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Abstract

This paper presents a mechanism to dynamically detect
the loops that are executed in a program. This technique
detects the beginning and the termination of the iterations
and executions of the loops without compiler/user
intervention. We propose to apply this dynamic loop
detection to the speculation of multiple threads of control
dynamically obtained from a sequential program. Based
on the highly predictable behavior of the loops, the history
of the past executed loops is used to speculate the future
instruction sequence. The overall objective is to
dynamically obtain coarse grain parallelism (at the thread
level) that can be exploited by a multithreaded
architecture. We show that for a 4-context multithreaded
processor, the speculation mechanism provides around 2.6
concurrent threads in average.

1. Introduction

Control speculation increases the potential parallelism
that a processor can exploit (see [7] [12] among others).
Branch prediction is the most studied control speculation
technique, and it is incorporated in the large majority of
past and current microprocessors (see [8] [13] among oth-
ers). Such speculation approaches have been oriented to
superscalar processors. However, little research has been
done on control speculation for other emerging architec-
tures. In particular, this work focuses onmultithreaded
architectures. In this paper, a multithreaded architecture
refers to any architecture that can concurrently execute
several threads of control1 from a single sequential pro-

1. In this paper, a thread of control (or thread for short) refers to any
contiguous region of the dynamic instruction sequence.

gram, regardless of the approach used to obtain such
threads. For instance, the multiscalar [9] architecture
belongs to this class of architectures. In this particular
case, the partition of a program into threads requires some
compiler support.

The work that is presented in this paper is aimed at
obtaining multiple threads from a sequential program
without any user/compiler intervention. There are several
reasons to argue for a hardware mechanism: (i) the static
analysis that the compiler may perform is less accurate
than the actual dynamic behavior than can be obtained
during the execution; (ii) profiling mechanisms that char-
acterize the execution of a program rely on a concrete set
of input data; (iii) the instruction set architecture is not
modified, giving backward compatibility with previous
implementations. Inter-thread control speculation is based
on a dynamic detection of the loops in a program. The
threads are obtained based on the highly predictable
behavior of the loops.

We present a general mechanism that allows the detec-
tion of loops with a reasonable cost and we also describe
the application of this dynamic loop detection to imple-
ment the inter-thread control speculation in a multi-
threaded architecture. The results show that loops are an
important source for accurate thread prediction. For
instance, we show that for a 4-context processor, the pro-
posed thread speculation approach can provide about 2.6
concurrent threads in average.

In addition to inter-thread control dependences, the pro-
posed mechanism can be used to speculate on both inter-
thread data dependences and the data that flow through
them. The definition and implementation of a particular
data/data dependence speculation mechanism is beyond
the scope of this paper. However, to show its potential, we
present some preliminary statistics about the predictability
of values of live-in2 registers and memory locations of
speculative threads.



There are several proposals in the literature regarding
multithreaded architectures oriented to the execution of a
single sequential program. The most remarkable works are
the Expandable Split Window paradigm [3], the Multisca-
lar [9], the SPSM [2], the Superthreaded [11] and the Mul-
tithreaded Decoupled [1] architectures. However, all of
them require either some user/compiler intervention and/
or some extensions in the instruction-set architecture.
Control flow speculation for Multiscalar processors has
been studied in a recent paper [5]. In such proposal the
threads (called tasks in that paper) are delimited at com-
pile time and the run-time mechanism is only responsible
for predicting the sequence that such threads will follow.
This paper proposes a novel approach that can be used by
such type of architectures in order to obtain multiple
threads of control by means of hardware mechanisms.

The proposed speculation mechanism is based on a
loop detection scheme. Dynamic loop detection has been
studied in [6] but the mechanism proposed in that paper is
oriented to extract statistics from a trace generated by a
program execution. It is not adequate for a hardware
implementation and it does not care about control specula-
tion.

This paper is organized as follows. Section 2 describes
and analyzes the mechanism proposed for the dynamic
detection of loops. Section 3 presents its application to
thread control speculation. Section 4 presents some pre-
liminary statistics about data speculation issues. Finally,
the main conclusions are summarized in section 5.

