
Multithreaded Vector Architectures

Roger Espasa Mateo Valero

Departament d’arquitectura de Computadors,
Universitat Polithcnica de Catalunya, Barcelona

e-mail: {roger,mateo}Qac.upc.es
http://www.ac.upc.es/hpc

Abstract

The purpose of this paper is to show that multi-
threading techniques can be applied to a vector proces-
sor to greatly increase processor throughput and max-
imize resource utilization. Using a trace driven ap-
proach, we simulate a selection of the Perfect Club
and Specfp92 programs and compare their execution
time on a conventional vector architecture with a sin-
gle memory port and on a multithreaded vector archi-
tecture. We devote an important part of this paper t o
study the interaction between multithreading and main
memory latency. This paper focuses on maxamizing
the usage of the memory port, the most expensive re-
source in typical vector computers. A study of the cost
associated with the duplication of the vector register
file is also carried out. Overall, multithreading pro-
vides for this architecture a performance advantage of
more than a factor of 1.4 for realistic memory laten-
cies, and can drive the utilization of the single memory
port as high as 95%.

1 Introduction

Recent years have witnessed an increasing gap be-
tween processor speed and memory speed, which is
due to two main reasons. First, technological im-
provements in CPU speed have not been matched by
similar improvements in memory chips. Second, the
instruction level parallelism available in recent proces-
sors has increased. Since several instructions are being
issued at the same processor cycle, the total amount
of data requested per cycle to the memory system is
much higher. These two factors have led to a situ-
ation where memory chips are on the order of 10 to
a 100 times slower than cpus and where the total ex-
ecution time of a program can be greatly dominated
by average memory access time.

Current superscalar processors have been attack-
ing the memory latency problem through basically
three main types of techniques: caching, decoupling
and multithreading (which, sometimes, may appear
together). Cachebased superscalar processors reduce
the average memory access time by placing the work-
ing set of a program in a faster level of the memory
hierarchy. Software and hardware techniques such as

described in [2, 181 have been devised to prefetch data
from high levels in the memory hierarchy to lower
levels (closer to the CPU) before the data is actually
needed. On top of that, program transformations such
as loop blocking [27] have proven very useful to fit the
working set of a program into the cache.

Decoupled scalar processors [22, 21, 151 have fo-
cused on numerical computation and attack the mem-
ory latency problem by making the observation that
the execution of a program can be split into two differ-
ent tasks: moving data in and out of the processor and
executing all arithmetic instructions that perform the
program computations. A decoupled processor typi-
cally has two independent processors (the address pro-
cessor and the computation processor) that perform
these two tasks asynchronously and that communi-
cate through architectural queues. Latency is hidden
by the fact that usually the address processor is able
to slip ahead of the computation processor and start
loading data that will be needed soon by the compu-
tation processor.

Multithreaded scalar processors [l, 24, 25, 13, 51
attack the memory latency problem by switching be-
tween threads of computations every time a long-
latency operation (such as a cache miss) threatens
to halt the processor. This approach not only fights
memory latency, but also produces a system with
higher throughput and better resource utilization.
The change of thread on long latency operations im-
plies an increase in exploitable parallelism, a decrease
on the the probability of halting the CPU due to a haz-
ard, and yields a higher occupation of the functional
units and an improved system throughput. While each
single thread still pays latency delays, the CPU is (pre-
sumably) never idle thanks to this mixing of different
threads of computation.

Vector machines have traditionally tackled the la-
tency problem by exploiting Ion vectors using vec-
tor instructions. Once a (memory? vector operation is
started, it pays for some initial (potentially long) la-
tency, but then it works on a long stream of elements
and effectively amortizes this latency across all the
elements. In vector multiprocessor systems the mem-
ory latency can be quite high due to conflicts in the
memory modules and in the interconnection network.
Although vector machines have been very successful
during many years for certain types of numerical cal-
culations, there is still much room for improvement.

0-8186-7764-3/97 $10.00 0 1997 IEEE
237

http://www.ac.upc.es/hpc

Several studies in recent years [20, 81 show how the
performance achieved by vector architectures on real
programs is far from the theoretical peak performance
of the machine. Functional unit hazards and conflicts
in the vector register file ports can make vector proces-
sors stall for long periods of time and suffer from the
same latency problems as scalar processors. In [8] is
shown how the memory port of a single-port vector
computer was heavily underutilized even for programs
that were memory bound. It also shows how a vector
processor could spend up to 50% of all its execution
cycles waiting for data to come from memory. Also,
work by [19] shows how the memory port usage of
Cray Y-MP system is also very low, sustaining an av-
erage of 1.0 memory transaction per cycle (where the
machine could sustain 3 transactions per cycle on its
two load and one store memory ports).

Since the memory system of current vector super-
computers is by far the most expensive part of a whole
machine, techniques aimed at increasing its utilization
are important even if they incur in an increase in CPU
cost. Despite this need to improve the memory per-
formance for vector architectures, it is not possible to
apply some of the hardware and software techniques
used by scalar processors because these techniques are
either too expensive or exhibit a poor performance in
a vector context. For example, caches and software
pipelining are two techniques that have been stud-
ied [14, 16, 23, 171 in the context of vector processors
but that have not been proved useful enough to be in
widespread use in current vector machines.

Decoupled vector architectures have recently been
proposed in [7] as a mean of attacking the latency
problem in vector processors. This proposal studied
decoupling in the context of single memory port vector
architectures. In this context, it reduced the total ex-
ecution time of vector codes even for very small mem-
ory latencies and when increasing this latency up to
more realistic values, it managed to almost flat out the
performance degradation curve. Nevertheless, decou-
pling did not manage to fully use the total bandwidth
of the memory port, and the bus was idle still for a
significant fraction of the total execution time.

