
Software DSM Protocols that Adapt

between Single Writer and Multiple Writer

Cristiana Amzay� Alan L� Coxy� Sandhya Dwarkadasz� and Willy Zwaenepoely

y Department of Computer Science

Rice University

famza� alc� willyg�cs�rice�edu

z Department of Computer Science

University of Rochester

sandhya�cs�rochester�edu

Abstract

We present two software DSM protocols that dy�
namically adapt between a single writer �SW� and a
multiple writer �MW� protocol based on the appli�
cation�s sharing patterns� The �rst protocol �WFS�
adapts based on write�write false sharing� the second
�WFS	WG� based on a combination of write�write
false sharing and write granularity� The adaptation is
automatic� No user or compiler information is needed�
The choice between SW and MW is made on a per�
page basis�

We measured the performance of our adaptive pro�
tocols on an
�node SPARC cluster connected by a
��� Mbps ATM network� We used eight applications

covering a broad spectrum in terms of write�write
false sharing and write granularity� We compare our
adaptive protocols against the MW�only and the SW�
only approach� Adaptation to write�write false shar�
ing proves to be the critical performance factor
 while
adaptation to write granularity plays only a secondary
role in our environment and for the applications con�
sidered�

Each of the two adaptive protocols matches or ex�
ceeds the performance of the best of MW and SW in
seven out of the eight applications� For these appli�
cations
 speedup improvements over SW range from
���� to ���� The largest improvements over SW occur
for applications with high write�write false sharing�
Compared to MW
 speedups improve by a factor of
���� to ���
 with the largest improvements occurring
for applications with little or no write�write false shar�
ing� Both WFS and WFS	WG speedups fall below
the best of MW and SW for one application
 but only
by a factor of ���� and ����� In addition
 memory us�
age is reduced considerably compared to MW
 in some
cases making the memory overhead all but negligible�

This work is supported in part by the National Sci�

ence Foundation under Grants CCR��������	 BIR����
���	

CCR��������	 CCR��������	 CCR��������	 CDA��������	

and MIP������

	 by the Texas TATP program under Grant

���
������	 and by grants from IBM Corporation and from

Tech�Sym	 Inc�

� Introduction

This paper focuses on protocols for implement�
ing lazy release�consistent �LRC� ���� software dis�
tributed shared memory �DSM� ���� on commodity
hardware� Both single writer �SW� ���� and multiple
writer �MW� ��� protocols have been used to imple�
ment LRC� SW protocols allow only a single writable
copy of a page at any given time� Furthermore
 they
always transfer a whole page to satisfy an access miss�
With MW protocols
 several writable copies of a page
may co�exist� Instead of transferring whole pages

MW protocols transfer di�s
 records of the modi�ca�
tions made to a page�
SW protocols su�er from the ping�pong e�ect in

the case of write�write false sharing �concurrent writes
from di�erent processors to non�overlapping parts of
the same page�� Furthermore
 if only a single word
in a page is changed
 then it is clearly undesirable to
transmit the entire page
 especially on a low band�
width network�
MW protocols solve these two problems
 but suf�

fer some drawbacks of their own� First
 there is
an execution cost to recording and merging changes
from multiple writers �i�e�
 creating and applying the
di�s�� Much of this overhead is incurred regardless of
whether the page has multiple writers or not
 adding
unnecessary overhead in the case where there is no
false sharing� In particular
 in the case where an en�
tire page is modi�ed by a single writer
 a MW protocol
adds a sizable cost without any reduction in commu�
nication� Furthermore
 there is a signi�cant memory
overhead for recording the modi�cations� The mem�
ory costs can be bounded by garbage collection
 but
frequent garbage collection results in added execution
time�
CVM ���� uses a SW protocol
 while TreadMarks ���

uses a MW protocol �see the work of Keleher ����
for a study of the tradeo�s�� Other systems �such as
Munin ���� allow multiple protocols to be used
 but re�
quire user annotation to choose between them� In this
paper we take an alternative approach� We observe
that for some applications a MW protocol is preferred
while for others a SW protocol is more desirable� Even
within a single application
 di�erent pages may be best
handled by one protocol or the other� As a result we
have designed two adaptive protocols that choose dy�

namically
 on a per�page basis
 whether to use a SW
or a MW protocol� The choice is fully automated
 and
no user or compiler annotations are required� Instead

the runtime system monitors the shared memory ac�
cess patterns and decides on the appropriate protocol�
We show that this can be done with little overhead

as an extension of the SW and MW protocols� The
�rst adaptive protocol �WFS� adapts to the presence
of write�write false sharing� It chooses a MW pro�
tocol if there is write�write false sharing on a page
and a SW protocol otherwise� The second adaptive
protocol �WFS	WG�
 in addition
 takes into account
write granularity
 and uses di�s for pages with small
write granularity
 even if they do not exhibit write�
write false sharing�
The adaptive protocols were implemented in Tread�

Marks ���� Eight applications were used to demon�
strate the performance� Red�Black SOR and TSP are
small kernels� Barnes�Hut and Water are from the
Splash benchmarks suite ����� IS and �D�FFT are
from the NAS benchmark suite ���� Shallow is a small
weather modeling code fromNCAR ��
�� and ILINK is
a production computational genetics code ����� These
applications cover a wide spectrum in terms of write�
write false sharing and write granularity� We present
performance results on a ���Mbps ATM network con�
necting
 SPARC��� model �� workstations� We com�
pare the performance of the adaptive protocols to the
non�adaptive MW protocol used in TreadMarks and
to a non�adaptive SW protocol similar to the one used
in CVM� Each of the two adaptive protocols matches
or exceeds the performance of the best of the non�
adaptive protocols in seven out of the eight applica�
tions� Speedup improvements are as high as a factor
of ��� over SW for applications with high write�write
false sharing and as high as a factor of ��� over MW
for applications with little or no write�write false shar�
ing� Both WFS and WFS	WG speedups fall below
the best of MW and SW for one application
 but only
by a factor of ���� and ����
 respectively� In addi�
tion
 memory usage is reduced considerably compared
to MW
 in some cases making memory cost all but
negligible�
The rest of this paper is organized as follows� Sec�

tion � discusses LRC
 MW
 and SW protocols� Sec�
tion � presents the mechanisms by which the protocols
adapt between SW andMWmode� Section � describes
the experimental environment� Section � describes the
eight applications used� Section � presents the results
of the performance comparison� Section � discusses
related work� Section
 presents our conclusions�

� Background
In the following
 we introduce LRC
 the Tread�

Marks MW protocol
 and our implementation of the
CVM SW protocol�

��� Lazy Release Consistency
Release consistency �RC� is a relaxed memory con�

sistency model ����� In RC
 ordinary shared memory
accesses are distinguished from synchronization ac�
cesses
 with the latter category subdivided into acquire
and release accesses� Acquire and release accesses cor�
respond roughly to the conventional synchronization

operations on a lock
 but other synchronization mech�
anisms can be built on this model as well� Essentially

RC allows the e�ects of ordinary shared memory ac�
cesses to be delayed until a subsequent release by the
same processor is performed�
The Lazy Release Consistency �LRC� algo�

rithm ���� delays the propagation of modi�cations to
a processor until that processor executes an acquire�
To do so
 LRC uses the happened�before�� partial or�
der ���� The happened�before�� partial order is the
union of the total processor order of the memory ac�
cesses on each individual processor and the partial or�
der of release�acquire pairs� Vector timestamps are
used to represent the partial order ����� When a pro�
cessor executes an acquire
 it sends its current vector
timestamp in the acquire message� The last releaser
then piggybacks on its response a set of write notices�
These write notices describe the shared data modi�ca�
tions that precede the acquire according to the partial
order� These shared data modi�cations must be re�
�ected in the acquirer�s copy� In this paper we consider
invalidate protocols
 in which the arrival of a write no�
tice for a page causes the page to be invalidated� On
a subsequent access miss to an invalid page
 it is made
valid by requesting and applying all modi�cations de�
scribed by the write notices for that page�
One of the appealing aspects of LRC is that it

avoids any ping�pong e�ect due to read�write false
sharing� If one processor writes on one part of a page
and another processor reads from another part of the
same page
 there need not be any communication be�
tween the two processors until they subsequently syn�
chronize� Write�write false sharing
 however
 remains
a problem�

��� The Multiple Writer Protocol
MW protocols have been developed to address the

write�write false sharing problem� With a MW proto�
col
 two or more processors can simultaneouslymodify
their local copy of a shared page� Their modi�cations
are merged at the next synchronization operation in
accordance with the de�nition of RC
 thereby reducing
the e�ect of false sharing�
The write notices used in the MW protocol include

the processor id and the vector timestamp of the in�
terval during which the page was modi�ed� A faulting
processor uses this information to locate and apply the
modi�cations required to update its copy of the page�
In TreadMarks
 detection of modi�cations is done

by twinning and di�ng� A page is initially write�
protected
 so that at the �rst write a protection vi�
olation occurs� TreadMarks then makes a copy of the
page �a twin�
 and removes the write protection so that
further writes to the page can occur without any soft�
ware intervention� The twin and the current copy are
later compared to create a di�
 a runlength encoded
record of the modi�cations to the page� These di�s
are transmitted in response to requests from faulting
processors�

Garbage collection is initiated when the di� space
on one or more processors is exhausted� Global syn�
chronization is used to implement garbage collection�
All concurrent writers of a page validate their copy

of the page by applying all necessary di�s� All other
copies of the page and all di�s are deleted�

��� The Single Writer Protocol
A SW protocol allows only one writer for a page at

any given time� The processor currently holding write
privileges to the pages is called the owner� Each page
has a version number
 which is incremented every time
ownership is acquired �or reacquired by the same pro�
cessor�� When ownership changes
 both nodes have
the new version number for the page� In response to
an acquire request
 the owner sends out owner write
notices for the pages it modi�ed� An owner write no�
tice includes the processor id and the page�s version
number�
On a write fault
 the faulting processor requests

ownership of the page� A static ownership algorithm
is used to locate the owner� This method involves for�
warding of requests through a statically assigned home
processor� Ownership and the page contents are then
sent from the current owner to the requester� On a
read fault
 there is no transfer of ownership� Instead

the faulting processor p asks for a copy of the page
from the processor q named in the owner write notice
with the highest version number that p has received�
Processor q may not be the current owner
 but this is
correct
 because
 according to LRC
 p does not neces�
sarily need to see the latest write
 but only the latest
write by a processor with which it has synchronized�
In either case
 read fault or write fault
 whole pages
are sent
 without any twinning or di�ng�
A SW protocol uses memory only for owner write

notices� Since the last owner�s copy is always up�
to�date
 garbage collection of old owner write notices
is done on�the��y without extra synchronization be�
tween processors�
Our SW protocol improves on the original CVM

protocol in the mechanism used for locating valid
pages on read faults� In the CVM protocol
 the fault�
ing processor requests a page from the owner
 possibly
after forwarding through the home� Thus
 a page re�
quest on a read miss can take � or � messages depend�
ing on whether the current owner happens to be the
home or not� In our protocol
 a faulting processor al�
ways asks for a page from the processor named in the
owner write notice with the highest version number
that it has received� Read faults are therefore always
serviced in two messages� However
 on write faults

the last version of the page needs to migrate to the
new owner
 thus the exact location of the last owner
needs to be determined�
In our implementation of SW
 as in the CVM proto�

col and Mirage �
�
 we address the ping�pong problem
by guaranteeing a processor ownership for a newly ob�
tained page for a minimum quantum of time before it
can be taken away by another processor� We use a
�xed � millisecond quantum� The results do not ap�
pear to be sensitive to the exact value of the quantum�

� The Adaptive Protocols
Our adaptive protocols choose dynamically
 on a

per�page basis
 whether to use a SW or a MW proto�
col� The choice is fully automated
 and no user or com�
piler annotations are required� Instead
 the run�time

system monitors the shared memory access patterns

and decides on the appropriate protocol accordingly�
Roughly speaking
 pages in MW mode use the Tread�
Marks twinning and di�ng protocol
 while pages in
SW mode use an extension of the CVM SW protocol�
Pages may be in a transitional state where some pro�
cessors have the page in SW mode and others have it
in MW mode�
Our protocols adapt based on two di�erent char�

acteristics in an application�s shared data access pat�
terns� write�write false sharing and write granularity�

��� Adapting to Write�Write False Sharing
On each processor a state variable is associated with

each page indicating whether the processor believes
this page is in SW or MW mode� At times
 this vari�
able may have di�erent values on di�erent processors�
When the state variable indicates that the page is in
SW mode
 the processor checks for the occurrence of
write�write false sharing
 and
 if so
 switches to MW
mode �see Section ������� Conversely
 when the state
variable indicates that the page is in MW mode
 the
processor checks for the absence of write�write false
sharing
 and
 if so
 switches to SW mode �see Sec�
tion �������

����� Detecting Write�Write False Sharing in
Single Writer Mode

Principle and Examples If there is no write�write
false sharing on a page
 then all writes to that page
must be totally ordered by synchronization
 or
 in
other words
 by happens�before��� A modi�cation to
the SW protocol for locating and transferring own�
ership allows this condition to be checked e�ciently�
The principle is� There is no write�write false sharing
if and only if the processor taking a write fault and
trying to get ownership knows the correct location of
the owner and the correct version number for the page�
Before giving the details of the protocol
 we illus�

trate the principle with a few examples�

� Consider the case where there is no write�write
false sharing on a particular page� For instance

say processor p� acquires a lock
 writes on the
page
 and then releases the lock� At the time a
processor p� acquires the lock
 it receives a write
notice containing the version number of the page

and invalidates the page� When it then takes a
write fault on the page and requests ownership

it knows the correct owner and version number of
the page�

� Consider next the case where there is write�write
false sharing� Continuing the above example
 as�
sume that
 after processor p� writes to the page

p� writes to a di�erent part of the same page with�
out synchronizing with p�� Processor p� does have
the right version number at the time of its write

because there is no write�write false sharing at
this point� It will become the new owner and in�
crement the version number� When p� writes to
the page
 it no longer has an up�to�date value of

the version number
 indicating the onset of write�
write false sharing�

� Finally
 consider the case where processor p� ac�
quires the lock la
 writes on data item a in the
page
 releases the lock la
 acquires the lock lb

writes on data items b in the same page
 and re�
leases the lock lb� Processor p� acquires la
 writes
on data item a
 and becomes the owner of the
page� Now assume that processor p� acquires lock
lb to write on data item b� When it writes on b
 the
resulting page fault causes it to request ownership
from p�
 but p� is no longer the owner
 signifying
that write�write false sharing has occurred�

The Ownership Refusal Protocol At an acquire

the releasing processor creates write notices for each
page that it has modi�ed� For a page in SW mode
 the
owner creates an owner write notice
 containing the
processor id
 the version number of the page
 and the
vector timestamp of its current interval� For a page
in MW mode
 a non�owner write notice is created

containing only the processor id and the current vector
timestamp�
On a write fault to a page in SW mode
 a proces�

sor tries to achieve ownership� In contrast to the SW
protocol
 there is no notion of a �home� to locate the
owner� Instead
 the processor uses the owner write
notice with the highest version number
 and sends the
ownership request to the processor from which it has
received that write notice �i�e�
 to the last perceived
owner of the page�� It includes in this message the
version number in that write notice� If that processor
is no longer the owner
 or if the version number has
changed
 write�write false sharing has been detected
and the ownership request is refused� Otherwise
 own�
ership is granted� In either case
 unlike with the SW
protocol
 ownership requests are never forwarded and
always involve two messages�
If ownership is granted
 the new owner incre�

ments the page�s version number and makes the page
writable� If the ownership request is refused
 the re�
quester puts the page in MW mode� It creates a twin
and will later make a di� as in the MW protocol� If the
target processor of the ownership request is still the
owner
 it maintains its ownership status until the next
release� At that point
 it generates an owner write no�
tice for the page
 but then drops ownership and puts
the page in MW mode� Although at �rst glance it
would seem appealing to drop ownership immediately
at the time of the incoming ownership request
 this is
not possible because the owner does not have a twin

and therefore cannot make a di��
The advantage of the adaptive protocol over the

SW protocol is that it does not su�er from the ping�
pong e�ect� The disadvantage compared to the MW
protocol is the need for ownership messages� However

in the case of a write fault on an invalid page
 the own�
ership request gets piggybacked on the page request

which was already present in the MW protocol�
Figure � demonstrates the behavior of the proto�

col with three di�erent access patterns� producer�
consumer
 migratory
 and write�write false sharing� In

v2

Consumer

v1

sync (P1, v1)

*

page req.

v1

v2 sync (P1, v2)

P1 P2

R fault

P1 P2

v1

sync (P1, v1)

v1

page req.

*

(granted)
*

R fault

*
W fault

*

Producer Migratory

HVN = v1
HVN = v1

own req. (HVN = v1)

v1

sync (P1, v1)

*

page req.

v1

P1 P2

v2

R fault
*

(refused)

W fault

Write Sharing

twin

HVN = v1

own req. (HVN = v1)

WFSWFS

Figure �� Behavior of the protocol with three access
patterns� producer�consumer �top left� and migratory
�top right�
 and write�write false sharing �bottom�

all three examples
 processor p� is the initial owner

and has created an owner write notice with version
number v�� Processor p� synchronizes with p�
 and
receives this write notice� As a result
 v� becomes
the highest version number p� knows about for this
page �denoted HVN in the �gure�� In the producer�
consumer pattern
 p� takes a read fault on the page�
This causes the page to move
 but ownership stays
with p�� When p� later writes on the page again
 it
is still the owner and does not need to create a twin�
In the migratory access pattern
 the read fault by p�
causes the page to move
 and the subsequent write
fault causes ownership to be migrated
 so that p� can
write on the page without making a twin� Finally
 in
the case of write�write false sharing
 the write fault by
p� also results in an ownership request message
 but
this request is refused by p�
 because p� has already
written on the page and increased its version number
to v� as a result� In this case
 p� has to make a twin�

Merging Single Writer Copies and Di�s While
there is a single writer for a page
 processors receive
only owner write notices� On an access miss
 the
whole page is requested from the last perceived owner�
During the transition from SW to MW
 owner copies
and non�owner copies of a given page may co�exist�

Some method is needed for merging these two types
of copies�
The merging of modi�cations is done by requesting

the page from the last perceived owner
 and apply�
ing the necessary di�s to that copy according to their
timestamps� In more detail
 when taking a fault on
an invalid page
 a processor looks at its list of write
notices� The list contains write notices that indicate
modi�cations of other processors and also local write
notices� If the list contains only non�owner write no�
tices
 then the processor just needs to get the cor�
responding di�s from the other processors and apply
them to its current copy� If the list contains one or
more owner write notices
 the processor selects the
owner write notice with the highest version number

and obtains a copy of the page from the processor
named in that write notice� It deletes all the write
notices that are dominated by this owner write notice�
The remaining write notices identify modi�cations to
the page that happened either concurrent with or after
the modi�cations re�ected in the copy of the page that
was just retrieved� The processor gets the di�s corre�
sponding to these write notices
 unless it has them
already
 and applies all the di�s to the page in times�
tamp order� The processor will not need to apply this
special merging procedure again unless it sees a new
owner write notice as a result of a switch back from
MW to SW�
The global garbage collection of di�s is done at bar�

riers as in the TreadMarks protocol �see Section �����
It di�ers in that only the last owner validates its copy
by applying all the necessary di�s� Because garbage
collection of di�s involves global synchronization as in
TreadMarks
 the last perceived owner is in fact the
last owner of the page� On future access misses
 all
processors will thus retrieve the owner�s copy of the
page� In contrast
 in TreadMarks
 all concurrent writ�
ers of a page validate their copy� Furthermore
 in the
adaptive protocol
 the garbage collection of old write
notices can be done on�the��y� Any write notice that
becomes dominated by an owner write notice
 includ�
ing all old owner write notices
 can be discarded�

����� Detecting the Absence of Write�Write
False Sharing in MW Mode

When in MW mode
 the adaptive protocol checks for
the absence of write�write false sharing on a page� The
principle here is� There is no write�write false sharing
if there is a write notice for the page that dominates all
other write notices� The adaptive protocol uses three
extensions to the TreadMarks MW protocol to check
for the absence of write�write false sharing�
First
 processors piggyback information on di� re�

quests indicating whether they perceive the page as
write�write falsely shared or not according to the write
notices they received� Each writer of a page moni�
tors this false sharing information� Whenever a di�
request comes in
 the writer updates its local informa�
tion to re�ect the false sharing information received
from the requester� Ownership requests to the last
perceived owner are resumed if information collected
from all processors in the approximate copyset for the

page says that they see the page in SWmode� This ap�
proximate copyset is already maintained by the Tread�
Marks MW protocol� Second
 as soon as a processor
sees a new owner write notice and no concurrent sec�
ondary write notices
 it infers that write�write false
sharing has stopped� Third
 at barriers all processors
become up to date with all existing modi�cations� If at
a barrier a processor receives a write notice for a page
that dominates all other write notices
 that processor
can infer that write�write false sharing has stopped�

��� Adapting to Write Granularity
The underlying idea is that
 even for pages for

which there is no write�write false sharing
 it might
still be pro�table to use di�ng
 if the size of the mod�
i�cations to the page is small� The cost of twinning

di�ng
 and transferring a small di� may be cheaper
than transferring a whole page� Besides the write
granularity of the application
 this tradeo� is highly
dependent on the network bandwidth�
We use a simple threshold value to decide whether

or not to use di�s� If the size of the modi�cations to
a page is bigger than the threshold value
 we switch
to SW mode
 otherwise we keep the page in MW
mode� The threshold for a particular con�guration
is set at the value at which the cost of twinning
 di��
ing
 and transmitting the di� is equal to the cost of
transmitting the entire page� While this threshold
does not take into account other factors such as the
increased memory usage and garbage collection over�
head of MW
 these factors are hard to quantify
 and
we found that the results are not very dependent on
the exact value of the threshold�
Adapting to write granularity also alleviates the di�

accumulation problem ���� that occurs in the MW pro�
tocol� Di� accumulation occurs in connection with mi�
gratory data where a sequence of synchronizing pro�
cessors write the same data one after another� If a
processor reads the data written by one of the writers

di�s from all of the preceding writers need to be ap�
plied
 even if the modi�cations overwrite each other�
This causes extra data to be sent� If the di�s are small

then several of them can be sent in a single message

limiting the resulting overhead� Di� accumulation be�
comes a serious problem
 however
 if the di�s are large�
Our protocol addresses this problem by switching the
pages with large di�s to SW mode�

��� Protocols Used in the Experiments
We use four protocols in the evaluation� The WFS

protocol adapts to write�write false sharing in the
manner described in Section ���� The WFS	WG
protocol
 in addition
 adapts to the write granular�
ity as described in Section ���� In both the WFS and
WFS	WGprotocols
 all pages start in SWmode� The
WFS	WG protocol
 however
 switches a page to MW
mode as soon as the page becomes read�write or write�
write shared� This enables the protocol to measure
the write granularity� Afterwards
 WFS	WG adapts
to SW as described in Sections ��� or ���
 with prior�
ity to the test for write�write false sharing� In other
words
 if the state variable indicates the presence of
write�write false sharing
 the page is placed in MW

mode� If
 however
 the state variable indicates the ab�
sence of write sharing
 the mode of the page is decided
depending on the size of the di�s� As a baseline for
comparison we include the MW and SW protocols�

� Experimental Environment
Our experimental environment consists of

SPARC��� model �� workstations connected by a ���
Mbps ATM network� The processes communicate
with each other over UDP sockets� The minimum
round�trip time using send and receive for the small�
est possible message is � millisecond� A remote access
miss
 to obtain a ���� byte page from another proces�
sor
 takes ���� �seconds� A twin and full page di�
take an average of ��� and ��� �seconds
 respectively�
To set the threshold for WFS	WG protocol
 we mea�
sured the cost of twinning
 di�ng and sending the di�
for di�erent di� sizes� This led us to a conservative
threshold value of �KB to switch from MW to SW in
WFS	WG�

� Applications
We use
 applications in this study� Red�Black

SOR and TSP� Water and Barnes�Hut from the
SPLASH benchmark suite ����� IS and �D�FFT from
the NAS benchmark suite ���� Shallow fromNCAR ��
�
and ILINK
 a large computational genetics code �����
The applications and input sets vary considerably in
terms of the amount of write�write false sharing and
the write granularity�
Tables � and � summarize the relevant character�

istics of the applications� Table � includes for each
application
 the data set size used
 the method of
synchronization �locks
 barriers
 or both�
 and the
sequential running times� Sequential running times
were obtained by removing all synchronization from
the TreadMarks programs� these times were used as
the basis for the speedup �gures reported later in the
paper� Table � provides the prevailing write granu�
larity
 and the percentage of shared pages that are
write�write falsely shared� A large write granular�
ity implies a size above our �KB threshold� Variable
means that the size of the writes vary with time� The
write granularity and write�write false sharing data in
the table are only valid for the particular input set
used� Some applications �e�g�
 SOR
 Water and Shal�
low� show variation in write granularity and write�
write false sharing behavior depending on the input
set�

� Results
We �rst compare the speedups of the four protocols�

We then present a detailed breakdown of the mem�
ory overheads and the communication requirements�
Finally
 we explain the results for each application�
Unless otherwise noted
 all results refer to
�processor
executions�

��� Execution Times
Figure � shows the speedup on
 processors for each

of the applications using the four protocols�
We �rst compare the non�adaptive SW and MW

protocols� As expected
 the amount of write�write

Application Data size Sync Time �sec��

IS �� x �� l
b ��

�D�FFT ��x��x�� b ���

SOR ���� x ���� b
����
Water ��� molecules l
b �
��
TSP �� cities l ��
��
Shallow ���� x ��� b
���
Barnes ��K bodies l
b �����
ILINK CLP �x�x�x� l
b ��

��

Table �� Applications
 input data sets
 synchroniza�
tion �l�locks
 b�barriers�
 and sequential execution
time

Application Write gran� WS���

IS large ���
�D�FFT large ����
SOR variable ���
Water medium ���
TSP small ���
Shallow med�large ����
Barnes small ����
ILINK small �
��

Table �� Write granularity and the percentage of
write�write falsely shared pages

MW WFS+WG WFS SW

IS

3
D

-F
F

T

S
O

R

W
a
te

r

T
S

P

S
h
a
llo

w

B
a
rn

e
s

Il
in

k

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

Figure �� Speedup comparison on
 processors� MW

WFS	WG
 WFS
 and SW

false sharing determines the tradeo�� The SW pro�
tocol performs better than MW on applications with
zero or very low write�write false sharing �IS and �D�
FFT�
 performs comparably on applications with low
write�write false sharing �Water�
 and worse for ap�
plications with medium or high write�write false shar�
ing �Shallow
 Barnes
 ILINK�� Although there is no
write�write false sharing in SOR
 SW and MW per�
form comparably because of the high computation�
to�communication ratio� For TSP
 write�write false
sharing is low
 but the MW protocol performs better
because of the small size of the di�s� The biggest rel�
ative speedup di�erences in favor of SW occur for IS
and �D�FFT where SW has a speedup of ��� and ���

respectively
 vs� ��� and ��� for MW� The biggest dif�
ferences in favor of MW occur for Barnes and ILINK
where MW has a speedup of ��� and ���
 respectively

compared to ��� and ��
 for SW� These results are
similar to those of Keleher ����
 allowing for some dif�
ferences in platform and applications�
Comparing the adaptive to the non�adaptive pro�

tocols
 we see from Figure � that
 for all but �D�FFT
and TSP
 both adaptive protocols match or exceed
the speedup of the best of the non�adaptive protocols�
For these six applications
 the speedups of WFS and
WFS	WG are almost identical
 with a slight edge for
WFS with Shallow and Barnes
 and a slight edge for
WFS	WG with Water� For �D�FFT
 the WFS pro�
tocol matches the performance of SW
 the best non�
adaptive protocol� The WFS	WG protocol slightly
lags SW
 but performs better than MW� For TSP
 the
WFS	WG protocol matches the performance of MW

the best non�adaptive protocol� The WFS protocol
lags MW
 but beats SW�
Evaluated in terms of speedups
 we conclude that

our adaptation to write�write false sharing works well

with the adaptation to the write granularity having
only a secondary e�ect �TSP� and occasionally having
a small negative e�ect ��D�FFT��
A more subtle point is that per�page adaptation

pays o�� This is shown
 for instance
 by the improve�
ments of WFS over MW on medium�highwrite sharing
problems �Shallow
 Barnes�� Our WFS protocol per�
forms better than the MW protocol on these problems
because not all pages are write�write falsely shared�
Similarly
 WFS	WG has an edge over MW for most
applications because
 even if the average write granu�
larity is small
 most applications have large writes on
some pages �see Section �����

��� Memory Overhead
SW does not use twins or di�s� Total memory us�

age in the other three protocols is dominated by the
memory used for twins and di�s� Table � presents the
amount of twin and di� space used for all applications
under these three protocols� Additional memory is
used in all protocols for storing write notices
 but this
amount is small in comparison and not presented�
SW uses neither twins nor di�s
 and so has the

lowest memory overhead
 followed by WFS� WFS sub�
stantially reduces the total memory consumption com�
pared to MW� For applications that have no write�
write false sharing �SOR and IS�
 the WFS protocol

Prog Protocol Di�s Twins
�MB� �MB�

MW ���� ����
IS WFS	WG ���� ����

WFS ���� ����

MW ����� �����
FFT WFS	WG ���� ���

WFS ���� ���

MW �
��� ������
SOR WFS	WG ����� �����

WFS ���� ����

MW ���� �����
Water WFS	WG ���� ����

WFS ���� ����

MW ���� �����
TSP WFS	WG ���� �����

WFS ���� ����

MW ����� �����
Shallow WFS	WG ���� �����

WFS ���� �����

MW ����
 ������
Barnes WFS	WG ����� ������

WFS ����� �����

MW ����� ��
�
�
ILINK WFS	WG ����� ������

WFS ����� ��
���

Table �� Memory consumption for MW
 WFS	WG

and WFS

does not create any twins or di�s� In general
 the
amount of memory consumed in WFS is far lower than
MW with the exception of the applications with high
write�write false sharing �ILINK and Barnes�� As a
hybrid protocol
 WFS	WG uses more memory than
WFS for all applications
 but has lower memory cost
than MW�
Figure � uses �D�FFT as an example of how our