2. Dynamic loop detection

Loops are a very common control structure in every
program. A high percentage of all instructions executed in
a program belong to loops. Since in addition the closing
branches of loops are highly predictable, loops are poten-
tially useful to perform control speculation. In this section
we first define the types of loops that we consider in this
paper. Then, an implementation to dynamically detect
such loops and the performance exhibited for the SPEC95
benchmark suite is presented.

2.1. Loop definitions

For structured code, there is a unanimous definition of
what a loop is. However, for non-structured code different
interpretations can be applied. In this subsection, we
present our particular definition of loops, which will be
used in the rest of this paper. First, we define the static

2. A live-in register (live-in memory location) is a register (memory
location) that is live-on-entry to a thread.

view of a loop in a program. Then, we define the dynamic
view of a loop with the concepts of loop execution and
loop iteration.

There is aloop in a program, which it is identified by
addressT, when there is at least one backward branch or
jump to address T. There may be more than one branch
with the same target address. In this case, we consider that
all such branches are closing branches of the same loop. A
main attribute of a loop is the highest address that contains
a backward branch or jump to address T. This address is
denoted by address B. All instructions in the range of
addresses [T,B] constitute thebody of loop T. Once
entered in the loop body, it is possible to leave it with an
instruction that forces the execution control flow to pro-
ceed to an address outside the range of the loop. This con-
trol flow instruction may be a branch, a jump or a return
instruction. There may be any number of subroutine acti-
vations inside a loop body. Note that this definition of the
static loop body does not include the bodies of the subrou-
tines that are activated.

Figure 1 shows a static view of a loop. Exit branches
can be at the beginning or at the end of the loop body in
the case ofwhile or do_while high-level loop structures. It
is also possible to leave a loop from any other part of it, as
it is the case of abreak, gotoor returnhigh-level language
instructions.

On the other hand, we also define a dynamic view of a
loop. Considering address B as the highest address of all
executed branch or jump instructions to target address T,
an execution of loop T consists of a certain number of
sequentially executed instructions which are delimited by
the following conditions.

An execution of loop T is initiated when the first
instruction whose address belongs to the loop body (range
of addresses [T,B]), is executed.

An execution of loop T is terminated by one of the fol-
lowing instructions:  (i) a not taken branch at address B, or
(ii) a taken branch or a jump at an address belonging to the

T:

B:

JMP, BR or RET

JMP or BR

JMP or BR

Figure 1: Static view of a loop.



loop body to a target address outside the loop body, or (iii)
a return instruction at an address belonging to the loop
body.

Since usually any subroutine activation returns to the
address below the call instruction, we consider that inside
a loop execution there may be any number of nested sub-
routine activations. Note that instructions belonging to the
subroutine body also belong to the loop execution.

Moreover, when a loop is inside a recursive subroutine,
note that the different instantiations of the same loop that
are obtained through recursive activations without any
return in between are considered to belong to the same
loop execution.

All instructions in a loop execution are divided into a
certain number of loop iterations. Aniteration of loop T
consists of a certain number of sequentially executed
instructions belonging to an execution of loop T with the
following characteristics. The first iteration of a loop T is
started when its loop execution is also initiated. The rest of
the iterations always begin at address T. All iterations of
loop T, except the last one, always finish with a taken
backward branch or jump to address T. The last iteration
finishes when its loop execution also finishes.

A given dynamic instruction may belong to several
loop executions. This occurs when loop structures are
nested or overlapped.

Loops T1 and T2, with corresponding B1 and B2
branch addresses, are nested when the range of addresses

[T2,B2] is included into [T1,B1]. In this case, loop T2 is
the innermost, and all instructions in the execution of loop
T2 also belong to the execution of loop T1. Loops T1 and
T2 are overlapped when T2 > T1 and B2 > B1. In this
case, instructions in the first iteration of one of these loops
also belong to the execution of the other loop. Figure 2
shows some samples of loop executions and loop itera-
tions when two loops are either nested or overlapped.