The purpose of this paper is to show that using mul-
tithreading techniques in a vector processor, the effi-
ciency of a vector processor can be improved greatly.
In particular we will show how occupations of up to
a 95% of a single memory bus can be obtained. We
will also show how, even for an ideal memory system
with no latency, multithreading provides a significant
advantage over standard mode of operation. We will
also present data showing that for more realistic laten-
cies, multithreaded vector architectures perform sub-
stantially better than non-multithreaded vector archi-
tectures.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents
the proposed multithreaded architecture. Section 4
presents our methodology and the benchmarks used.
Section 5 discusses performance bottlenecks in a base-
line vector architecture. Section 6 presents the perfor-
mance of the multithreaded vector architecture. Sec-
tion 7 studies variations in memory latency and sec-

tion 8 looks at the effects of the register file crossbars.
Section 9 studies the effect of duplicating the control
unit and finally section 10 presents our conclusions
and future work.

2 Related work

Multithreading for scalar programs has received
much attention in recent years [24, 25, 13, 51 and has
been found to be generally useful. In this paper we
diverge from previous work in three key aspects.

First, we will study multithreading in the context of
vector architectures and highly vectorizable programs.
There has been some research on interleaving of vector
instructions at the operation level [3, 121 and there
has been a commercial machine - the Fujitsu VP2000
series [26]- featuring a vector processor being shared
by two scalar units. Nonetheless, to the best of our
knowledge, there are no published studies asserting
the benefits of multithreading a vector machine from
a general point of view and showing the implications
of latency tolerance in the vector architecture design.

A second main difference with previous multi-
threaded superscalar work is that very simple hard-
ware is enough to extract a high level of performance
from a multithreaded vector architecture. Thanks to
the large granularity of vector operations, we do not
need sophisticated fetch and dispatch units, neither we
need a high bandwidth I-cache. Moreover, the decod-
ing hardware in the proposed machine has the same
cost as in a non-multithreaded machine. Our pro-
posed architecture has no out of order issue and no
renaming features currently found in many proposals
of multithreaded superscalar machines [25, 111. This
simple design is possible due to the fact that the con-
trol unit of a vector processor is typically idle for many
cycles [S] and thus can be shared by several threads
without penalizing any of them. In this paper we will
focus on the simplest design that can achieve a close
to optimal level of performance. Nonetheless, a fu-
ture line of research includes adding register renaming
and increasing the complexity of the decode unit, to
simultaneously issue from several threads at the same
time.

As a third point, and also a consequence of the large
granularity of vector operations, we will see how a very
small number of threads is needed on a multithreaded
vector machine with a single port to almost saturate
this resource. As it will be seen in section 6.2, with
only 2 threads we can attain an 85-90% occupation of
the memory bus.

Finally, we will also note that the type of thread
scheduling used in this paper is targeted towards fa-
voring chaining between vector instructions as much as
possible. This is in contrast with typical round robin
(and variations) policies found for multithreaded su-
perscalar machines. Studies of other policies are cur-
rently underway.

238

3 The Multithreaded Vector Architec-
ture

The multithreaded vector architecture we propose
is modeled after a Convex C3400 architecture. The
base C3400 architecture (henceforth, the reference ar-
chitecture), consists of a scalar part and an indepen-
dent vector part. The scalar part executes all instruc-
tions that involve scalar registers (A and S registers),
and issues a maximum of one instruction per cycle.
The vector part consists of two computation units (FUi
and FU2) and one memory accessing unit (LD). The
FU2 unit is a general purpose arithmetic unit capable
of executing all vector instructions. The FUl unit is a
restricted functional unit that executes all vector in-
structions except multiplication, division and square
root. Both functional units are fully pipelined.

The vector unit has 8 vector registers which hold
up to 128 elements of 64 bits each one. This eight
vector registers are connected to the functional units
through a restricted crossbar. Every two vector regis-
ters are grouped in a register bank and share two read
ports and one write port that links them to the func-
tional units. The compiler is responsible to schedule
the vector instructions and allocate the vector reg-
isters so that no port conflicts arise. The machine
modeled chains vectors from functional units to other
functional units and to the store unit. It does not
chain memory loads to functional units, however. The
real Convex C34 does not chain memory loads to func-
tional units (nor do the Cray-2 and Cray-3). Although
such chaining could be done, it is more complicated
than other chaining because the memory system may
not deliver the individual vector elements in order.
We note that the Convex compiler used for our study
schedules vector instructions taking the lack of load
chaining into account. Because the modeled machine
has two read pointers and one write pointer, all im-
plemented chaining is fully flexible - chaining between
two dependent instructions may be initiated regardless
of the time the second issues.

The multithreaded version of the reference archi-
tecture is shown in figure l. It has several copies of
all three set of registers (A, S and V) needed to sup-
port multiple hardware contexts (up to a maximum
of 4 contexts). The fetch and decode units are essen-
tially the same as in the reference machine, except that
they are time multiplexed between the N contexts in
the machine. At each cycle, the decode unit looks at
one and only one thread. If the current instruction of
that thread can be dispatched, the instruction is sent
to its functional unit and the fetch unit is signaled
to start fetching the following instruction from that
thread. If the instruction can not proceed, then this
decoding cycle has been lost and the switch logic will
select some other thread to attempt decoding in the
following cycle. Therefore, this scheme can dispatch
at most 1 instruction per cycle.

There are no special out-of-order or simultaneous
issue features in our multithreaded architecture. At
most one instruction is fetched per cycle and at most
one instruction is sent to the execution units per cycle.

Moreover, instructions from within a single thread ex-
ecute in-order, exactly the same way as they would do
on the reference processor. The lack of sophisticated
issue units greatly simplifies the overall design.