WFS	WG and WFS protocols adapt� The �gure
shows the total number of di�s on all processors as
a function of time during the �rst � iterations� �D�
FFT overwrites entire pages during each iteration

and therefore most di�s are �K in size� We can see
that the di� space is rapidly consumed in MW
 corre�
sponding to the �rst steep ascending part of the graph�
When the di� space exceeds the threshold ��MB� on
one of the processors
 garbage collection occurs at the
next barrier� Each drop in the graph corresponds to a
garbage collection� The WFS protocol uses di�s only
when there is write�write false sharing� In �D�FFT

only ����� of the pages exhibit write�write false shar�
ing
 so di� space used is negligible� The WFS	WG
protocol starts out making di�s at the same rate as
MW� However
 as it sees that the di� size of each
page is above the allowed threshold
 it switches to a
SW protocol for these pages� As pages are switched
to SW mode the slope of the curve �attens� Finally

after the second iteration
 WFS	WG does not create

WFS+WG

MW

WFS

Time

T
o

ta
l
D

if
f

N
o

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

2200.00

2400.00

Figure �� Di� creation and garbage collection patterns
for the MW
 WFS	WG and WFS in �D�FFT

any more large di�s �corresponding to the �at area of
the curve��

��� Communication
Table � provides data on the amount of commu�

nication for each of the
 applications with each of
the � protocols� Besides the number of messages and
the amount of data
 we also indicate the number of
ownership requests for the WFS	WG
 WFS and SW
protocols� For ease of comparison
 the number given
represents ownership requests and not ownership re�
lated messages� For WFS and WFS	WG
 the total
number of ownership related messages is double the
number of ownership requests� For SW
 ownership
requests may involve forwards
 which are included in
the total number of messages but not in the ownership
request number�
The SW protocol sends the largest number of mes�

sages and the largest amount of data� For applications
with high write�write false sharing
 the di�erence be�
tween SW and the other protocols is due to the ping�
pong e�ect� For applications with low write�write false
sharing the slight increase is due to forwarding of own�
ership requests�
The tradeo� between MW and the adaptive pro�

tocols is not so uniform� For some applications
 the
ownership requests cause the adaptive protocols
 es�
pecially WFS
 to send more messages than MW� For
Shallow
 Barnes and �D�FFT
 the adaptive protocols

in particular WFS
 send fewer messages than MW

because of the high number of messages exchanged
during MW garbage collection�

��� Detailed Discussion
In the following discussion
 we focus on the write�

write false sharing and write granularity in each of

Program Protocol Msg Owner Data
����� ����� �MB��

MW ���� ���� �����
IS WFS	WG ���� ���� ����

WFS ���� ���� ����
SW ���� ���� ����

MW ����� ���� �����
�D�FFT WFS	WG �
��� ���� �����

WFS �
��� ���� �����
SW ����
 ���� �����

MW
���� ����
����
SOR WFS	WG
���
 ��
�
��
�

WFS
���
 ��
� ������
SW
���
 ��
�
��
�

MW ����� ���� �����
Water WFS	WG ����
 ���� �����

WFS ���
� ���� �����
SW ����� ���� �����

MW �
��� ���� ����
TSP WFS	WG �
��� ����
���

WFS ����� ���
 �����
SW ����� ��
� �����

MW ����� ���� �����
Shallow WFS	WG ����� ���� ����

WFS ����� ���� �����
SW �����
��� ���
�

MW ������ ���� ������
Barnes WFS	WG ������ ���� ������

WFS ����
� ��
� ����
�
SW
���
� ������ ��
����

MW ������ ���� ������
ILINK WFS	WG ������ ���� ������

WFS �����
 ���� ����
�
SW ������ �
��� �����

Table �� Number of messages
 ownership requests
 and
amount of data exchanged for the four protocols

the applications
 and how our protocols adapt to these
characteristics�

IS ranks an unsorted sequence of keys using bucket
sort� The keys are divided among the processors� At
�rst
 processors count their keys in their private buck�
ets� In the next phase
 the values in the buckets are
summed up� The sharing pattern in IS is migratory�
the shared buckets are passed from one processor to
another
 protected by locks� There is no write�write
false sharing
 and the pages containing the shared
buckets are completely overwritten by each processor�
WFS keeps all these pages in SW mode during the en�
tire execution� WFS	WG switches to SW mode for
all pages after the �rst iteration� Although the adap�
tive protocols send more messages than MW due to
ownership requests
 di�ng overhead and di� accumu�
lation ���� in MW result in poorer performance relative
to the adaptive protocols� The small improvement of
WFS over SW is due to the extra messages in SW for

forwarding ownership requests�
�D�FFT solves a di�erential equation using �D for�

ward and inverse FFT�s� The phases are separated by
barriers
 with a transpose being performed to opti�
mize the computation� Communication occurs in per�
forming the transpose
 and is of a producer�consumer
nature� Write�write false sharing occurs on only one
page out of ���� total shared pages
 and the modi��
cations for this page are small ��
 bytes�� The other
shared pages are completely overwritten almost every
time they are touched� In WFS
 each of the
 pro�
cessors switch once from SW to MW for the page for
which there is write�write false sharing� WFS	WG
switches to SW mode during the second iteration for
all pages except for the write�write falsely shared page�
Under the adaptive protocols
 as in SW
 access misses
are handled by merely retrieving a copy of the page
from another process
 adding no additional di� cre�
ation�application overhead� MW creates di�s describ�
ing each modi�cation because every page of data is
replicated over the course of the execution� WFS and
SW have identical performance
 slightly better than
WFS	WG because of the �rst iteration
 and signi��
cantly better than MW�
In SOR the shared data structure is a matrix di�

vided into roughly equal size bands of rows� Bands are
assigned to processors� The program iterates over the
matrix computing a new value for each element based
on its four neighbors� Communication occurs across
the boundary between bands� There is no write�write
false sharing for the input size that we used� The
boundary elements of the matrix are initialized to �

and the internal elements are initialized to �� In the
early iterations
 few elements change� However
 the
number of modi�cations grows with every iteration�
WFS	WG starts out making di�s
 because the write
granularity is below the threshold in the early itera�
tions� It switches to SW mode after the �rst
� it�
erations� WFS	WG has the best performance of all
protocols� Since the computation�to�communication
ratio in this application is very high
 all protocols per�
form well�
Water is a molecular dynamics simulation� It com�

putes the intra� and inter�molecular forces using an
O�n�� algorithm with a cut�o� radius� The main
shared data structure is the array of molecules al�
located contiguously and partitioned among proces�
sors� Depending on how array partitions align to pages
there may or may not be false sharing� On average