2.2. Hardware mechanism for loop detection

In order to detect loop executions and loop iterations,
we introduce the Current Loop Stack (CLS). This stack is
devoted to contain all loops which are being currently exe-
cuted. The top of the stack corresponds to the innermost
loop, and the remaining loops are stored according to the
nesting order.

The elements in the CLS contain two fields (T,B). Field
T stores the target address of a loop (its identifier) and field
B stores the highest address of all branch or jump instruc-
tions executed so far to address T. The CLS is updated
when executing three kinds of instructions (branch, jump
and return) in the following manner (consider PC as their
instruction address).

Whenever a backward branch or jump instruction to
target T is executed, the CLS is searched. If there is not
any entry with target address T and the branch is taken, it
means that a new loop execution is started. In this case,

T1:

B1:

T2:

B2:

execution of loop T1
executions of loop T2

iterations of loop T1

iterations of loop T2

T1 T2instruction address T2 T2T2 B2B2 B1T1

T1:

B2:

T2:

B1:

Figure 2: Nested and overlapped loops: (a) Static view of two nested loops; (b)
Dynamic samples of loop executions and loop iterations of two nested loops; (c)
Static view of two overlapped loops; (d) Dynamic samples of loop executions and
loop iterations of two overlapped loops.
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loop (T,PC) is pushed onto the CLS. If the branch is not
taken, no action is performed. It means that a loop with
only one iteration has been executed. If loop T is found in
the entryi of the CLS and the branch is taken, an iteration
of loop T has finished and consequently, a new iteration of
the same loop execution is started. The CLS entries in the
range [top,i+1] are popped out (we assume that the top of
the stack corresponds to the highest address). If PC is
higher than the value of field B, this field is updated. If the
branch is not taken and the value of field B is lower than or
equal to PC, it means that both the iteration and the execu-
tion of loop T have finished. The CLS entries in the range
[top,i] are popped out.

Whenever the address of a jump or a taken branch
belongs to a loop in the CLS, it is checked whether the tar-
get address is outside the loop body. All loops that meet
this condition are removed from the CLS (i.e., it is consid-
ered that their executions have finished). Finally, for any
executed return instruction, all loops in the CLS whose
body comprise such instruction are also popped out.

In the most frequent case, when an iteration of a loop
finishes, the entry related to this loop is at the top of the
CLS. Note that the top of the CLS corresponds to the
innermost loop that is being executed. Nevertheless, there
are two situations that may cause an iteration of a loop that
is not located at the top of the CLS to finish. In these situa-
tions, all innermost loops are popped out (as described two
paragraphs above), and thus, their execution is finished.

The first situation occurs when a subroutine call in a
loop body never returns to this loop body (e.g., when the
setjmp() library call is used). If this loop is nested inside
another one, when an iteration of the outer finishes it
implies the termination of the inner one. It could also hap-
pen that no outer loop exists, and thus, the loop would
remain in the CLS at the end of the execution. Nonethe-
less, we have observed that the CLS is always empty at the
end of the entirely execution of the SPEC95, which means
that this event never happens for this benchmark suite. In
any case, such situation could be handled by periodically
flushing the contents of the CLS.

The second situation is caused by not differentiating the
instantiations of the same loop T produced in recursive
subroutine activations. For instance, given the following
structure of a recursive subroutine:

s() {
if () {

for () s(); /* loop T1 */
} else {

for () s(); /* loop T2 */
}

}

Suppose that initially loop T1 is being executed. The
recursive call tos()  causes a new activation of the sub-
routine and this time the else part is executed. Since call

instructions do not terminate a loop execution, T2 is con-
sidered to be nested into the previous T1 execution. Ifs()

is again activated from T2 and then T1 is executed, this
loop will be found in the CLS and it will be considered
that a new iteration of this loop begins. In this case, loop
T2 is popped out and is considered to be terminated. The
next iteration of T2 will be considered as a different exe-
cution. Notice that this is just one possible way to classify
loop iterations into loop executions in the presence of
recursive subroutines. Anyway, this event rarely happens
and thus, it has a very low influence on the final perfor-
mance.