The key point in the design of the multithreaded
vector architecture is the vector register file. The
other two register files (A and S) only hold 8 registers
each and thus only 32 scalar registers per file would
be needed to support 4 contexts. Much larger register
files are commonplace and thus we will not consider
this part of the architecture as an important concern.
On the other hand, the vector register file holds a to-
tal of 8 x 128 = 1024 64-bit registers and introducing
more contexts increases significantly the area needed
to implement the processor. Not only that, the cost
of the read/write crossbars between the registers and
the functional units is another limitingfactor that has
to be taken into account. In our model we assume
that we completely duplicate the read/write crossbars,
so that each thread sees the same amount of connec-
tivity as it had in the reference architecture. For 4
contexts, this assumption implies a read crossbar of
32 by 3 and a write crossbar of 3 by 16. Similarly,
at 4 contexts we have a total of 4096 64-bit registers
(32Kb), which is in the range of current primary data
caches. While these extra costs are not unsurmount-
able, we will take them into account in our study and
charge the multithreaded processor with an extra cy-
cle both for reading and writing fromlinto the vector
register file. We are currently looking at how the size
of the vector registers can be reduced and traded off
against the number of registers while still maintaining
the same levels of performance.

The baseline scheduling among threads we will use
is as follows: We allow each thread to run (fetch and
issue) until it blocks on some data dependency or some
resource conflict. When a thread blocks, we chose
some other thread that is known not to be blocked.
If several of those exist, we always choose the lowest-
numbered thread (unfair scheme). The reason we al-
low a thread to proceed as long as it does not block
(as opposed to switching threads every cycle, for ex-
ample) is to favor the amount of chaining happening
between vector instructions. The unfair scheme where
we define thread 0 as being the highest priority thread
is chosen to try to have at least one thread that will
not experience a severe slowdown when run together
with other vector threads.

3.1 Machine Parameters

Table 1 presents the latencies of the various func-
tional units present in the architecture. As it can be
seen, for a given unit, the latencies for the vector units
are larger than those of the scalar units, except for the
case of division and square root.

Memory latency is not shown in the table as it will
be varied during this study. The memory system mod-
eled is as follows. We have a single address bus shared
by all types of memory transactions (scalar/vector and
load/store), and physically separate data busses for
sending and receiving data to/from main memory [4].

239

11111111

Parameters Reference
h a 1 Vect

2
2
1

(int/fp)
read x- bar
write x-bar -
vector startut) -

-

Figure 1: The Multithreaded vector architecture stud-
ied in this paper.

Mu1 tit hreaded '
h a 1 Vect

(int /fp)
- 3 '

3
1

-
-

mu1

div
sart

logic/shift
5/2 7 5/2 7
1/2 4 1/2 4

3419 20 34/9 20
34f9 20 34f9 20

Table 1: Latency parameters for the two architectures
studied.

A vector load instruction (also gather instructions)
pays an initial latency and then receives one datum
per cycle. Vector store instructions do not pay la-
tency since the processor sends the vector to memory
and does not wait for the write operation to complete.
We will use a value of 50 cycles as the default memory
latency. Section 7 will present results on the effects of
varying this value.

4 Methodology

4.1 Simulation Environment
' To asses the performance benefits of multithreaded
vector architectures we have taken a trace driven ap-
proach. A subset of the Perfect Club and Specfp92
programs have been chosen as our benchmarks [9, lo].
These programs are compiled on a Convex C3480 41

scribes its full execution is produced. The tracing
procedure is as follows (see figure 2): the benchmark
programs are compiled on a Convex C34 machine us-

machine and using Dixie [SI a detailed trace that 1 e-

PERFORMA"
RESULTS

Figure 2: The instrumentation process. Step (a) con-
sists in processing a program's executable and gener-
ating an instrumented version of it. In step (b) we run
the modified executable on the C3 machine and we ob-
tain a set of traces that fully describe the execution of
the program. In (c) this set of traces is fed into the
simulator, which will do a cycle-by-cycle execution of
the program and will gather performance results.

ing the Fortran compiler (version 8.0) at optimization
level - 0 2 (which implies scalar optimizations plus vec-
torization). Then the executables are processed using
Dixie, a tool that decomposes executables into basic
blocks and then instruments the basic blocks to pro-
duce four types of traces: a basic block trace, a trace of
all values set into the vector length register, a trace of
all values set into the vector stride register and a trace
of all memory references (actually, a trace of the base
address of all memory references). Dixie instruments
all basic blocks in the program, including all library
code. This is especially important since a number of
Fortran intrinsic routines (SIN, COS, EXP, etc.) are
translated by the compiler into library calls. This li-
brary routines are highly vectorized and tuned to the
underlying architecture and can represent a high frac-
tion of all vector operations executed by the program.
Thus it is essential to capture their behavior in order
to accurately model the execution time of the pro-
grams.

Once the executables have been processed by Dixie,
the modified executables are run on the Convex ma-
chine. This runs produce the desired set of traces that
accurately represent the execution of the programs.
This trace is then fed to two different simulators that
we have developed: the first simulator is a model of the
Convex C34 architecture and is representative of sin-
gle memory port vector computers. The second sim-
ulator is an extension of the first, where we introduce
multithreading. Using these two cycle-by-cycle simu-
lators, we gather all the data necessary to discuss the
performance benefits of multithreading.

Our benchmark programs (discussed in 4.2) are
run through the multithreaded simulators in groups
of two, three or four programs depending on the num-
ber of hardware contexts that the architecture being
simulated has. Since the 10 programs we have selected
are of different run-length, when run together on the
multithreaded machine they may complete at very dif-
ferent times. In order to ensure that each benchmark

240

<
End of Simulation/< ti&

Prog.

Figure 3: An example run of a multithreaded simula-
tion with 3 hardware contexts.

Num. Threads
2 1 3 1 4

is run to completion at least once, we have taken the
following approach (see figure 3): when a group of pro-
grams is run, the simulator will run until the program
that has been allocated to hardware context 0 com-
pletes. If the programs that run on some other con-
text are much shorter and complete before thread 0
finishes, then we restart them as many times as neces-
sary. When program 0 completes, the other programs
running are in some intermediate point in their com-
putations. For example, in figure 3, program 0 runs
to completion. In that amount of time, program 1 has
run twice to completion and has been able to execute a
fraction (f1) of its third run. Similarly, program 2 has
run once to completion and has executed a fraction

2 of its second run. 4 o compute speedups, we need the time taken by
the reference architecture to execute the same amount
of work as the multithreaded version. We run through
the reference simulator all three programs (each of
which takes Ci cycles to complete), we run program
1 up to point fi (which takes F’1 cycles to complete),
and we run program 2 up to point fz (which takes
Fz cycles to complete). If the multithreaded run has
taken T cycles to complete, we compute speedup as

Program

swm256 (sw)
hydro2d (hy)
arc2d (sr)
flo52 (tf)
nasa7 (a7)
suacor (su)
tomcatv (to)
bdna (na)
trfd (ti)
dyfesm (sd)

This speedup measure will be used throughout the
rest of this paper.

The grouping of programs was done as follows.
Since running all combinations of 10 programs in
groups of 2, 3 and 4 was too costly in terms of simula-
tion time, we selected a subset of all permutations in
a pseudo-random manner. We selected (randomly) 5
programs for the 2 thread experiments (shown in first
column of table 2), 2 programs for the 3 threads exper-
iments (column 2) and 1 last program for the 4 thread
experiments (column 3). Now, in order to compute the
speedup associated with program X one would run: 5
simulations grouping program X with each program
appearing in column labeled “2” of table 2 (example:
X+tf); 10 simulations grouping program X with all 5
programs from column 2 and the 2 programs in column
3 (example: X+na+sw); and, finally, 10 simulations
grouping program X with all 5 programs from column
2, the 2 programs from column 3 and the program in
column 4 (example: X+to+hy+sr).

These scheme, while not complete, gives us enough
data points to detect outliers and strange cases where
two programs complement each other so well that pro-
duce higher than usual speedups.

#insns #ops %
Suite S V V Vect

Spec 6.2 74.5 9534.3 99.9
Spec 41.5 39.2 3973.8 99.0
Perf. 63.3 42.9 4086.5 98.5
Perf. 37.7 22.8 1242.0 97.1
Spec 152.4 67.3 3911.9 96.2
Spec 152.6 26.8 3356.8 95.7
Spec 125.8 7.2 916.8 87.9
Perf. 23.9 19.6 1589.9 86.9
Perf. 352.2 49.5 1095.3 75.7
Perf. 236.1 33.0 696.2 74.7

Table 2: Randomly selected programs to form group-
ings.

-
avg.
VL
127
101
95
54
58

125
127
81
22
21

- -

-
Table 3: Basic operation counts for the Perfect Club
and Specfp92 programs (Columns 2-5 are in millions).

4.2 The benchmark programs

Table 3 presents some basic facts about the selected
Perfect Club and Specfp92 programs. First column in
this table indicates the suite to which each program
belongs. Next two columns present the total num-
ber of instructions issued by the dispatch unit, broken
down into scalar and vector instructions. Column four
presents the number of operations performed by the
vector instructions. Each vector instruction can per-
form several operations (up to 128 in the baseline ma-
chine), hence the distinction between vector instruc-
tions and vector operations. Fifth column is the per-
centage of vectorization of each program. We define
the degree of vectorization of a program as the ratio
between the number of vector operations and the total
number of operations performed by the program (i.e.,
column five divided by the sum of columns three and

. Finally column six presents the average vec-
tor ength used by vector instructions, and is the ra-
tio between vector operations and vector instructions
(columns four and three, respectively).

One important point is that we want to evaluate the
effects of multithreading for vector programs. Multi-
threading for scalar programs has been studied exten-
sively in recent years [24, 25, 13, 51. Our simulations
are oriented towards seeing if highly vectorized pro-
grams can also benefit from multithreading or not.
Therefore, we require from the benchmark programs
to be highly vectorizable (2 70%) in order to render
our results meaningful. From all programs in the Per-
fect and Specfp92 benchmarks we have selected the
top 10 programs meeting our requirement.

241

5 Bottlenecks in the Reference Archi-
tecture

This section will present an analysis of the execu-
tion of the ten benchmark programs when run through
the non-multithreaded architecture simulator.

Consider only the three vector functional units of
our reference architecture (FU2, FUI and LD). The ma-
chine state can be represented with a 3-tuple that rep-
resents the individual state of each one of the three
units at a given point in time. For example, the 3-tuple
(FU2 , FU1, LD) represents a state where all units are
working, while (, ,) represents a state where all vec-
tor units are idle.

Figure 4 presents the execution time of the ten
benchmark programs broken down into the eight pos-
sible states. For each program, we have plotted
the execution time for four different values of mem-
ory latency. From this figure we can see that the
fraction of cycles where these programs proceed at
peak floating point speed (states (FU2, FU1, LD) and
(FU2, F U l ,)) is not very high, and that it decreases
as memory latency increases. Memory latency has
a high impact on total execution time for programs
DYFESM, TRFD and FL052, which have relatively
small vector lengths. The effect of memory latency
can be seen by noting the increase in cycles spent in
state { , ,).

The sum of cycles corresponding to states where the
LD unit is idle is quite high in all programs. These four
states ((, ,), (, F U I ,), (FU2, ,)and (FU2,FU1,)

and could (and should) be used to start fetching from
memory the data that will be needed by the vector
computations in the near future. Figure 5 presents the
percentage of these cycles over total execution time.
At latency 70, the idle time ranges between a 30% and
a 65% of all execution. All those empty memory cycles
represent a clear opportunity for executing load/store
instructions from another thread. Analysis of the dis-
tribution of operations for these programs [7, 8, 191
show that neither the decoding unit nor the arithmetic
functional units will be saturated when they run on
our reference architecture. This implies that we have
“free cycles” where we can try to run other threads in
order to saturate the memory port.

correspond to cycles where the memory port is id 1 e

6 Performance of the Multithreaded
Vector Architecture

In this section we present the performance of the
multithreaded vector architecture versus the reference
architecture. We use three related metrics to evalu-
ate the merits of multithreading: speedup, memory
port occupation and vector operations performed per
cycle (VOPC). Speedup has already been defined in
section 4.1. Memory port occupation is defined as the
total number of memory requests sent over the address
bus divided by total number of cycles. Since we only
have one address port, this metric ranges from 0 to 1.

& 60

. 1
20
70

a 100

Figure 5: Percentage of cycles where the memory port
was idle, for 4 different memory latencies.

Vector operations per cycle is defined as total number
of vector operations performed divided by total num-
ber of cycles. Our machine has two vector arithmetic
units so this metric will vary between 0 and 2.

As already described in section 4.1, for each pro-
gram and for each metric we plot the average of all
simulation runs of a given program. For example,
the data point corresponding to program HYDRO2D
and 2 hardware contexts in figure 7 is the average
memory port utilization computed across all five HY-
DRO2D simulations (HYDR02D plus itself, BDNA,
SU2COR, TOMCATV and SWM256).

6.1 Speedup

The effects of multithreading the reference archi-
tecture can be seen in figure 6. The memory latency
for the experiments shown in these figures was set at
50 cycles. Each figure shows the speedup obtained by
each of the ten benchmark programs when grouped
with some other programs from the suite, as described
in section 4.1.

From this figure it can be seen that typical speedups
with just two vector contexts range between 1.2
and 1.4. Going to 3 vector contexts, the multithreaded
architecture consistently sustains a speedup of 1.3 and
it can go as high as 1.51. The increase in performance
for going from three contexts up to four contexts is
much lower but still significant.

It is interesting to note that the higher speedups
correspond to programs (dyfesm and trfd) that make
both a low utilization of the memory bus and the func-
tional units. When these programs are run on the mul-
tithreaded machine, they leave a lot of “empty holes”
where it is easy that other programs can fit. Thus, the
total speedup achieved is larger because all the wasted
cycles of these two programs are profitably reused run-
ning other threads.

242

9 ”””” z
25
I 8 4000

e
8
3 2000 e z

U

w
0

1 2070
swm256

2500
3 3 2000

8 2 1500

.CI 1000

8 500

U

c)

5

w
U

0
1 2070100
su2cor

2000

1000

0

hydro2d

2000

1000

0

arc2d

800

600

400

200

0
1 io7oiOO
tomcatv

1500

1000

500

0
i ioioio0

bdna

1000

500

0
1

flo52

2000

1500

1000

500

0
i 2ojoio0

trfd

3000

2000

lo00

0

1

.< 1 . >
u c , ,LD>
.< ,FUl, >
c ,FUl,LD>

E! cFu2, , >
.<FU2, ,LD>
0 <Fu2,FUl, >

<Fu2,FU 1 ,LD>

nasa7

1500

1000

500

0
i ioioio0
dyfesm

< 9 , >
c , ,LD>
c ,Ful, >

,FUl,LD>
cFu2, , >
cFu2, ,LD>
<Fw2,Ful, >
<FUZ,FUl,LD>

Figure 4: Functional unit usage for the reference architecture. Each bar represents the total execution time of a
program for a given latency. Values on the x-axis represent memory latencies in cycles.

6.2 Memory Port Usage

The utilization of the single memory port can be
seen in figure 7. What we plot in this figure (bars
labeled “mth”) is the number of cycles where the ad-
dress port was busy over the total execution cycles, on
the multithreaded machine. Numbers close to 1 indi-
cate that the memory port is close to saturation and
that, in a sense, and given the programs as they are,
we are close to the optimal speed we can achieve. In
order to compare with the usage of the memory port
in the reference architecture, the figure also presents
the average utilization of the memory bus achieved by
each tuple of programs when run sequentially on the
reference machine (bars labeled “ref”).

Figure 7 shows how for the 2 contexts architecture,
typical usage of the memory port is around 80%. This
value is in sharp contrast to the utilization in the non-
multithreaded architecture. For example, if we run
program FL052 and its 5 companions sequentially on
the reference machine we would see an average uti-
lization of the memory bus of around 60%, yet when
these programs are run in pairs on the multithreaded
machine, the average utilization goes up to an 86%.

Similarly, having three contexts achieves a 90% uti-
lization of the memory port for almost all programs.
Note that reaching higher levels of utilization is hard
since there are several factors that lower the utiliza-

tion that multithreading can not cover up. In the
first place, our programs have a scalar portion of their
code that ranges between 0.1% up to 25%. When one
thread is inside a scalar loop it will seldom reach a
memory utilization higher than 1/3. Typically one of
this loops has a load and a store plus at least two
address calculation instructions, a compare, a branch
and maybe some other computation instruction (recall
that the baseline machine only has eight scalar regis-
ters and thus the compiler does not apply aggressive
techniques such as unrolling or software pipelining).
This yields 2 memory operations per 6-8 instructions.
Since these instructions are executed one per cycle, the
memory occupation is somewhat bounded. This fac-
tor can easily be seen in figure 7 by noting that the bus
occupation goes down when we move to the right end
of the 2 contexts bars, the 3 contexts bars and the 4
contexts bars, where the less-vectorized programs lie.
In the second place, latencies and conflicts inside the
vector processor also degrade the rate at which mem-
ory instructions are dispatched to the memory system.
Latencies are typically hidden through multithreading
but resource unavailability is harder to cover up.

6.3 Vector Operations per cycle

Our third metric of performance for the multi-
threaded vector architecture is the number of vector

243

B
p?

rA I l O 4

1.2

2 threads 3threads 4 threads

.."

0.8

0.6

0.4

Figure 6: Performance of the Milltithreaded approach for 2, 3 and 4 contexts.

mtb
ref

2 threads 3threads 4 threads

Figure 7: Occupation of the memory port for 2, 3 and 4 contexts for the multithreaded and reference architectures.

1.5

U 1.0 a M mth
0 B ref 9

0.5

. .
= I - -

<

4 threads
: *

2 threads 3 threads

Figure 8: Occupation of the vector functional units for 2, 3 and 4 contexts for the multithreaded and reference
architectures.

244

arithmetic operations performed per cycle. This mea-
sure is defined as the sum of all operations performed
on the two vector computational units divided by the
total execution time. This measure is close to flops per
cycle (a more common metric found in the literature)
but since there is a significant fraction of computations
done in vector mode that are fixed point, the metric
chosen better reflects the total amount of work done
by the vector unit.

Figure 8 presents the VOPC metric for the three
multithreaded architectures under study and for the
reference architecture. The first point to note is that
for the baseline machine, VOPC is in the range be-
tween 0.5 and 0.85. These low values are not surpris-
ing given what we have seen in section 6.2. If the
baseline machine only performs between 0.5 and 0.8
memory transactions per cycle, it is expected that it
will be difficult to sustain even one flop per cycle. To
do so would require a larger degree of reuse inside the
processor which, in turn, would require a larger num-
ber of registers.

For two contexts, the top 6 most-vectorizable pro-
grams reach around 1 vector operation per cycle, while
the remaining four (tomcatv, bdna, trfd and dyfesm)
increase a lot their VOPC but still stay below 0.9 in
almost all cases. For three contexts, VOPC typically
exceeds 1.0 for the six most vectorizable programs.
Again, the remaining four can be split in two distinct
groups: tomcatv and bdna, when joined with one of
the highly vectorizable codes, barely manage to reach
1.0, while trfd and dyfesm make a very light use of
vector functional units. Improving this numbers is
difficult, as figure 8 shows, because although we could
increase to four hardware contexts, the memory bus
is already almost saturated (around 90% usage) and
determines the maximum throughput of the system.

3 0-, w

7 Varying Memory Latency

tf I su I ti I a7 I na I sd I
I " " I " " I " "

One of the abilities of multithreading is to hide long
memory latencies. In previous sections we have seen
the benefits of multithreading from the point of in-
creased throughput. This section will look at how well
does multithreading tolerate increasing main memory
latency. All results presented so far have assumed a
fixed memory latency of 50 cycles. In this section we
will present the effects of varying this memory latency
between 1 and 100 cycles.

In order to present the data, we will need to change
our benchmarking strategy. To evaluate the effects of
memory latency on our multithreaded processor, we
need to fix the total amount of work being simulated.
Recall that the simulations being shown in previous
section were finished when thread 0 did complete. If
we execute two simulations of programs SWM256 (on
thread 0) and TOMCATV (on thread 1) on a 2 context
processor setting memory latency at 50 and 100 cycles,
for example, in each simulation the amount of work
completed for thread 0 will be the same, but not the
work completed for thread 1. This makes difficult the
comparison of speedups or memory usage per cycle

SW I to I hy sr

Cycles (~ 1 0 ~ 9)

Figure 9: Execution example of the 10 programs run
on a 2-context machine with a memory latency value
of 50 cycles.

-+ baseline
-w- 2 threads
-+ 3 threads
+ 4 threads
- IDEAL

15
l ' l ' l ' l ' i

1 20 40 60 80 100
memory latency in cycles

Figure 10: Comparison of total execution time of the
10 benchmarks when run on the baseline machine and
on the multithreaded architecture with 2 , 3 and 4 con-
texts, when varying memory latency.

since the two runs have performed slightly different
tasks.

To overcome this problem, we will define a new
benchmark consisting in the execution of ALL 10 pro-
grams used so far. These 10 programs are ordered
randomly (in particular, the order chosen is TF, SW,
SU, TI, TO, A7, HY, NA, SR, SD). Then, when doing
simulations of a, say, 3 context processor each thread
is initialized to a different program from this list se-
quentially. When a thread completes, the next job
from the list is assigned to that thread. Using this
scheme, which is the same used in [13], the amount
of work performed is always fixed. The only short-
coming of this technique is that towards the end of
a simulation run, some hardware context might end
up being empty, and thus not all the potential perfor-
mance improvement can be realized. Figure 9 shows
an example execution profile of the 10 programs on
a 2-context architecture. Note how towards the end,
program DYFESM (sd) is for a short period of time
alone on the machine.

Figure 10 presents the total execution time of our
ten programs when executed on the baseline machine
and on the multithreaded machine with 2, 3 and 4
contexts. For the baseline data, each single data point
represents the execution time of the 10 programs when
executed sequentially one after the other. On the mul-
tithreaded machines, each data point corresponds to
the execution of the ten benchmarks using 2, 3 or 4
hardware contexts. We have also included a line (la-

245

beled IDEAL) that indicates the lowest possible ex-
ecution time, computed by removing all data depen-
dencies from the programs and looking only at the
most saturated resource and taking the utilization of
that resource as the lower bound for execution time.

As it can be seen from this figure, the baseline ma-
chine is very sensitive to memory latency. Even being
a vector machine, memory latency influences execu-
tion time almost linearly. On the other hand, the mul-
tithreaded machine is much more tolerant to the in-
crease in memory latency. The curve for 2 contexts, for
example, is relatively flat. At latency 1, the speedup
of the multithreaded architecture over the reference
machine is 1.15 and at latency 100 the speedup goes
up to 1.45. Moreover the relative degradation in per-
formance of the 2 contexts architecture is low, with
the difference between the execution time at a latency
of 1 cycle and a latency of a 100 cycles being only a
6.8%.

A second important point is that even at a memory
latency of 1 cycle the multithreaded machine obtains
a speedup of 1.15 over the baseline machine. Such a
low value of memory latency represents an ideal mem-
ory system which is very far from current values of
memory latency (a Cray C90 machine has around 23
cycles of main memory latency). This speedup indi-
cates that the effects of interleaving different threads
are good even in the absence of long latency mem-
ory operations. The interleaving increases the usage
of critical resources and allows two or more threads to
progress in their computations together.

An interesting effect of the latency tolerance prop-
erties of multithreading in the context of vector pro-
cessors is that the memory system could be slowed
down without significantly degrading total through-
put. This slow down could be achieved by using slower
DRAM parts instead of the currently very expensive
SRAM chips found in typical vector supercomputers.
This type of technology change could have a major im-
pact on the total cost of the machine, which is typically
dominated by the cost of the memory subsystem. The
reduction in cost would largely compensate the extra
cost in the CPU component introduced by the different
copies of the vector registers.

8 Effects of increasing the size of the
register crossbars

Data presented so far has used a 2 cycle latency
for the vector register file read/write crossbars. As
noted in section 3, duplicating the vector register file
has a significant impact on cost, area and speed. We
are mostly concerned by the speed implications. As
already mentioned, going to 4 contexts implies a much
larger crossbar both for reading and for writing the
vector register file. It is reasonable to accept that this
larger crossbar would take an extra cycle to be crossed
than the crossbar found on the reference machine.

In this section we study the effect of adding an extra
cycle to the read/write crossbars (for a total of 3 cy-
cles in both cases) on total execution time. Figure 11

a 1.005

*
5; g 1.000

2 threads
ed 3 threads
4 threads

g

0.995
1 10 30 50 70 90 100

memory latency in cycles

Figure 11: Slowdown due to increasing the latency of
the vector registers read/write crossbars from 2 to 3
cycles.

presents the slowdown experienced by our combined
benchmark of 10 programs for different values of la-
tency. Overall, the slowdown is lower than 1.009. This
is not surprising since three factors mitigate the effect
of the extra cycle added: first, a vector machine by
itself has a granularity large enough to tolerate small
increases in latency. Second, the machine is multi-
threaded, which also helps in covering up the extra
cycle. Finally, chaining also contributes to making
the slowdown minimal.

There is a surprising case at latency 50 and 3
threads, where the benchmark actually runs faster.
This is due to the fact that the increase in latency
makes program NASA7 take slightly longer to com-
plete. In turn, this induces that the two following
programs in the suite, bdna (na) and arc2d (sr) in-
terchange their positions from thread 0 to thread 1
and vice-versa. Since our scheduling is biased towards
benefiting thread 0, this change in position results in
a slightly lower execution time. Thus, the speedup ob-
served is more due to scheduling considerations than
to the increase in the crossbars latencies.

9 Multithreading versus replicating
the scalar processor

As mentioned in section 2, the Fujitsu VP2000 fam-
ily of vector processors has a configuration where one
vector processor can be shared by two scalar proces-
sors termed Dual Scalar Processing in their terminol-
ogy t 261). This is similar to having a multithreaded
machine of 2 contexts but with the advantage of hav-
ing two scalar units fetching, decoding and executing
in parallel.

In this section we compare the performance of a ma-
chine having two replicated scalar units each of which
has the same power as the scalar unit of the reference
architecture versus the fully multithreaded approach
of 2 contexts we have been using. Thus, the main dif-
ference between the two approaches is that the Fujitsu-
style machine can issue up to 2 instructions per cycle,

246

C -o- mth2
t fuj
+- 3 threads
-A- 4 threads
- IDEAL

i! : : 1 ~ 14 1 20 40 60 80 100

memory latency in cycles

Figure 12: Comparison between a single multi-
threaded control unit and 2 control units sharing the
vector facility.

while the multithreaded machine with two contexts is
still limited to issuing 1 instruction per cycle. We will
also reproduce, for the sake of comparison, the per-
formance of the multithreaded machines with 3 and 4
contexts.

Figure 12 presents the comparison of the execution
time of the two schemes for several values of memory
latency. What can be seen from this figure is that, as
expected, the Fujitsu-style machine has a better per-
formance than the pure multithreaded. This is due
to the ability of the Fujitsu-style machine of decod-
ing and executing two scalar instruction per cycle. At
low latencies, when memory responds very fast, this
“superscalar” effect shows and gives the Fujitsu-style
machine an advantage of almost 3%. The advantage
is not very large because the amount of scalar code
in our benchmarks programs is relatively low (see ta-
ble 3). When latency increases, the critical path of
the programs is enlarged and the relative weight of the
scalar code over the total execution time diminishes.
Therefore, at large latencies the positive effect of hav-
ing two scalar units is diminished. This is the main
reason why the two curves for the Fujitsu-style and
2-contexts multithreading almost converge at latency
100 (less than a 0.1% difference). The multithreaded
machines with 3 and 4 contexts, as expected, outper-
form both other schemes.

10 Summary and Future Work

In this paper we have presented multithreaded vec-
tor architectures. We have described a basic mul-
tithreaded vector architecture that with very simple
hardware and a small number of threads can achieve
large speedups. We have presented data showing
that 2 threads sharing a single decode unit (a maxi-
mum issue rate of 1 instruction per cycle) can achieve
speedups ranging from 1.2 up to 1.5.

We have also shown that the multithreading tech-
nique can almost saturate the memory port, the most
scarce resource in the baseline architecture. Data pre-

sented showed that with just 2 threads it is possible to
achieve around an 85-90% utilization of the memory
port. Increasing the hardware to support 3 threads,
leads to an utilization of the memory port of around

The granularity of vector instructions makes the
task of multithreading a vector machine relatively eas-
ier than the task of multithreading a superscalar ma-
chine. For example, the architecture presented has
only one decode unit, able to look at one and only
one instruction every cycle. This is in contrast with
the sophisticated issue/dispatch units presented in the
multithreaded superscalar literature. Moreover, we do
not use out of order techniques nor we use register re-
naming in our proposal.

Nonetheless, the multithreading proposed does not
come without a cost. We have looked at the impact of
increasing the vector register file size and found that
most probably the larger register file would require an
extra cycle to be read and written. Fortunately, the
impact of these extra cycles has been found to be less
than 1%. The small impact is explained by the length
of the vector instructions, by the multithreading tech-
nique and by the underlying chaining performed by
the vector machine.

We have also looked at the impact of memory la-
tency on the multithreaded machine. As expected,
multithreading tolerates relatively well latencies rang-
ing from 1 cycle up to 100 cycle, with the difference be-
tween the two extremes being around a 6%. This fact
has profound implications in the design of future vec-
tor architectures. First, it shows that a very high per-
formance memory system is not necessarily needed in a
vector machine if the base architecture supports mul-
tithreading. This means that currently very expen-
sive SRAM memory systems could be substituted by
slower and cheaper DRAM memory modules, greatly
reducing overall cost.

This paper has presented a simple approach to mul-
tithreading in vector architectures. We are currently
working on several aspects to still improve occupation
of the memory port: using a decode unit capable of
dispatching instructions from several threads, intro-
ducing register renaming and fine tuning the schedul-
ing policy between threads. We are also working on an
extension of this work for Cray-like machines having
3 memory ports. This types of machines, due to their
higher parallelism, will require simultaneous issue of
instructions from different threads and better schedul-
ing policies in order to also saturate its memory ports
while keeping the number of threads reasonably low.

90-95%.

References

[l] A. Agarwal. Performance tradeoffs in multithreaded pro-
cessors. ZEEE Transactions on Parallel and Distributed
Systems, 2(4):398-412, October 1991.

[2] T.-F. Chen and J.-L. Baer. A performance study of soft-
ware and hardware data prefetching strategies. In ZSCA,

[3] T. &er Chiueh. Multithreaded vectorization. In ZSCA,

pages 223-232,1994.

pages 352-361,1991.

247

[4] Convex Press, Richardson,Texas, U.S.A. CONVEX Archi-
tecture Reference Manual (C Series), sixth edition, April
1992.

[5] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squil-
lante, and S. Liu. Evaluation of multithreaded uniproces-
sors for commercial application environments. In ISCA,
pages 203-212. ACM Press, May 1996.

Dixie: a trace generation
system for the C3480. Technical Report CEPBA-RR-94-
08, Universitat Polithcnica de Catalunya, 1994.

[7] R. Espasa and M. Valero. Decoupled vector architectures.
In HPCA-2, pages 281-290. IEEE Computer Society Press,
Feb 1996.

[8] R. Espasa, M. Valero, D. Padua, M. JimBnez, and
E. AyguadC. Quantitative analysis of vector code. In Eu-
romicro Workshop on Parallel and Distributed Processing.
IEEE Computer Society Press, January 1995.

[9] M. B. et al. The Perfect Club benchmarks: Effective per-
formance evaluation of supercomputers. The International
Journal of Supercomputer Applications, pages 5-40, Fall
1989.

[lo] R. Giladi and N. Ahituv. SPEC as a performance evalua-
tion measure. IEEE Computer, 28(8):33-42, Aug. 1995.

[ll] M. Gulati and N. Bagherezadeh. Performance study of
a multithreaded superscalar microprocessor. In HPCA-2,
pages 291-301. IEEE Computer Society Press, Feb 1996.

[12] T. Hashimoto, K. Murakami, T. Hironaka, and H. Yasuura.
A micro-vectorprocessor architecture - performance mod-
eling and benchmarking -. In ICs, pages 308-317,1993.

[13] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elemen-
tary processor architecture with simultaneous instruction
issuing from multiple threads. In ISCA, pages 136-145,
1992.

[14] L. Kontothanassis, R. A. Sugumar, G. J. Faanes, J. E.
Smith, and M. L. Scott. Cache performance in vector su-
percomputers. In Spercomputing, 1994.

[15] L. Kurian, P. T. Hulina, and L. D. Coraor. Memory latency
effects in decoupled architectures. IEEE Transactions on
Computers, 43(10):1129-1139, October 1994.

[16] M. S. Lam. Software pipelining: An effective schedul-
ing technique for VLIW machines. SIGPLAN Notices,
23(7):318-328, June 1988.

[17] W. Mangione-Smith, S. Abraham, and E. Davidson. Vec-
tor register design for polycyclic vector scheduling. In
ASPLOS-4, pages 154-163, Santa Clara, CA, Apr. 1991.

[18] T. C. Mowry, M. S. Lam, and A. Gupta. Design andevalua-
tion of a compiler algorithm for prefetching. In ASPLOS-5,
1992.

[6] R. Espasa and X. Martorell.

[19] K. Robbins and S. Robbins. Relationship between average
and real memory behavior. The Journal of Supercomput-
ing, 8(3):209-232, November 1994.

Explaining the gap be-
tween theoretical peak performance and real performance
for supercomputer architectures. Scientific Programming,

[21] J. E. Smith. Decoupled access/execute computer architec-
tures. AGM Transactions o n Computer Systems, 2:289-
308, November 1984.

[20] W. Schonauer and H. Hafner.

3:157-168,1994.

[22] J. E. Smith, S. Weiss, and N. Y. Pang. A simulation study
of decoupled architecture computers. IEEE Transactions
on Compaters, C-35(8):692-702, August 1986.

[23] J. Tang, E. S. Davidson, and J. Tong. Polycyclic vector
scheduling vs. chaining on 1-port vector supercomputers.
Supercomputing, pages 122-129,1988.

[24] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithread-
ing processor. In ISCA, pages 392-403,1995.

[25] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ISCA,
pages 191-202. ACM Press, May 1996.

[26] N. Uchida. FUJITSU VP2000 series supercomput-
ers. International Journal of High Speed Computing,
3(3 & 4):169-185,1991.

[27] M. Wolf and M. Lam. A datalocality optimizingalgorithm.
SIGPLAN Notices, 26(6):30-44, June 1991.

248

