet

timescales. In this work, we presented a parallel hardware

scheduler to meet these requirements. The implementation

feasibility of the parallel scheduler in 45nm CMOS

technology was demonstrated. The scheduler design was

found to consume 52.7mm2 ASIC area, relatively smaller than

a conventional 64-port electronic network switch ASIC. The

hardware scheduler was shown to perform up to 138 iterations

within 1µs achieving matching performance close to that of

maximal matching for various traffic patterns. The hardware

scheduler also outperforms conventional wavelength

assignment heuristics which would take on the order of

milliseconds to execute in most cases.

VII. REFERENCES

[1] W. Paper, “Cisco Global Cloud Index : Forecast and Methodology
,” pp. 2015–2020, 2016.

[2] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore,
“Reconfigurable network systems and software-defined
networking,” Proc. IEEE, vol. 103, no. 7, pp. 1102–1124, 2015.

[3] T. P. Morgan, “Broadcom Strikes 100G Ethernet Harder With
Tomahawk-II,” 2016. [Online]. Available:
https://www.nextplatform.com/2016/10/31/broadcom-s. [Accessed:
08-Feb-2017].

[4] S. Di Lucente, N. Calabretta, J. a. C. Resing, and H. J. S. Dorren,
“Scaling Low-Latency Optical Packet Switches to a Thousand
Ports,” J. Opt. Commun. Netw., vol. 4, no. 9, p. A17, Jul. 2012.

[5] K. Xi, Y. Kao, M. Yang, and H. J. Chao, “Petabit Optical Switch for
Data Center Networks,” New York City, NY, 2010.

[6] J. Gripp, J. E. Simsarian, J. D. LeGrange, P. Bernasconi, and D. T.
Neilson, “Photonic terabit routers: The IRIS project,” Opt. Fiber
Commun. (OFC), collocated Natl. Fiber Opt. Eng. Conf. 2010
Conf., pp. 1–3, 2010.

[7] C. Kachris and I. Tomkos, “A Survey on Optical Interconnects for
Data Centers - IEEE Communications Surveys & Tutorials.pdf,”
vol. 14, no. 4, pp. 1021–1036, 2012.

[8] A. Shacham and K. Bergman, “An Experimental Validation of a
Wavelength-Striped, Packet Switched, Optical Interconnection
Network,” J. Light. Technol., vol. 27, no. 7, pp. 841–850, 2009.

[9] D. Alistarh, H. Ballani, P. Costa, A. Funnell, J. Benjamin, P. Watts,
and B. Thomsen, “A High-Radix , Low-Latency Optical Switch for
Data Centers,” Proc. ACM SIGCOMM (Poster/demo Sess., pp. 367–
368, 2015.

[10] B. Rahimzadeh Rofoee, G. Zervas, Y. Yan, and D. Simeonidou,
“Griffin: Programmable Optical DataCenter with SDN Enabled
Function Planning and Virtualisation,” J. Light. Technol., vol. 33,
no. 24, pp. 5164–5177, 2015.

[11] A. Funnell, J. Benjamin, H. Ballani, P. Costa, P. Watts, and B. C.
Thomsen, “High Port Count Hybrid Wavelength Switched TDMA (
WS-TDMA) Optical Switch for Data Centers,” Opt. Fiber
Commun. Conf. 2016, pp. 2–4, 2016.

[12] S. Das, “A Tight Lower Bound for the Weights of Maximum
Weight Matching in Bipartite Graphs,” pp. 1–9, 2016.

[13] M. Demange and T. Ekim, “Minimum maximal matching is np-hard
in regular bipartite graphs,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.
4978 LNCS, pp. 364–374, 2008.

[14] H. U. I. Zang, “A Review of Routing and Wavelength Assignment
Approaches for Wavelength- Routed Optical WDM Networks,”
Opt. Networks Mag., vol. 1, no. January, pp. 47–60, 2000.

[15] P. Gupta and N. McKeown, “Designing and implementing a fast
crossbar scheduler,” IEEE Micro, vol. 19, no. 1, pp. 20–28, 1999.

[16] N. Farrington, E. Rubow, and A. Vahdat, “Data Center Switch
Architecture in the Age of Merchant Silicon,” pp. 101–110, 2009.

Figure 7: Performance of scheduling algorithms in

requests per node