Dynamic loop detection is based on identifying back-
ward control transfer instructions. This means that the first
iteration of a loop execution is not detected until it has fin-
ished. Thus, a loop is not considered until the second itera-
tion begins. In this way, figure 2 depicts the first iteration
of each loop execution in grey because it is not detected
with the proposed mechanism.

When the CLS is full and a new loop must be pushed
onto it, the deepest entry is lost. This policy tends to penal-
ize the outermost loops, which are the least common ones.
However, as it is shown in section 2.2.1, a few entries are
enough to guarantee no overflow for most programs.

2.2.1 SPEC95 loop statistics. The previous mechanism
to detect loops has been applied to obtain statistics of the
SPEC95 benchmark suite. The methodology to collect
these data (and the rest of data presented in the paper) is
the following. The benchmarks have been compiled using
the DEC Alpha compiler with the following options:-O5 -
tune ev5 -migrate -ifo (for C programs) and-O5 -tune ev5
(for Fortran programs). They have been instrumented with
the atom tool [10] and run using the reference input data,
except for thegcc, ijpeg and perl programs. For these
programs, a single file of the reference input data has been
used.

Table 1 shows the number of instructions (#instr/109),
the static number of loops (#loops), the average number of
loop iterations per loop execution (#iter/exec), the average
number of instructions per loop iteration (#instr/iter), the
average nesting level (avg. nl) and the maximum nesting
level (max. nl). These figures correspond to the whole exe-
cution of the programs.

2.3. Gathering loop information

The above presented CLS allows to detect the start and
the end of loop iterations and loop executions. Such infor-
mation can be used by a multithreaded processor to create
multiple threads of control, each one corresponding to a
different iteration of a loop. However, in general such a
control speculation approach will require additional infor-



mation about the loop iterations and the loop executions.
For instance, it can be useful to know the number of itera-
tions per execution, or the live-in register values of each
iteration. The former can be used to determine the number
of threads that are to be created whereas the latter can be
used to enforce data dependences among threads. In gen-
eral, two types of information are required: one at the level
of the loop iteration and the other at the level of the loop
execution. The particular information to be stored depends
on the concrete implementation. In this subsection, we
describe a general framework that is common for any
implementation.

The information previously mentioned is stored by
means of two tables (LET and LIT). The LET, which
stands for Loop Execution Table, stores information about
previous loop executions. The LIT, or Loop Iteration
Table, is used to characterize the iterations of a loop.

These tables are associatively searched, and every entry
is identified by the same identifier of loops, that is, the
loop target address T. Entries in both tables are inserted
when the execution of a loop starts. We consider a LRU
replacement policy. More concretely, the entry discarded
in LIT corresponds to the loop that has initiated a new iter-
ation least recently, while the entry discarded in LET cor-
responds to the loop that has initiated a new execution
least recently.

During the execution of the program, these tables are

#instr/

109
#loops #iter/

exec
#instr/

iter
avg.
nl

max.
nl

applu 53.02 189 3.50 261.08 5.16 7

Table 1: Loop statistics.

apsi 33.06 207 10.75 229.34 3.14 5

compress 61.05 45 6.27 84.65 2.52 4

fpppp 144.49 83 3.05 3217.80 6.66 9

gcc 1.93 1229 5.28 80.21 3.43 7

go 38.87 709 3.76 156.60 4.86 11

hydro2d 50.57 291 29.37 127.66 3.50 4

ijpeg 40.98 198 20.75 336.26 6.37 9

li 70.77 94 3.48 107.80 5.15 10

m88ksim 79.19 127 9.38 39.82 1.98 5

mgrid 102.81 142 28.93 512.68 4.93 6

perl 30.66 147 3.11 47.02 1.35 5

su2cor 40.23 213 51.23 257.17 3.50 5

swim 40.75 79 188.54 278.89 2.99 3

tomcatv 32.05 91 57.18 224.82 3.01 4

turb3d 96.27 152 4.11 239.44 3.97 6

vortex 94.98 220 12.08 215.56 3.06 6

wave5 35.69 195 56.15 164.25 3.12 5 accessed in order to know the behavior of a given loop. In
this case, entries in the tables are directly accessed through
pointers that are stored in the CLS stack. A NULL pointer
is used when the loop is not stored in the related table.

Figure 3 depicts the data structures used to dynamically
detect loops (CLS) and to gather information about them
(LET and LIT). Entries in the CLS contain the target and
branch addresses of a loop (fields T and B, respectively),
and the corresponding pointers to LIT and LET (fields
@LET and @LIT, respectively). Entries in the LIT and the
LET contain field T (target loop address) and field R (used
to implement the LRU replacement policy). The rest of the
fields in each table entry depend on the kind of informa-
tion that it is decided to gather from the loops for each par-
ticular multithreaded implementation.

Our ongoing work focuses on using the LET to predict
the number of iterations of each loop and to generate spec-
ulative threads accordingly. In order to implement a stride
predictor, each LET entry contains, in addition to the T
and R fields, the last iteration count and the difference
between the previous two counts. The LIT is used to store
information related to the live-in registers and memory
locations of the last iteration of the loop. For each live-in
register or memory location it stores the value at the
beginning of the last iteration and the last stride, so that
live-in values of future iterations can be predicted with a
stride predictor. Besides, for live-in memory locations it
stores the last effective address and the last stride so that
inter-thread memory operations can be speculated through
address prediction using a similar scheme as that proposed
in [4] for superscalar processors. In this way, threads cor-
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Figure 3: CLS, LET and LIT structures.



responding to different (maybe dependent) iterations can
proceed in parallel, without any synchronization if the pre-
dicted values are correct.

2.3.1 Performance. Depending on the particular
implementation, the contents of the LIT/LET are useful
after several iterations/executions. For instance, to predict
the number of iterations as the last number of iterations of
the same loop, only a previous execution is required. On
the other hand, if the prediction is based on a stride
predictor, two executions are required to compute a stride.
To evaluate the performance of the proposed scheme, we
consider that the contents of the LIT/LET are useful after
two iterations/executions.

The performance of this general mechanism to gather
information about the loops is measured through LET and
LIT hit ratios. The LET hit ratio measures, when a new
execution of a loop is started, whether two complete exe-
cutions of the same loop have been detected since it was
stored in the table. The LIT hit ratio measures, when a
loop iteration starts, whether two complete iterations have
been detected since it was stored in the table. This condi-
tion is not tested for the first iteration of all the executions
because the first iteration is not detected until it finishes.

Figure 4 shows the average LET and LIT hit ratios for
the whole SPEC95 benchmarks. The number of CLS
entries is 16, which is enough to store the maximum num-
ber of current loops (we have shown in table 1 that the
maximum nesting level is lower than 16). The number of
entries of the LIT and LET is 2, 4, 8 and 16. A trade-off
between the space needed for the tables and the hit ratio
could be to choose 4 entries for the LIT (90.50% hit ratio)
and 16 entries for the LET (91.98% hit ratio). If a large
quantity of information is stored in each table, a 2-entry
LIT and a 8-entry LET have also an acceptable perfor-
mance (85.00% and 72.44% hit ratios, respectively).

2.3.2 Additional issues. When a new loop is executed,
the proposed approach always inserts a new entry in both
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Figure 4: LET and LIT hit ratios.

tables for that loop. It may be convenient to disable the
recognition of some loops by introducing a new table
containing those potential loops that are not suitable for
speculation. This table should be associatively accessed
before inserting a new entry in the LET and the LIT. For
example, those loops with a poor prediction rate may be
good candidates to store in this table. In this way, a loop
with more reliable information is not eliminated.

Taking into account that it is preferable to store the
innermost loops in front of the outermost, we have consid-
ered an alternative replacement algorithm that inhibits the
insertion of a loop in the LIT and the LET when it implies
to eliminate a loop that is nested into it. This policy needs
to store for each loop, which other loops are nested into it.
It has been evaluated that the improvement on the hit ratio
is negligible with respect to the LRU algorithm. This is so
because when the nesting level of loops is not higher than
the number of entries of the LIT and LET, the behavior of
this policy is identical to LRU. We have shown that the
average nesting level of loops in the SPEC95 is not very
high. Thus, we have not considered any more this policy.

3. Control speculation in multithreaded pro-
cessors

In this section we show how to apply the previous
scheme to dynamically generate threads, obtained from a
single sequential program, for a general multithreaded
architecture.

We consider a multithreaded architectural model con-
sisting of several thread units (TUs) which are able, at
least, to fetch and decode instructions from different parts
(or threads) of the same sequential program. The rest of
the instruction stages may be performed by either a repli-
cated or a shared set of functional units. The TUs of a mul-
tithreaded architecture can be in a non-speculative,
speculative or idle state. Initially, there is one non-specula-
tive TU and the rest of them are idle. When thread control
speculation is performed, some idle TUs change to the
speculative state. All speculative TUs maintain the order
in which the associated threads must be executed inside
the sequential program. When a speculative TU reaches its
termination point, it waits until the non-speculative TU
confirms the control flow of the execution, that is, the
speculative thread becomes non-speculative.

A particular implementation of the multithreaded
model must define three additional issues regarding con-
trol speculation:

• When inter-thread control speculation can be per-
formed?

• Which are the threads to be speculated?

• When the verification of a speculation must be done?



For instance, the mechanism defined in [5] for the mul-
tiscalar processor define these 3 issues in the following
manner. Speculation can be done when a task is initiated.
Notice that the responsibility to arrange the code into tasks
relies on the compiler, unlike the approach proposed in
this paper. When a task begins, it is predicted the follow-
ing task based on the recent history. The verification of the
speculation is performed when the task that provoked the
speculation finishes. In the scheme proposed in this paper,
all these issues involving thread control speculation are
done entirely by hardware, based on loop detection.

We define the concept ofthread-level parallelism
(TLP) to refer to the parallel execution of threads. Thread-
level parallelism is measured through the average number
of active and correctly speculated threads per cycle (TPC).
The TPC is the main source of additional parallelism that
can be provided by the novel control speculation
approach. In addition to the TPC, the final amount of par-
allelism exploited by a particular implementation will
depend on the approach to deal with inter-thread depen-
dences and intra-thread parallelism.

The potential TLP that can be exploited if loops are
automatically detected is very high. Figure 5 presents the
TPC that a thread speculation mechanism based on loop
detection for an ideal machine with infinite TUs can pro-
vide. This mechanism speculates only when the non-spec-
ulative thread detects a loop execution. The management
of data dependences is an orthogonal issue with respect to
control speculation that will be considered in future work,
as outlined in section 2.3. For each program, the left bar
corresponds to the TPC when executing all instructions,
whereas the right bar reflects the execution of the first 109

instructions. It can be seen that most programs behave
approximately in the same way when executing only a
reduced part of it. In the rest of the paper, figures will only
refer to the reduced part of the program. It is important to
emphasize the potential large amount of parallelism that
can be exploited with the loop detection mechanism we
have presented in the previous section.

In the following subsections we propose a realistic
thread control speculation technique and analyze its
behavior.

3.1. Thread control speculation using dynamic
loop detection

The thread control speculation that we propose in this
paper answers the 3 issues described in the previous sec-
tion in the following manner.

3.1.1 When speculation is performed?. Whenever a
loop iteration starts in the non-speculative thread. Only the

non-speculative thread can create speculative threads.

3.1.2 Which threads are speculated?.The answer to
this question is the number of threads that are speculated
and their identification.

The speculated threads, if any, are always consecutive
iterations of the same loop that has initiated an iteration in
the non-speculative TU. Note that when an iteration of a
loop begins, that loop is the innermost, but it may become
non-innermost if other loops are detected before the itera-
tion of that loop finishes. To preserve the order among
threads, the identifier of the TU assigned to each specu-
lated thread is placed in the entry of the CLS associated to
the loop.

With respect to the number of speculated threads we
have considered 3 policies:

• IDLE. The number of speculated threads is equal to
the number of idle TUs existing in that moment.

• STR. The number of speculated threads is based on
the iteration count of the last execution plus the stride
between the last two executions. If the stride is reli-
able (a two-bit saturating counter is used), the num-
ber of speculated threads is the minimum between the
number of idle TUs and the number of predicted
remaining iterations of the current execution. If the
stride is not reliable but the number of iterations of
the last execution is known, it is used the same policy
but predicting that the iterations of the current execu-
tion will be the same as the last one. In case that nei-
ther the number of iterations nor the stride are
known, any idle TUs is allocated to a further iteration
of the same loop.

• STR(i). It is based on the last strategy but it adds a
parameteri, which corresponds to the maximum
number of non-speculated loops that can be nested
into a loop that is being speculated. If this limit is
exceeded, all speculative threads corresponding to
the outermost loop are squashed. In this way, idle
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TUs can be used to speculate in inner loops.

An important issue of any parallel execution is load
balancing. The proposed speculation approach allows for
simultaneous speculation on several loops. In this case, the
speculative threads are ordered from innermost to outer-
most (i.e., the non-speculative thread corresponds to an
iteration of the innermost loop; the following one corre-
sponds to the same loop or to an outer loop and so on).
Since usually innermost loops are smaller than outermost
ones, it will rarely happen that a thread is stalled at the end
waiting for the termination of a previous thread that corre-
sponds to an inner loop. Besides, we have measured that in
average about 85% of the iterations of a loop follow the
same control flow (see section 4). Thus, most of the itera-
tions will have the same amount of instructions and it will
rarely happen that a thread is stalled at the end waiting for
the termination of a previous one corresponding to the
same loop.

3.1.3 When verification is performed?. Verification is
performed by the non-speculative thread when it starts a
loop iteration or it finishes a loop execution.

When a loop iteration starts, it is checked if an iteration
of the same loop had been speculated. In this case, the

speculative thread associated to the first speculated itera-
tion becomes the new non-speculative thread and the TU
associated to the current non-speculative thread becomes
idle. The new non-speculative thread updates all global
data structures used for thread speculation (CLS, LIT and
LET).

When a loop execution finishes, all speculative threads
executing further non-existent iterations of the same loop
are squashed. This corresponds to a control misspecula-
tion.

3.2. Performance

The TPC (active and correctly speculated threads per
cycle) obtained with these speculation policies has been
computed for the execution of the first 109 instructions of
all the programs in the SPEC95.

Figure 6 shows the TPC for the STR speculation policy.
The number of TUs is 2, 4, 8 and 16. Data is shown for
every program of the SPEC95. Note that the achieved TPC
is considerable. For a small number of TUs, the proposed
control speculation approach keeps them busy most of the
time (the average TPC for 2 and 4 TUs is 1.65 and 2.6

Figure 6: TPC in the SPEC95 suite for 2, 4, 8 and 16 TUs using the STR policy.
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respectively). As the number of TUs increases, their utili-
zation decreases but it is still acceptable even for 16 TU.
In this case, the average TPC is 6.2 but several programs
achieve a TPC higher than 10. It is remarkable the high
efficiency of the mechanism fortomcatv andwave5. For
both programs, the maximum TPC is nearly achieved.

Moreover, figure 7 compares the different policies that
have been described: IDLE, STR and STR(i), fori ranging
from 1 to 3. The bars show the TPC averaged for all the
programs of the SPEC95. The STR policy behaves slightly
better than the IDLE policy. The STR(i) policy behaves
worse than STR, which is due to the higher number of cor-
rect speculations that are squashed. Notice that in addition,
both policies differ in the selection of loops that are specu-
lated. STR(i) favors the speculation of inner loops; the
lower i is, the more favored the inner loops are. In general,
inner loops have smaller granularity, which may be benefi-
cial when inter-thread data dependences are considered.
Although this issue is beyond the scope of this paper, we
consider the STR(i) policy, and concretely STR(3), to be
very attractive when data dependences are taken into
account.

Finally, table 2 shows some figures about the STR(3)
speculation algorithm when the number of TUs is 4. The
columns are the number of control speculations performed
(#spec.); the average number of speculated threads per
control speculation (#threads/spec.); the thread control
speculation hit ratio (hit ratio); the average number of
instructions since a thread is speculated until it is per-
formed its verification (#instr. to verif.); and the TPC.
Notice that the hit ratio is quite high for most programs,
which confirms the accuracy of the control speculation
approach.

Figure 7: TPC in the SPEC95 suite for 2,
4, 8 and 16 TUs using IDLE, STR, STR(1),
STR(2) and STR(3) policies.
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4. Preliminary data speculation statistics

The focus of this paper is the proposal of a control
speculation mechanism to generate threads from a sequen-
tial program. The management of inter-thread depen-
dences is an ongoing work that is outlined in section 2.3.
In this section, we present some preliminary statistics to
give a flavor of the potential of such approach.

We have first identified for each loop the different con-
trol flows that its iterations can take. The sequence of
instructions that make up an iteration with a particular
control flow is called a path. We have then evaluated that
the most frequent path of each loop accounts for 85% of
all the iterations in the SPEC95.

For these iterations, we have measured if the contents
of live-in registers and memory locations can be predicted
based on the value computed in the last iteration of the
loop plus its stride (that is, the difference between the last
two consecutive iterations). Figure 8 depicts the data we
have obtained. It contains the percentage of iterations cov-
ered by the most frequent path (same path); the percentage
of correctly predicted live-in registers (lr pred); the per-
centage of correctly predicted live-in memory locations
(lm pred); the percentage of iterations with all their live-in
registers correctly predicted (all lr ); the percentage of iter-
ations with all their live-in memory locations correctly
predicted (all lm); and the percentage of iterations with all

#spec. #threads/
spec.

hit ratio
(%)

#instr.
to verif

TPC

applu 218661 2.62 54.51 2316 2.21

Table 2: Control speculation statistics.

apsi 118637 2.91 90.48 2301 3.51

compress 2804450 2.69 100.00 91.94 3.23

fpppp 3417 1.67 86.92 191727 2.71

gcc 1206937 2.06 76.05 370 2.37

go 18427 2.09 71.17 69749 1.06

hydro2d 706635 2.99 99.43 433 2.52

ijpeg 150450 2.72 96.54 1608 2.36

li 1567433 1.71 69.16 353 1.75

m88ksim 1097194 2.77 97.32 292 2.78

mgrid 7900 2.80 97.50 36523 3.71

perl 3114338 2.33 60.34 35 1.17

su2cor 4906331 2.22 99.92 45 1.94

swim 61005 3.00 99.91 4455 3.48

tomcatv 111394 2.86 77.24 2363 3.85

turb3d 106237 2.99 99.18 2417 3.84

vortex 131024 2.12 90.25 2502 3.03

wave5 165950 2.60 99.95 1778 3.75



their live-in values correctly predicted (all data).
These figures have been obtained assuming that LIT

and LET tables have enough capacity to store all the loops
in the program. Notice the high potential of the mecha-
nism to predict the live-in values. Current work is focused
on developing a complete mechanism to execute sequen-
tial programs in the framework of a multithreaded archi-
tecture using the dynamic detection and speculation of
loops that has been proposed in the paper.

5. Conclusions

We have presented a technique oriented to the auto-
matic detection of loops and the dynamic computation of
information that characterizes them. We have applied this
mechanism to obtain speculative threads from a sequential
program. This source of parallelism can be exploited by an
architecture supporting multiple threads of control. The
proposed mechanism is hardware-based and does not
require any special feature in the ISA.

We have shown that the amount of thread-level paral-
lelism that can be obtained from loops is very high for an
unlimited resource machine. For a feasible configuration
with 2, 4, 8 and 16 contexts, the proposed mechanism
achieves a TPC (average number of active and correctly
speculated threads per cycle) of 1.65, 2.6, 4 and 6.2,
respectively.

Dealing with inter-thread data dependences is the fol-
low-up of this work. Preliminary results show that a high
percentage of the values that flow through such depen-
dences can be predicted and thus, their corresponding syn-
chronization can be avoided.
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Figure 8: Data speculation statistics.
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