� molecule data�structures are allocated to the same
page
 and write�write false sharing occurs on ���� of
the pages� In WFS
 ��� pages �from a total of
�
shared pages� switch to MW� WFS	WG switches to
moving whole pages for �
� of the pages� However

the size of writes on these pages is only slightly above
the �K threshold leading to marginal improvement
over MW�
TSP uses a branch�and�bound algorithm to �nd

the minimum tour that starts at a designated city

passes through every other city exactly once
 and re�
turns to the original city� In TSP
 write granularity
is small� For example
 an update to the shared tour
queue modi�es a couple of words� There is little write�

write false sharing in TSP� WFS switches from SW to
MW on a total of � pages for all
 processors �out
of ��� shared pages� and thus moves whole pages for
the most part� WFS	WG uses mostly di�s because
only for one page it observes a large di� �� �K� which
causes it to put the page in SW mode� The increase in
the amount of data and the ownership messages cause
WFS and SW to perform worse than WFS	WG and
MW�
Shallow solves di�erence equations on a �D grid for

weather prediction� Parallelization is done in bands

with sharing only across the edges� In our ��������
element input set
 write�write false sharing occurs on
����� of the pages� Shallow makes a clear case for per�
page adaptation� The WFS protocol performs better
than both non�adaptive protocols� The WFS protocol
switches to MW mode for all of the write�write falsely
shared pages
 and keeps the other pages in SW mode�
The WFS protocol outperforms the SW protocol be�
cause of the ping�pong e�ect
 and the MW protocol
because of lower di�ng and twinning overheads� In
addition
 the WFS protocol uses fewer messages than
the MW protocol� The two reasons are that almost all
ownership messages can be piggy�backed on page re�
quests
 and the WFS protocol�s garbage collection pol�
icy only validates one copy of the page� Also
 memory
consumption in the WFS protocol is much lower� It
creates ��� fewer di�s and uses �
� less memory than
the MW protocol� The WFS	WG protocol performs
identically to the MW protocol and outperforms the
SW protocol� Even though most of the pages have a
single writer
 the small size of the di�s keeps the pages
in the MW mode� Only ���� of the pages change to
SW mode�
Barnes�Hut simulates the evolution of a system

of bodies under the in�uence of gravitational forces�
It uses a hierarchical tree�based method to compute
forces between bodies� The space is broken into cells�
The internal nodes of the tree represent the cells
 and
the leaves represent the bodies in the corresponding
cells� The tree is built in each time step by loading
bodies into it� The bodies are partitioned among pro�
cessors
 and then each processor computes the forces
on its bodies and updates the positions and velocities
of the bodies� In the version that we use
 the array
of bodies is shared
 and the cells are private� Both
read and write accesses to the global body array are
�ne grained� All pages containing this array ������ of
the shared pages� are write�write falsely shared� The
SW protocol performs poorly� It sends more messages

and moves more data than the other protocols� The
adaptive protocols slightly outperform the MW proto�
col� They switch to the MW mode for all of the pages
containing bodies
 while keeping the other pages in
SW mode� Even though the adaptive protocols move
more data
 they use fewer messages and generate fewer
twins and di�s than the MW protocol�
ILINK is a genetic linkage analysis program that

locates speci�c disease genes� The main data struc�
ture is a pool of sparse arrays called genarrays� A
master processor assigns the nonzero elements to all
processors in a round�robin fashion� After each pro�
cessor has worked on its share of non�zero values
 the

master processor sums up the contributions� The pool
of sparse genarrays is in shared memory and all pro�
cessors access it� Thus
 the dominant access pattern
is write�write false sharing ��
� of the pages� and
WFS adapts to MW mode for these pages� There
is a slight decrease in the total message count for the
adaptive protocols compared to MW
 as a positive side
e�ect of the garbage collection method used� How�
ever
 the WFS protocol moves more data for the non
write�shared pages
 due to the sparse data structures
used in the application and this shows in the total
data movement� WFS	WG adapts to SW mode for
an average of ��� pages per processor
 the only pages
for which di�s are large
 and thus gets a slight im�
provement compared to MW� This program has a lot
of write�write false sharing
 but the computation to
communication ratio is higher than Barnes�
 and thus
all protocols have better speedup�

��� Summary
The results con�rm the bene�ts of adaptation to

write�write false sharing� avoiding the ping�pong ef�
fect if write�write false sharing is present
 and avoid�
ing the costs of twinning and di�ng in its absence�
Adaptation to write granularity has only a second�
order e�ect for this set of applications and this envi�
ronment
 and introduces a hysteresis in the protocol
that can lead to performance degradation and extra
memory consumption� The results also demonstrate
the bene�t of per�page adaptation� The adaptive pro�
tocols sometimes outperform both non�adaptive pro�
tocols� A side e�ect of the adaptive and SW protocols
is reduced memory utilization compared to the MW
protocol� On the other hand
 the ownership request
messages in the adaptive protocols may cause some
increase in the total number of messages�

� Related Work
The SW protocol we use is based on the work of

Keleher ����� His work demonstrates that the perfor�
mance bene�ts resulting from using LRC rather than
sequential consistency �SC� are considerably larger
than those resulting from allowing multiple writers�
We show that under LRC the bene�ts of MW and SW
protocols can be combined into one adaptive algorithm
that uses the appropriate protocol on a per�page basis�
Various techniques have been proposed to replace

di�ng by cheaper alternatives ���
 ��� or to o oad
di�ng to a communication coprocessor ��
 ���� This
work is orthogonal to ours
 in that we could incor�
porate these techniques into our adaptive protocols�
Using per�word timestamps ��
 ��
 ��� addresses the
problem of di� accumulation directly� The problem is
alleviated in our system because we switch to using
whole pages whenever the di�s are large�
Cox and Fowler
 and Stenstrom and Brorsson ��

��� describe hardware cache�coherence protocols that
adapt to migratory sharing patterns� Migratory cache
blocks are detected automatically� If a processor �rst
reads and then writes a block
 these protocols invali�
date the old copy and migrate ownership of the block
to the new processor on the read miss rather than
on the write hit� This strategy requires only one bus

transaction
 where otherwise two would be required�
one to replicate the block on the read miss
 and one to
invalidate the old copy on the write hit� Our adaptive
protocols could be extended to automatically detect
migratory data access and optimize the ownership ac�
quisition accordingly�
Munin ��� uses multiple protocols to handle data

with di�erent access characteristics� The innovation in
our work is that it chooses automatically between SW
and MW protocols� In Munin
 the choice of protocol
is based on somewhat burdensome user annotations�
MGS ����
 a DSM system for distributed SMPs

uses a base protocol similar to Munin� Their proto�
col employs a single writer optimization that avoids
di�ng overhead when there is only one writable copy�
Although the twin is still made
 the entire page is sent
to the home instead of computing a di�� The work
of Zhou et� al ���� also avoids di�ng when the home
node is in fact the single writer for the page� In con�
trast
 our adaptive protocols avoid twinning and di��
ing overhead without using a �xed home node� This
avoids unnecessary message tra�c if the home node is
poorly chosen�
False sharing has also been addressed by compile�

time analysis ����
 remapping of data within the ad�
dress space ���
 and by using objects as a smaller con�
sistency unit ����� All of these techniques seek to elimi�
nate rather than tolerate false sharing� They are
 how�
ever
 limited in their applicability due to either the re�
quirement of a special�purpose language�compiler or
restrictions on the applications�

	 Conclusions
We have introduced adaptive protocols for software

DSM that dynamically choose between SW and MW
mode on a per�page basis� The choice is based on
the presence of write�write false sharing and�or write
granularity� Write�write false sharing is detected by
a new ownership refusal protocol� Our adaptive pro�
tocols do not require any user
 compiler
 or hardware
support�
The adaptive protocols perform well
 matching or

exceeding the performance of the best of the non�
adaptive approaches on � out of
 applications� Adap�
tation to write�write false sharing is the most impor�
tant factor contributing to performance� Adaptation
to write granularity is a secondary factor in this envi�
ronment and for this set of applications�
In the adaptive protocols
 we avoid the worst case

of both the MW protocol �the di� accumulation prob�
lem� and the SW protocol �the ping�pong e�ect�� Fur�
thermore
 communication overheads are much lower
than for the SW protocol
 and memory consumption
is signi�cantly reduced compared to the MW protocol�

References
��� S�V� Adve� A�L� Cox� S� Dwarkadas� R� Rajamony�

and W� Zwaenepoel� A comparison of entry consis�
tency and lazy release consistency implementations�
In Proceedings of the Second High Performance Com�

puter Architecture Symposium� pages ��	
�� February
�����

��� S�V� Adve and M�D� Hill� A uni
ed formalization of
four shared�memory models� IEEE Transactions on

Parallel and Distributed Systems� �������
	���� June
���
�

�
� C� Amza� A�L� Cox� S� Dwarkadas� P� Keleher� H� Lu�
R� Rajamony� and W� Zwaenepoel� TreadMarks�
Shared memory computing on networks of worksta�
tions� IEEE Computer� ��������	��� February �����

��� D� Bailey� J� Barton� T� Lasinski� and H� Simon�
The NAS parallel benchmarks� Technical Report TR
RNR�������� NASA Ames� August �����

��� R� Bianchini� L�I� Kontothanassis� R� Pinto� M� De
Maria� M� Abud� and C�L� Amorim� Hiding commu�
nication latency and coherence overhead in software
dsms� In Proceedings of the �th Symposium on Ar�

chitectural Support for Programming Languages and

Operating Systems� pages ���	���� October �����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Tech�
niques for reducing consistency�related information in
distributed shared memory systems� ACM Transac�

tions on Computer Systems� �
�
�����	��
� August
�����

��� A�L� Cox and R�J� Fowler� Adaptive cache coherency
for detecting migratory shared data� In Proceedings

of the ��th Annual International Symposium on Com�

puter Architecture� pages ��	���� May ���
�

��� B� Fleisch and G� Popek� Mirage� A coherent dis�
tributed shared memory design� In Proceedings of the

��th ACM Symposium on Operating Systems Princi�

ples� pages ���	��
� December �����

��� V�W� Freeh and G�R� Andrews� Dynamically con�
trolling false sharing in distributed shared mem�
ory� In Proceedings of the Fifth Symposium on High�

Performance Distributed Computing� �����

���� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons�
A� Gupta� and J� Hennessy� Memory consistency and
event ordering in scalable shared�memory multipro�
cessors� In Proceedings of the ��th Annual Interna�

tional Symposium on Computer Architecture� pages
��	��� May �����

���� S�K� Gupta� A�A� Sch�a�er� A�L� Cox� S� Dwarkadas�
and W� Zwaenepoel� Integrating parallelization
strategies for linkage analysis� Computers and

Biomedical Research� ������	�
�� June �����

���� T�E� Jeremiassen and S� Eggers� Reducing false shar�
ing on shared memory multiprocessors through com�
pile time data transformations� In Proceedings of the

�th ACM Symposium on the Principles and Practice

of Parallel Programming� July �����

��
� P� Keleher� The relative importance of concurrent
writers and weak consistency models� In Proceedings

of the ��th International Conference on Distributed

Computing Systems� pages ��	��� May �����

���� P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy
release consistency for software distributed shared
memory� In Proceedings of the �	th Annual Interna�

tional Symposium on Computer Architecture� pages
�
	��� May �����

���� P�T� Koch� R�J� Fowler� and E� Jul� Write ranges� A
technique for improving capture and propagation of
writes in software DSMs� Submitted for publication�

���� K� Li and P� Hudak� Memory coherence in shared
virtual memory systems� ACM Transactions on Com�

puter Systems� �����
��	
��� November �����

���� H� Lu� S� Dwarkadas� A�L� Cox� and W� Zwaenepoel�
Message passing versus distributed shared memory on
networks of workstations� In Proceedings SuperCom�

puting
	�� December �����

���� R� Sadourny� The dynamics of
nite�di�erence mod�
els of the shallow�water equations� Journal of Atmo�
spheric Sciences�
����� April �����

���� J�P� Singh� W��D� Weber� and A� Gupta� SPLASH�
Stanford parallel applications for shared�memory�
Technical Report CSL�TR�������� Stanford Univer�
sity� April �����

���� P� Stenstr�om� M� Brorsson� and L� Sandberg� An
adaptive cache coherence protocol optimized for mi�
gratory sharing� In Proceedings of the ��th Annual

International Symposium on Computer Architecture�
May ���
�

���� D� Yeung� J� Kubiatowicz� and A� Agarwal� MGS� A
multigrain shared memory system� In Proceedings of

the ��th Annual International Symposium on Com�

puter Architecture� May �����

���� M�J� Zekauskas� W�A� Sawdon� and B�N� Bershad�
Software write detection for distributed shared mem�
ory� In Proceedings of the First USENIX Sympo�

sium on Operating System Design and Implementa�

tion� pages ��	���� November �����

��
� Y� Zhou� L� Iftode� and K� Li� Performance evaluation
of two home�based lazy release consistency protocols
for shared virtual memory systems� In Proceedings of

the Second USENIX Symposium on Operating System

Design and Implementation� pages ��	��� November
�����

