URCS Tech. Rep. 699, Jan. 1999

Comparative Evaluation of Fine- and Coarse-Grain Approaches
for Software Distributed Shared Memoty

Sandhya Dwarkadas , Kourosh Gharachorloo? , Leonidas Kontothanassi$,
Daniel J. Scale$, Michael L. Scott' , and Robert Stets

!Dept. of Comp. Science *Western Research Lab *Cambridge Research Lab
University of Rochester Compaq Computer Corp. Compag Computer Corp.
Rochester, NY 14627 Palo Alto, CA 94301 Cambridge, MA 02139

1This work was supported in part by NSF grants CDA-9401142, CCB2446, and CCR-9705594; and an external
research grant from Digital/Compag.

mls
URCS Tech. Rep. 699, Jan. 1999

Abstract

Symmetric multiprocessors (SMPs) connected with lowrAegenetworks provide attractive building blocks for
software distributed shared memory systems. Two distippt@aches have been used: time-grainapproach
that instruments application loads and stores to suppomall £oherence granularity, and tleearse-grain
approach based on virtual memory hardware that providesrenbe at a page granularity. Fine-grain systems
offer a simple migration path for applications developedchardware multiprocessors by supporting coherence
protocols similar to those implemented in hardware. On tiherohand, coarse-grain systems can potentially
provide higher performance through more optimized prdtoend larger transfer granularities, while avoiding
instrumentation overheads. Numerous studies have exdraaeh approach individually, but major differences
in experimental platforms and applications make comparifdahe approaches difficult.

This paper presents a detailed comparison of two matureragsiShasta and Cashmere, representing the fine-
and coarse-grain approaches, respectively. Both systesrtsirzed to run on the same commercially available,
state-of-the-art cluster of AlphaServer SMPs connectadWemory Channel network. As expected, our results
show that Shasta provides robust performance for apmitatiuned for hardware multiprocessors, and can
better tolerate fine-grain synchronization. In contrasist@nere is highly sensitive to fine-grain synchronization,
but provides a performance edge for applications with @grain behavior. Interestingly, we found that the
performance gap between the systems can often be bridgeddmam modifications that address coherence and
synchronization granularity. In addition, our study rdgesbome unexpected results related to the interaction of
current compiler technology with application instrumeiata, and the ability of SMP-aware protocols to avoid
certain performance disadvantages of coarse-grain agpesa

1 Introduction

Clusters of symmetric multiprocessors (SMP) provide a pawelatform for executing parallel applications.
To ease the burden of programming such clusters, softwanébdited shared memory (S-DSM) systems support
the illusion of shared memory across the cluster via a softwan-time layer between the application and the
hardware. This approach can potentially provide a cosietife alternative to larger hardware shared memory
systems for executing certain classes of workloads.

Most S-DSM systems use virtual memory hardware to deteetsado data that is not available locally. Hence,
data is communicated and kept coherent at the coarse griaznaha page (e.g., 4-16KB). Early page-based
systems [14] suffered frorfalse sharingthat arises from fine-grain sharing of data within a page. eecent
page-based systems [2, 3, 10, 13] address this issue by ynplelaxed memory consistency models that
enable protocol optimizations such as delaying coherepegations to synchronization points and allowing
multiple processors to concurrently write to a page. Pagpeth systems may still experience overheads due to
frequent synchronization or sharing at a fine granularityrttiermore, the aggressive relaxed memory models
and the required use of predefined synchronization prigstlimit portability for certain applications developed
on hardware multiprocessors [17].

As an alternative, a few S-DSM systems [16, 19] have explsupghorting data sharing and coherence at a finer
granularity (e.g., 64-256 bytes). Fine-grain access ipaupd by instrumenting the application binary at loads
and stores to check if the shared data is available localigh Systems provide the highest degree of transparency
since they can correctly run all programs (or even binadesgloped for hardware multiprocessors by virtue of
supporting similar memory models [17]. In addition, thipeagach reduces false sharing and the transmission of
unnecessary data, both of which are potential problemsga-pased systems. Nevertheless, page-based systems
can potentially benefit from more optimized protocols anmgda transfer granularities, without incurring the
software checking overheads associated with fine-grateisys

The recent prevalence of low-cost SMP nodes has led to éatent software DSM designs for supporting
shared memory across SMP clusters. The key advantage af 88 nodes comes from supporting data
sharing within a node directly via the cache coherence hamelwand only invoking the software protocol for
sharing across nodes. Several studies have demonstrgidfitant gains from exploiting SMP-aware protocols
in both coarse-grain [7, 15, 21] and fine-grain [18] S-DSMeyss.

As described above, there are important trade-offs betwearse-grain, page-basexhdfine-grain,
instrumentation-base&-DSM systems, both in theerformanceand thegeneralityof the shared-memory pro-
gramming model. Even though there are a large number of papatr study each approach individually, a direct
comparison is difficult due to major differences in the ekpental platforms, applications, and problem sizes
used in the various studies. Furthermore, only a few stuatiesctually based on SMP-aware protocols.

This paper presents a detailed comparison of the fine- amdesgaain approaches based on the same hardware
platform and applications. We use two mature systems, &8} and Cashmere [21], both of which are highly
efficient and tuned to run on a state-of-the-art cluster gitBi AlphaServer multiprocessors connected through
the Memory Channel network [9]. We study a total of thirteppleations: eight SPLASH-2 applications [22]
that have been developed for hardware multiprocessorsandgplications that were developed for page-based
S-DSM systems. The first part of our study compares the pednce of theinmodifiedapplications on the two
systems. This part allows us to evaluate the portabilityppfiaations developed for hardware multiprocessors
and to measure the performance gap on applications dedefopgage-based systems. The second part of
the study analyzes the performance of the same applicaftersmodifications that improve their performance
on either system. To ensure a fair comparison, we underfuskstudy as a collaborative effort between the
Cashmere and Shasta groups.

Our study quantifies a number of expected trends. Shastédpsoxobust and often better performance for
applications written for hardware multiprocessors anceisdn able to tolerate fine-grain behavior. Cashmere is

highly sensitive to the presence of fine-grain synchroitmatout provides a performance edge for applications
with coarse-grain behavior. However, we found that thegrerénce gap between the systems can be bridged by
program modifications that take coherence granularity actmunt.

Our study also presents several unexpected results. Garestihg result is that Cashmere, due to its SMP-
aware implementation, shows very good performance onigeafgplications known to have a high degree of
write-write false sharing at the page level. The regulaadayout in these applications leads to page-aligned
data boundaries across nodes, thus confining the write-falte sharing to processes on the same SMP node
and avoiding the expected software overheads. Anotherestieg result is that fine-grain false sharing can
sometimes favor Cashmere relative to Shasta, due to Casrability to delay and aggregate coherence opera-
tions. Finally, the instrumentation overheads in Shastewere of a determining factor than we expected in a
few cases. This effect is partly due to continued improvamamthe Alpha compiler that lead to more efficient
code, thus increasing the relative overhead of instruntientaode in some cases.

The only relevant study that we are aware of is by Zhou et 8], [2hich also examines performance tradeoffs
between fine- and coarse-grain software coherence. Hoygexaral critical differences between the studies lead
to differing performance results and a number of novel olzgiems in our work. Section 5 contains a detailed
comparison of the two studies.

The remainder of this paper is organized as follows. Se&ipresents an overview of the two systems that we
compare in this paper. The experimental environment isritestin Section 3. Section 4 presents and analyzes
the results from our comparison. Finally, we present rdlaterk and conclude.

2 Overview of Cashmere and Shasta

This section presents a brief overview of Shasta and Caghraed also discusses some portability issues for
the two systems. More detailed descriptions of the systemse found in previous papers [13, 16, 17, 18, 21].
2.1 Shasta

Shasta is a fine-grain software DSM system that relies onerghecks to detect misses to shared data and
service them in software. Shasta divides the shared adsipase into ranges of memory calleldcks All data
within a block is always fetched and kept coherent as a uriiast inserts code in the application executable
at loads and stores to determine if the referenced block tkércorrect state and to invoke protocol code if
necessary. A unique aspect of the Shasta system is thaoitledite (i.e. coherence granularity) can be different
for different application data structures. To simplify tidine code, Shasta divides the blocks into fixed-size
ranges calledines (typically 64-256 bytes) and maintains state information dach line. Each inline check
requires about seven instructions. Shasta uses a numbptimizations to eliminate checks, reduce the cost of
checking loads, and to batch together checks for neightpdwards and stores [16]. Batching can reduce overhead
significantly (from a level of 60-70% to 20-30% overhead fense matrix codes) by avoiding repeated checks
to the same line.

Coherence is maintained using a directory-based invadidgtrotocol. Ahomeprocessor is associated with
each block and maintainsdirectoryfor that block, which contains a list of the processors aaglai copy of the
block. The Shasta protocol exploits the release consigteraciel [8] by implementing non-blocking stores and
allowing reads and writes to blocks in pending states.

When used in an SMP cluster, Shasta exploits the underlyandware to maintain coherence within each
node [18]. The SMP-aware protocol avoids race conditionshigining locks on individual blocks during pro-
tocol operations. However, such synchronization is notliisehe inline checking code, since it would greatly
increase the instrumentation overhead. Instead, theqmiotelectively sends explicit messages between proces-
sors on the same node for a few protocol operations that eantderace conditions involving the inline checks.
Because Shasta supports programs with races on shared ynlecations, the protocol must correctly handle
various corner cases that do not arise in protocols (suclasisrfiere’s) that only support race-free programs [17].

Messages from other processors are serviced through agaiiechanism in both Shasta and Cashmere
because of the high cost of handling messages via interrBpth protocols poll for messages whenever waiting
for a reply and on every loop back-edge. Polling is inexpangihree instructions) on our Memory Channel
cluster because the implementation arranges for a singleabée location that can be tested to determine if a
message has arrived.

2.2 Cashmere

Cashmere is a page-based software DSM system that has tegnedefor SMP clusters connected via a
remote-memory-write network such as the Memory Channe]. [2limplements a multiple-writer, release
consistent protocol and requires applications to adhetbeaata-race-free or properly-labeled programming
model [1]. Cashmere requires shared memory accesses totieetpd by high-level synchronization primitives
such as locks, barriers, or flags that are supported by thgmansystem. The consistency model implementation
lies in between those of TreadMarks [2] and Munin [3]. Indations in Cashmere are sent during a release and
take effect at the time of the next acquire, regardless othdndghey are causally related to the acquired lock.

Cashmere uses the broadcast capabilities of the Memorynéhaatwork to maintain a replicated directory of
sharing information for each page (i.e., each node mam@icomplete copy of the directory). Initially, shared
pages are mapped only on their associated home nodes. Aqdggdnerates a request for an up-to-date copy
of the page from the home node. A page fault triggered by eevadicess results in either the current writer
becoming the new home nodeofne node migratignor in the creation of a pristine copy of the pagetén).
Home node migration occurs if the current home node is ndtedgtmodifying the page. Otherwise, a twin is
created. Twins then are only created when multiple nodesareurrently modifying a page, or in other words
when a page is falsely shared between nodes. As the finalrstgnicing a write fault, the page is added to
a per-processadirty list (a list of all pages modified by a processor since the lasasele As an optimization,
Cashmere moves the page imxclusivemode if there are no other sharers, and avoids adding thetpabe
dirty list.

At a release, each page in the dirty list is compared towis, and the differences are flushed to the home
node. After flushing the differences, the releaser send® wgtifications to the sharers of each dirty page, as
indicated by the page’s directory entry. Finally the reégadowngrades write permissions for the dirty pages
and clears the list. At a subsequent acquire, a processaidates all pages for which notifications have been
received, and which have not already been updated by anuthezssor on the node.

The protocol exploits hardware coherence to maintain stersty within each SMP node. All processors
in the node share the same physical frame for a shared dagagpaighence see all local modifications to the
page immediately. The protocol is also designed to avoigtteymization within a node whenever possible.
For instance the protocol avoids the need for TLB shootdowrincoming page updates by comparing the
incoming page to the twin if one exists, thereby detectind @pplying only the modifications made by remote
nodes. This allows concurrent modifications to the page bgrgtrocesses within the node without the need for
synchronization. The correctness of this approach depamtise assumption that programs are race-free.

2.3 Portability Issues

This section briefly discusses differences between Shast&€ashmere with respect to two important porta-
bility issues: (a) the portability of applications to eadft&are system, and (b) the portability of the underlying
software system to different hardware platforms.

Application Portability. One of the key goals in the Shasta design is to support tregrsipaxecution of applica-
tions (or binaries) developed for hardware multiproces$§br]. Shasta achieves this transparency by supporting
memory consistency models that are similar to hardwaresystOn the other hand, Cashmere (like virtually all
other page-based systems) opts for a departure from thedasthhardware shared-memory programming model
in order to achieve better performance. By requiring theaigeedefined high-level synchronization primitives
to eliminate shared-memory races and using aggressiveeteiaemory models, Cashmere can exploit numerous

protocol optimizations that are especially important fage-based systems. However, this approach may require
extra programming effort to achieve a correct and efficiemt pf applications that depend on the more general
hardware shared-memory programming model.

System Portability. The Cashmere protocol makes heavy use of Memory Channetésatncluding broadcast-
ing and guarantees on global message ordering. For exaonpéalcasting is used to propagate directory changes
to all nodes. In addition, during a release operation, tlegssor sending write notifications does not wait for
acknowledgements before releasing the lock. Rather,i@sren global ordering of messages to guarantee that
causally related invalidations are seen by other procedseiiore any later acquire operation. It is difficult to
estimate the performance impact if the protocol were changesliminate reliance on broadcasting and total
ordering, since the protocol design assumed these netvaqébdities. In contrast, Shasta was designed for a
network that simply offers fast user-level message pasaihis therefore more portable to different network
architectures.

On the other hand, Shasta is tuned for the Alpha processoreguies detailed knowledge of both the com-
piler and the underlying processor architecture for efficiestrumentation. It is again hard to estimate the
performance impact of moving the system to a significantffedint processor architecture (e.g., Intel x86)
where potentially a large variety of instructions can asagasmory.

3 Experimental Methodology

This section describes our prototype SMP cluster and thkcatipns used in our study.
3.1 Prototype SMP Cluster

Our SMP cluster consists of four DEC Alpha Server 4100 midtipssors connected by a Memory Channel
network. Each AlphaServer 4100 has four 400MHz 21164 pemresvith 512MBytes of shared local memory.
Each processor has 8K on-chip instruction and data cacl& an-chip second-level cache (3-way set asso-
ciative), and a 4MByte board-level cache (direct-mappeti 64-byte lines). The individual processors are rated
at 12.1 Specint95 and 17.2 SpecFP95, and the system bus aadwidith of 1 Gbyte/s.

The Memory Channel is a memory-mapped network that allowseeggs to transmit data to a remote process
without any operating system overhead via a simple storaria@ped page [9]. The one-way latency from user
process to user process over Memory Channel is about 3.5gemonds, and each network link can support a
bandwidth of 70 MBytes/sec (with an aggregate bandwidttOOMBYytes/sec). For Shasta, the roundtrip latency
to fetch a 64-byte block from a remote node (two hops) via tlemdry Channel is 18 microseconds, and the
effective bandwidth for large blocks is about 35 MBytes/er Eashmere, the roundtrip latency for fetching an
8K page is less than 600 microseconds.

3.2 Applications

We present results for thirteen applications. The firstteagh taken from the Splash-2 [22] suite and have been
tuned for hardware shared memory multiprocessors. FivasBf applications are not used: four (Cholesky,
FFT, Radiosity, Radix) do not perform well on S-DSM and on&IiF) has not been modified to run under
Cashmere (but gets good speedup on Shasta).

Barnes-Hut: an N-body simulation using the hierarchical Barnes-Huthoét The computation has two distinct
phases. The first phase builds a shared octree data strbetsgd on the relative positions of the bodies.
The second phase computes forces between bodies and utigatetative locations of bodies based on
the force calculation. This application requires an exaig lynchronization in the parallel tree-building
phase to work correctly (i.e., to make it race-free) undeshizere (discussed in next section).

Lu: a kernel that finds a factorization for a given matrix. The nras divided into square blocks that are
distributed among processors in a round-robin fashion.

LEMM is not “race-free” and requires additional synchrotimato work correctly under Cashmere.

Contiguous Lu: another kernel that is computationally identical to Lu, allmcates each block contiguously in
memory.

Ocean: an application that studies large-scale ocean movemestdlban eddy and boundary currents. The
application partitions the ocean grid into square-likegsids (tiles) to improve the communication to
computation ratio (on a hardware DSM).

Raytrace: a program that renders a three-dimensional scene usinga@ipd. The image plane is partitioned
among processors in contiguous blocks of pixels, and lo&hbimg is achieved by using distributed task
gqueues with task stealing.

Volrend: an application that renders a three-dimensional volunmgusray casting technique. The partitioning
of work and the load balancing method are similar to thoseayftface.

Water-nsquared: a fluid flow simulation. The shared array of molecule strugduis divided into equal con-
tiguous chunks, with each chunk assigned to a differentgasmr. The bulk of the interprocessor commu-
nication occurs during a phase that updates intermolefolees using per-molecule locks, resulting in a
migratory sharing pattern.

Water-spatial: a fluid flow simulation that solves the same problem as Watquared. It imposes a uniform 3-
D grid of cells on the problem domain and uses a linear algorithat is more efficient for a large number
of molecules. Processors that own a cell need only look ghbeiring cells to find molecules that might
be within the cutoff radius of molecules in the owned box. T@/ement of molecules in and out of cells
causes cell lists to be updated, resulting in additionalroanication.

The remaining five applications we use are programs that keee tuned and studied in the context of soft-
ware DSM systems in the past and have been shown to have gdodhpence on such systems [13, 21].

Em3d: a program that simulates electromagnetic wave propagé#timugh 3D objects [4]. The major data
structure is an array that contains the set of magnetic seariel nodes. Nodes are distributed among
processors in a blocked fashion.

llink: a genetic linkage analysis program from the FASTLINK 2.3Ekage that locates disease genes on chro-
mosomes [5]. The main shared data is a pool of sparse arrayenotype probabilities. Load balancing
is achieved by assigning non-zero elements to process@gsadnnd-robin fashion. The computation is
master-slave, with one-to-all and all-to-one data comiation. Scalability is limited by an inherent
serial component and inherent load imbalance.

Gauss: a kernel that solves a system of linear equatigh = B using Gaussian Elimination and back-
substitution. For load balance, the rows are distributedramprocessors cyclically.

SOR: a kernel that uses Red-Black Successive Over-Relaxatiogofeing partial differential equations. The
red and black arrays are divided into roughly equal size arfdows, with each band assigned to a
different processor. Communication occurs across thedaigs between bands.

TSP: a branch-and-bound solution to the traveling salesmangmothat uses a work-queue based paralleliza-
tion strategy. The algorithm is non-deterministic in thessethat the earlier some processor stumbles upon
the shortest path, the more quickly other parts of the sespabe can be pruned. The bound variable is read
without any synchronization (i.e., it is not race-free)t the algorithm still works correctly on Cashmere.

| Program || Smaller Problem (Data Set) SizeTime (sec.)|| Larger Problem (Data set) SiZeTime (sec.)|

Barnes-Hut 32K bodies (39M) 15.30 131K bodies (153M) 74.69
LU 1024x1024, block: 16 (8M 14.21| 2048x2048, block: 32 (33M 74.57
CLU 1024x1024, block: 16 (8M 6.74 2048x2048, block: 32 (33M 44.40
Ocean 514x514 (64M) 7.33 1026x1026 (242M) 37.05
Raytrace balls4 (102M) 44.89 — —
Volrend head (23M) 3.81 — —
Water-nsq 4K mols., 2 steps (3M 94.20 8K mols., 2 steps (5M 362.74
Water-sp 4K mols., 2 steps (3M 10.94 8K mols, 2 steps (5M 21.12
Em3d 64000 nodes (52M 47.61 192000 nodes (157M 158.43
Gauss 1700x1700 (23M) 99.94 2048x2048 (33M) 245.06
llink CLP (15M) 238.05 — —
Sor 3070x2047 (50M) 21.13 3070x3070 (100M) 28.80
TSP 17 cities (IM)| 1580.10 — —

Table 1: Problem and data set sizes and sequential exetintierof applications.

4 Results

This section provides an in-depth comparison and analygstsegperformance of Shasta and Cashmere. We
begin by presenting our overall results for the unmodifigaliagtions, followed by a detailed analysis. We next
consider minor application and system configuration maatificis that improve performance on either Shasta or
Cashmere.

4.1 Base Results for Unmodified Applications

Table 1 presents the sequential execution time (withouirsatyumentation or runtime library overhead), data
set size, and memory usage for each application. Wheregsiljp®, we use two dataset sizes — one relatively
small, the other larger. This allows us to study performassesitivity to the size and alignment of data structures
relative to the coherence block size. For Shasta, the msintation overhead (not shown) increases the single-
processor execution time from 9% to 55%, with an averageheast of 27% across all applications and data
set sizes. The relative importance of this checking ovetltesreases in parallel executions due to the typical
increase in communication and synchronization overheads.

Figures 1 and 2 present the speedups on the two systems tsingase configurations for the thirteen
applications on 8 and 16 processors (two and four SMP nod#sweith four processors), for the smaller and
larger data sets, respectively. The base configurations argea uniform block size of 256 bytes for Shasta,
and a block size of 8192 bytes (the underlying page size) &sh@ere. The applications were run without any
modifications (except for Barnes, as explained in the nestt@®, and are built with the native C compiler (-O2
optimization level). Application processes are pinnedrtacpssors at startup. Execution times are based on the
best of three runs, and speedups are calculated with resptet times of the sequential application without
instrumentation or protocol overhead.

Overall, the results in Figures 1 and 2 show that Shastagesvinore robust and better performance on average
for the eight Splash-2 applications (which have been deeeldor hardware multiprocessors). Nonetheless,
Cashmere provides comparable or better performance onsbiime Splash-2 applications, and performs much
better than expected on a few applications that are knowxhibi¢ a high degree of fine-grain sharing (e.g., LU,
OCEAN). In addition, Cashmere provides superior perforcedor the other five applications, which have been
developed for page-based systems. The next section psoaidetailed analysis of these results.

"(papn[oul 10U UIj| pUe ‘dS1 ‘pual|oA ‘aoenfeRgpsnid 9T pue g e 19s erep Jabire| ayl Joj sdnpaads :z ainbi4

eiseqs 5§

Speedup
= B B B B =
N » o N » o [o2] o N EN (¢)]
Barnes: 8 Barnes:
LU: 8 LU:
16
CLU: 8 oLU:
16 ("5" '
Ocean: 8 C T
-~
16 ® Ocean:
n 16
%’ Raytrace: 8
0]
D 16
o
% Volrend: 8
Water-NSQ: 8 #eeiew 7] 16
16] o .
Water-SP; 8 ; Water-NSQ-8
16 o} 16
g Water-SP: 8 i
D 16
D)
-
& Emd 8
Em3d: 8) 16
16 3
Causs & @ Gauss: 8 3
auss: 2 16 .
16 o o J (00] .
) llink: 8 M
5 T
o 16 emisey 9
Sor: 8 5 5> SOR 8 Ml
16 'g 16 .
2 TSP 8 ey |
0w 7 16 0
b o &
> (A =y
39 3
[0} 0]
) @

250 400 1362

[] Protocol Other
essage

H stal

£} synchronization
N Task

350

200

]

300

150 250

200
100

150

50 100 |;

Normalized Execution Time (%)

Normalized Execution Time (%)

50

=525z %5z5 =T=T=Z=T

0 0 (2] (2] [2] (2]

O 8 8 O 8} 8} 8} 8} r = T = LT = T = I =
= = (72 T T, BT B 7, BT B 7)1 [0}
o a [§) o o o o

5 2 2 4 8 g 3

5 = < I 3 A % .. c g g 5 7

4 o I3} g IS 2 S 5 T o £, L &
< Ll = o 5} o
= o @ 6 & s

Figure 3: Application execution time breakdown on the seralata set for 16-processor runs.

4.2 Detailed Analysis of Base Results

This section presents a detailed comparison and analysisegierformance of the various applications on
Shasta and Cashmere. To better understand the reasonsftomamce differences, we discuss the applications
in groups based on their spatidhta access granularitand temporakynchronization granularitysimilar to
notions used by Zhou et al. [23]). Applications with coagsain data access tend to work on contiguous regions
at a time, while fine-grain applications are likely to do se@d reads or writes. The temporal synchronization
granularity is related to the frequency of synchronizafio@an application on a given platform. An application
has fine-grain synchronization if the average computaiioie between consecutive synchronization events is
not much larger than the cost of the synchronization eveetsiselves.

Throughout this section, we will be referring to Figures 8l @ These figures provide a breakdown of the
execution time for Shasta and Cashmere (labeled as SH and @Spéctively) for each of the applications at
16 processors on the base and the larger data set, respyedixecution time is normalized to that of the fastest
system on each application and is split into Task, Synchatioin, Data Stall, Messaging, and Protocol time.
Tasktime includes the application’s compute time, the cost diinm and the cost of instrumentation in Shasta
or page faults in Cashmere&ynchronizatiortime is the time spent waiting on locks, flags, or barriebata
Stalltime measures the cumulative time spent handling coherigses Messagingime covers the time spent
handling messages when the processor is not already stélladlly, Protocol time represents the remaining
overhead introduced by the protocol.

Table 2 provides more detailed execution statistics onvtloesystems. The number of lock and flag acquires,
the number of barrier operations, the number of messagasding data, synchronization, and protocol) and the
amount of the message traffic (including application andgual) are reported for both protocols. For Shasta,
the number of read and write misses and the number of upggtatmns (when block is upgraded from shared

to exclusive state) are also included. For Cashmere, thdeuaoi read and write page faults and the number of
twins are reported.

2Some applications that are classified as exhibiting cogwaie-synchronization in Zhou et al.’s study [23] exhibigfigrain behavior
in our study due to the faster processors of our platform.

200

180 400
l:l Protocol Other
essage

H stal
Synchronization
8N Task

160 350

140
300

120 I |

' 250
100 |g==

80 200

60 150

40
100

Normalized Execution Time (%)

20

Normalized Execution Time (%)

50

SH #

=TT =TI = IIL= I =TI =TI =
N N m 2R %) n Lo n (%] (o]
o O o O (&) © © = = = =
.. n n
g S & % g 3 3
S = o it 2] 2 7
o = o 2 3 = £ 2 =
| [<5} < %]] L £ <
g = g g
= o

Figure 4: Application execution time breakdown on the lamdata set (Raytrace, Volrend, TSP, and Ilink not
included) at 16 processors.

4.2.1 Coarse-Grain Access and Synchronization

The applications in this group are CLU, Em3d, Gauss, SOR, aigPWater-nsquared. Overall, Cashmere is ex-
pected to perform better on these applications given these@mmunication and synchronization granularities.

CLU uses a tiled data partitioning strategy with each tiléhefmatrix allocated as a contiguous chunk. Cash-
mere performs 1.7 times better on average than Shasta for. Obt4 is propagated more efficiently under
Cashmere given its large communication granularity. Asvshim Figures 3 and 4, the Cashmere data stall time
component is roughly half that of Shasta. The figure also shWigher “Task” time under Shasta because of
Shasta’s checking overhead (as high as 50% for a unipracegsoution). Section 4.3 presents further results
under Shasta with variable granularity and different cdengiags to address the communication granularity and
checking overhead issues.

Em3d exhibits nearest-neighbor sharing, though the corzation is determined at run-time based on indi-
rection arrays. Cashmere performs two times better thast&lom Em3d. Because of the coarse granularity of
communication in this application, Shasta requires temgimore messages to fetch all the data (see Table 2).
As we will see in Section 4.3, Shasta’s variable granuldggture can be used to close this performance gap.

Gauss uses a cyclic distribution of matrix rows among premes Cashmere performs 1.7 and 1.4 times better
than Shasta for the larger dataset, and 1.5 and 1.4 times fettthe smaller dataset, at 8 and 16 processors
respectively. Because the matrix is triangularized, fealements are modified in each succeeding row, and
Cashmere’s large granularity causes communication ofagssary data. For the 1700x1700 dataset, there is
also write-write false sharing, since a row is not a multipi¢he page size. However, the effects of false sharing
are not as large as one might expect due to the SMP-awarepkoto effect, the distribution of work becomes
block-cyclic, with false sharing only on the edges of eaaltkl For the 2048x2048 dataset, the effect of false
sharing is eliminated since each row is a multiple of a page. sAs can be seen in Table 2, Cashmere sends
almost twice as much data as Shasta. However, Shasta'sinyesierheads (“Task” times in Figures 3 and 4)
and larger message count (more than double) lead to the tele¢ive performance of Shasta.

In SOR, each processor operates on a block of contiguousamavimfrequently communicates with its nearest

neighbors. The determining factor is the checking overhie&hasta (as shown by the higher “Task” times in
Figures 3 and 4). Relative to Shasta, Cashmere perform$t®s on average.

TSP has a very coarse work granularity, so communicatiorheeels in either system are largely unimportant
(see execution breakdowns in Figures 3 and 4). However, tive eager protocol in Shasta can lead to faster
propagation of the bound value. This can in turn lead to a reffieient search (given the non-deterministic
nature of the branch-and-bound algorithm). Shasta pedg@approximately 1.15 times better than Cashmere on
TSP.

Water-nsquared partitions work such that processors modiitiguous regions of memory. Any false sharing
is only at the boundaries of these regions. In addition,ethierconsiderable node locality in the data access;
at least half the lock acquires access data that was lasffietavithin the same SMP node and is therefore
fetched via the node’s hardware protocol. Hence, the oaeihef false sharing are small in Cashmere. Shasta’s
performance is primarily affected by the extra checkingrbgad, and Cashmere performs 1.2 times better than
Shasta on average.

Overall, the coarse-grain communication and low frequesfcgynchronization favors Cashmere in these
applications. Furthermore, for Gauss and Water-nsqudhedeffect of false sharing on the performance of
Cashmere is dramatically reduced by the use of SMP-awateqails, since the false sharing largely occurs
among processors on the same node. The relative perforno&r8ieasta is often determined by the checking
overhead and in some cases by its smaller data transferlgrianu

4.2.2 Fine-Grain Access with Coarse-Grain Synchronizatio

The applications in this group are llink, LU, Ocean, and Wapatial. As we will discuss below, the use of SMP
nodes with SMP-aware protocols leads to some surprisingtseer Cashmere.

llink computes on sparse arrays of probabilities and usesd-wobin work allocation. The sparse data struc-
ture causes Cashmere to communicate extra data on pageavhdieen modified (since whole pages are com-
municated on a miss). Shasta’s performance on llink is tffbloy three factors: the checking overhead, the small
communication granularity, and the use of an eager pratadu instrumentation overhead (as high as 60% on
a uniprocessor) is due to the compiler being unable to véngycommonality of certain high-frequency double
indirection operations, and Shasta therefore being urtalidatch them effectively. Because the work allocation
is round-robin on a per-element basis, there is also mush fddaring despite the small block size used by Shasta.
Shasta eagerly invalidates all copies of a block whenewepaotessor writes to the block and generates 10 times
more protocol messages than Cashmere, which delays iatrahid until synchronization points. These effects
outweigh the overheads for Cashmere, and Cashmere perfosrtimes better than Shasta.

LU uses a tiled partitioning strategy. However, unlike Clthe matrix is allocated as a single object. Hence,
each tile consists of small nhon-contiguous regions of mgnoor multiple pages. The small read granularity
causes a large amount of extra data to be communicated uadéntére. In addition, the data layout leads to
a large amount of false sharing at the page level. Howeves RD scatter distribution leads to an assignment
of tiles to processors that confines all false sharing toiwiélach 4-processor SMP node, so all false sharing is
handled in hardware. (As Table 2 shows, no twin operatioapearformed despite the known false sharing.) The
above effect, along with the checking overheads in ShalitaysaCashmere to perform better than Shasta by a
factor of 1.2 and 1.3 times at 8 and 16 processors respsctivel

Ocean also uses tiled data partitioning. For the two data€stshmere performs 1.10 and 1.11 times better
than Shasta at 8 processors, while Shasta is 2.25 and 1.63 Itietter at 16 processors. The communication is
nearest-neighbor in both the column and row direction. ldendile the tiled partitioning reduces true sharing,
it increases the amount of unnecessary data communicated avfarge coherence unit is used. For example,
Cashmere incurs 7 to 8 times more data traffic compared ta&abthe smaller dataset size (see Table 2). The
extra communication generated due to false sharing in Caghfmcurred on every boundary) increases with

10

the number of processors, which explains Cashmere’s loglative performance at 16 processors. As in LU,
the effect of false sharing in Cashmere is greatly reducedus® a large portion of the false sharing is confined
to individual nodes. Furthermore, both Shasta and Cashbserefit significantly from the large portion of true
sharing communication that is confined to each SMP node [1J8, 2

For Water-spatial, Cashmere performs 1.2 times better 8fasta on average, with Shasta’s performance
being comparable to Cashmere’s at the smaller dataset sikd & processors. In this version of the fluid-
flow simulation program (compared to Water-nsquared), otmi 3-D grid of cells is imposed on the problem
domain. Processors own certain cells and only access tlliseand their neighbors. Molecules can move
between cells during the simulation, creating a loss ofliggaut this effect is small in both Cashmere and
Shasta. As with Water-nsquared, the performance differéetween the two systems can be attributed to the
checking overhead in Shasta (as can be seen by the diffaretitask” time in Figures 3 and 4).

Overall, the performance of Shasta and Cashmere is conipdmatihe above set of applications. This is
surprising for programs such as LU and Ocean, which exhibiuent false sharing at the page-level. However,
much or all of this false sharing turns out to occur betweeatgssors on the same SMP node (due to task
allocation policy or nearest neighbor communication bagand is handled efficiently by the SMP-aware
protocol. In addition, the low frequency of synchronizatialong with the lazy protocol employed by the page-
based system, allows Cashmere to tolerate any false sHzetmgeen nodes. At the same time, Shasta’s eager
protocol causes extra communication in applications (ssdiink) that exhibit false sharing even at small block
sizes.

4.2.3 Fine-Grain Access and Synchronization

The applications in this group are Barnes-Hut, Raytracd \@frend. As we will see, the combination of fine-
grain data access and synchronization leads to excess atioation and false sharing in page-based systems.

The main data structure in Barnes is a tree of nodes, eachawgitte of 96 bytes, so there is significant false
sharing in Cashmere runs. (Note the large humber of twinsrtegh in Table 2.) Furthermore, this application
relies on processor consistency in the parallel tree-imgjighase. Hence, while this application can run correctly
on Shasta (which can enforce this form of consistency), gtrbe modified for Cashmere by inserting an extra
flag synchronization in the parallel tree-building phaskee Pperformance presented is for the unmodified Barnes
program under Shasta, and with the additional flag synchation under Cashmere. Shasta performs 2 and 3.5
times better than Cashmere at 8 and 16 processors, reghecliie main reason for this difference is the parallel
tree building phase. This phase constitutes 2% of the séiglierecution time, but slows down by a factor of 24
under Cashmere because of the fine-grain access, excedswsliaring, and extra synchronization. Shasta also
suffers a slowdown in this phase, but only by a factor of 2.

Raytrace shows an even more dramatic difference betweqretfemance of Shasta and Cashmere. Shasta
performs 7 and 12.5 times better than Cashmere (which &ched a large slowdown) at 8 and 16 processors,
respectively. This result is surprising, since there telitcommunication in the main computational loop that
accesses the image plane and ray data structures. Thenpanfme difference can be primarily attributed to a
single critical section used to increment a global coumesrder to identify each ray uniquely. It turns out the
ray identifiers are used only for debugging and could eaglglbminated (see Section 4.3.2). Their presence,
however, illustrates the sensitivity of Cashmere to syoclzation and data access granularity. Although only
a single word is modified within the critical section, an emfpage must be moved back and forth among the
processors. Shasta’s performance is insensitive to thehsymization, and is more in line with the behavior of a
hardware DSM platform.

Volrend partitions its image plane into small tiles that stitate a unit of work, and relies on task stealing via
a central queue to provide load balance. Shasta performsn®S better than Cashmere for this application.
Figure 3 shows that data wait and synchronization time atcfawn 60% of the Cashmere execution time, but

11

14

12

10

Speedup

R g
S

AR

R
SO

e
e

oL
&

T

[
5

r = I = r = O r = O r = = r = O = r = O r = O
w0 Dy w o > w > w v w un =>uv w un > w un =
OB O O O .. OO OO O T O T
<] = 2 .. = < 1< S 1< = 32
£ g = = 3 S =, = £ = 2 =
g 2 3 3 5 & 2 ¢ S & =
D =% b7 @D
<5 S 5] 5]
o 9 o o

Figure 5: Speedups for the optimized applications at 16gasms. Measurements are taken for the larger data
set, except where not possible (Raytrace, Volrend, ankl)llin

only about 35% of Shasta’s execution. This difference tedubm the high degree of page-level false sharing
present in the application’s task queue and image data. Asudt of the false sharing, Cashmere communicates
over 10MB of data, as opposed to only 2MB in Shasta. The highwunt of data communication in Cashmere
leads to more load imbalance among the processes, theigbgring more task stealing that compounds the
communication costs.

Overall, applications in this category exhibit by far thegksst performance gap between the two systems, with
Cashmere suffering considerably due to the frequent sgnctation and communication.
4.3 Performance Improvements through Program Modificatiors

The performance results presented in the previous sectoa for unmodified programs (except to eliminate
a race in Barnes for Cashmere) that were taken from eithdratdwvare or software shared memory domain. In
most cases, better performance can be achieved by taikbiergpplication to the latencies and granularity of the
underlying software system. In this section, we presenptréormance of some of the applications that have
been modified for either Shasta or Cashmere.

Figure 5 presents the speedups for the modified applicationg with the unmodified results for 16 processor

runs. The large dataset size is used where possible. Tresponding execution time breakdowns are shown in
Figure 6.

4.3.1 Modifications for Shasta

The modifications we consider for Shasta are guaranteed radtetr program correctness, and can therefore be
applied safely without a deep understanding of the appdicatThis is consistent with Shasta’s philosophy of
transparency and simple portability. The three types ohgha we use are variable granularity hints [16], the
addition of padding in data structures, and the use of canpjbtions to reduce instrumentation overhead.

For variable granularity hints, we use a special shared-ongmllocator provided by Shasta that allows one
to specify the block size for the corresponding region of mgmBY allocating certain regions in this manner,
the application can cause data to be fetched in large unitenjoortant data structures that are accessed in a
coarse-grain manner or are mostly-read. Table 3 lists thicagions that benefit from using variable granularity,

12

| Application | Barnes (sm/lg) | LU(sm/lg) | CLU (sm/lg) || Ocean (sm/lg)]

Shasta Lock/Flag Acquires (K) 68.7| 274.8 0 0 0 0 1.2 0.8
Barriers 9 9 129 | 129 129 129 328 248
Read Misses (K) 128.9| 477.0|| 50.6| 199.4| 49.8| 199.2|| 28.2| 37.9
Write Misses (K) 51.7| 210.0|| 24.6| 98.3 0 0 0 0
Upgrades (K) 112.1| 419.1 0 0 24.6 98.3| 26.9| 37.3
Data Fetches (K) 180.3| 686.7| 75.2| 297.7| 49.8| 199.2)| 27.9| 37.7
Messages (K) 985.6| 3564.4|| 217.6| 797.0| 178.8| 699.6| 129.4| 164.7
Message Traffic (Mbytes) 77.7| 289.8| 26.2| 101.7| 185 73.4| 11.3| 14.9
Cashmere | Lock/Flag Acquires (K) 413.3| 1836.3 0 0 0 0 1.2 0.8
Barriers 9 9 129 129 129 129 328 248
Read Faults (K) 71.3| 253.3|| 18.5| 56.0 3.7 121 16.0| 14.3
Write Faults (K) 112.0| 462.9 56| 25.0 1.8 69| 11.0| 10.8
Twins (K) 104 39.1 0 0 0 0 0 0
Page Transfers (K) 51.0| 184.4 6.6| 17.6 2.0 6.2|| 10.2 9.3
Messages (K) 1185.6| 4910.4|| 54.2| 159.1| 24.1| 56.5| 112.0| 76.5
Message Traffic (Mbytes) 425.0| 1553| 54.6| 145.1| 16.4 51.2| 84.3| 76.9
Application Raytrace || Volrend || Water-NSQ (sm/lg) || Water-SP (sm/lg) |
Shasta Lock/Flag Acquires (K) 119.9 9.2 | 739 144.2 0.2 0.2
Barriers 1 3 12 12 12 12
Read Misses (K) 68.2 4.8 | 121.2 285.2| 36.2 52.9
Write Misses (K) 51.3 1.1 8.1 14.4 0 0
Upgrades (K) 0.2 20| 426 98.5| 15.9 26.4
Data Fetches (K) 93.2 51\ 77.7 172.8| 34.4 52.0
Messages (K) 428.8 24.4 | 556.0 1201.1| 165.0 254.8
Message Traffic (Mbytes 37.6 2.1\ 37.7 82.7| 14.1 215
Cashmere | Lock/Flag Acquires (K) 120.9 9.2 | 73.9 144.1 0.2 0.3
Barriers 1 3 12 12 12 12
Read Faults (K) 134.1 1.7 141 26.6 6.0 8.6
Write Faults (K) 143.0 7.7| 50.1 123.6 3.5 4.8
Twins (K) 5.8 55 5.6 29 0.3 0.3
Page Transfers (K) 124.2 1.2 5.9 11.8 1.8 1.8
Messages (K) 1659.0 46.8 | 345.0 845.1| 21.6 28.7
Message Traffic (Mbytes 1027.3 10.4| 51.2 102.3| 14.6 24.2
Application Em3d (sm/lg) | Gauss (sm/lg)[| llink || Sor(sm/lg) | TSP |
Shasta Lock/Flag Acquires (K) 0 0 575| 69.3 0 0 0 2.5
Barriers 200 200 6 6 522 48 | 48 2
Read Misses (K) 1286.1| 3853.6|| 488.8| 526.8|| 951.8|| 9.2 | 13.9| 315.7
Write Misses (K) 0 0 67.5| 96.8 17.4 0 0 3.5
Upgrades (K) 1187.3| 3557.1 3.0 50| 166.8| 9.2| 13.9| 254
Data Fetches (K) 1286.1| 3853.6|| 216.0| 307.9|| 447.9|| 9.2| 13.9| 98.5
Messages (K) 5067.3| 15168.1| 581.4| 811.8| 2384.4|| 38.4| 57.3| 670.9
Message Traffic (Mbytes) 491.4| 1471.9| 73.9| 104.8| 191.0| 3.6| 54| 46.7
Cashmere | Lock/Flag Acquires (K) 0 0 54.1| 65.2 0 0 0 2.5
Barriers 200 200 6 6 512 48 | 48 2
Read Faults (K) 45.0 129.8| 71.6| 78.1 85.6|| 03| 05| 11.2
Write Faults (K) 41.3 116.8| 10.1| 131 295| 48| 6.0 8.7
Twins (K) 0 0 0 0 4.1 0 0 0
Page Transfers (K) 42.4 123.3| 18.6| 21.0 226 03| 04 9.7
Messages (K) 348.2 967.9| 174.3| 203.8|| 232.1|| 10.7| 13.5| 103.3
Message Traffic (Mbytes) 348.5| 1014.7| 153.3| 173.4| 186.4| 25| 4.0| 80.3

Table 2: Detailed statistics for Shasta and Cashmere withrd€essors. Statistics are shown for both smaller
and larger data sets (sm/lg) where applicable. 13

200 400 1362
LJ

[] Protocol Other
essage

L [l stan
Synchronization

BN Task

180 350

160
300

140
250

120

200
100

80 150

60 100

Normalized Execution Time (%)

40 50 |7

Normalized Execution Time (%)

20

I =I= == I =0=

0 “223 gy 5327
= T O = T O =T O=T O T =2 5 2
0 > n v > Nn D> N> % Ko Y b= e R
(8] T (&) T O T O T] g 2 S L 5] e
7] » 7] 7] s £2 £ 2 3 2

.. < oo =, © g ©

- 3 i o = & = S

= 3 E = =

)] [= = 8 8 4
— (&) L o o o

Figure 6: Execution breakdown for the optimized applicgasi@t 16 processors. Raytrace, Volrend, and llink
execute on the smaller data set; all others are measure@ terdgier data set.

selected data block size

structure(s) (bytes)
LU matrix array 2048
CLU matrix block 2048

Volrend || opacity, normal maps 1024

EM3D node and data array 8192
ILINK all data 1024

Table 3: Variable block sizes used for Shasta.

the data structures on which it was used, and the increasel bize. As an example of the benefit of variable
granularity, the performance of EM3D improves by a factot &and CLU by a factor of 1.2 for the large input
set on 16 processors (results labeled as “SH-VG” in Figui@sdb 6).

Another change that can sometimes improve performanceddin elements of important data structures.
For example, in the Barnes-Hut application, informatioreah body is stored in a structure which is allocated
out of one large array. Since the body structure is 120 bytese is some false sharing between different
bodies. Shasta’s performance improves significantly (lactof of 1.9 on the large input set for 16 processors)
by padding the body structure to 128 bytes (labeled as “RHEddd-igures 5 and 6).

A final modification involves using compiler options to redunstrumentation overhead. Existing compilers
typically unroll inner loops to improve instruction schdidg and reduce looping overheads. Batching of check-
ing code is especially effective for unrolled loops, sincgalling increases the number of neighboring loads
and stores in the loop bodies. In CLU, instrumentation oxadhis still high despite the batching, because the
inner loop is scheduled so effectively. The checking ovadhis reduced significantly (from 55% to 36% on a
uniprocessor with the large input set) by using a compildéioopthat increases the unrolling of the inner loop
from the default four iterations to eight iterations (ldbdlas “Loop Unroll” in Figure 5 and 6).

There are a large class of other optimizations that wouldravg application performance under Shasta.
However, we have limited our investigation to simple hintimizations to emphasize the ease of portability

14

of applications from hardware multiprocessors to Shasta.

4.3.2 Modifications for Cashmere

The modifications made to tune the applications for Cashwaierdo reduce the frequency of synchronization or
to increase the granularity of sharing. Unlike the changaderfor Shasta, the Cashmere modifications are not
in the form of hints and require some real understanding @fibplication in order to maintain correctness. We
have made changes to three applications that exhibit patig poor performance under Cashmere (results are
labeled as “Restructured/CSM” in Figures 5 and 6).

The major source of overhead in Barnes-Hut is in the trealimgjiphase. The application requires processors
to position their bodies into a tree data structure of cefisylting in a large number of scattered accesses to shared
memory. In addition, the algorithm requires processorsytwisronize in a very fine-grain manner in order to
avoid race conditions. The resulting false sharing anddiaén synchronization cause the tree-building phase
to run much slower in parallel under Cashmere than in theesgh execution. While parallel tree-building
algorithms suitable for page-based S-DSM [12] exist, weelahosen to use the simple approach of computing
the tree sequentially (it constitutes 2% of the total setjakexecution time). Building the tree sequentially does,
however, have the disadvantage of increasing the memouyreagents on the main node and limiting the largest
problem size that can be run.

A second source of overhead comes from a parallel reduatidinei main computation loop. The reduction
modifies two shared variables in a critical section basedestpmpcessor values for these variable. Performance
is reduced because of critical section dilation due to pagéd We have modified the code to compute the
reduction sequentially on a single processor. These ckargalt in a factor of three decrease in execution time.

Raytrace is in reality a highly parallel application. Théerery little sharing and the only necessary syn-
chronization constructs are per-processor locks on theegsor work queues. However, the original version
contains some additional locking code that protects a epwsed for debugging purposes, as described in Sec-
tion 4.2.3. Eliminating the locking code and counter updetuces the running time from 71 seconds to 3.7
seconds on 16 processors and the amount of data transfesred GByte down to 17MBytes. The magnitude
of this improvement illustrates the sensitivity of pagedih S-DSM to fine-grain synchronization.

The performance degradation in Volrend comes from falsérgian the task queue data structure as well as
the small granularity of work. We have modified the applmatio change the granularity of tasks as well as to
eliminate false sharing in the task queue by padding. Oungdsresult in a runtime reduction from 2.1 seconds
to 0.46 seconds. Similarly, the amount of data transferreggifrom 22Mbytes to 5.6Mbytes.

Additional optimizations that would improve the perfornsanof these and other applications in our suite
on a page-based system can be implemented [12]. In gerfettad $ize of the coherence block is taken into
account in structuring the application, most applicaticas perform well on page-based systems. Restructuring
applications tuned for hardware DSM systems does, howeaujre knowledge of the underlying computation
or data structures.

4.4 Summary of Results

This section provided an in-depth comparison and analysregerformance of two software DSM systems,
Shasta and Cashmere. We summarize our results using theeymomean of the relative speedups on the
two systems. For the eight applications (unmodified SpBstimat were written and tuned for hardware DSM
systems, Shasta exhibits a 1.6 times performance advaovag€ashmere. Most of this difference comes from
one application (Raytrace) for which the performance oftthe systems differs by a factor of 13. Using the
same metric, for the five programs that were written or tungd page-based DSM in mind, Cashmere exhibits
a 1.3 times performance advantage over Shasta. After we aflodifications to the applications, Cashmere
performs 1.15 times better than Shasta over all 13 appitati However, it is important to emphasize that

15

the modifications we considered for Shasta were in the fortmirdé that do not affect application correctness
or require detailed application knowledge, while the madiions we considered for Cashmere often required
changes in the parallelization strategy.

5 Related Work

There is a large body of literature on S-DSM that has had aadtgn the design of the Cashmere and Shasta
systems. The focus of this paper is to understand the pesfozetradeoffs of fine-grain vs. coarse-grain software
shared memory rather than to design or study a particulaBBI-Bystem in isolation.

Iftode et al. [11] have characterized the performance and sources oheadrof a large number of S-DSM
applications, while Jian@t al. [12] have provided insights into the restructuring necgss$a achieve good
performance for a similar S-DSM application suite. Our wbtkids on their's by providing insight on how a
similar class of programs performs under both fine-grain@atse-grain S-DSM. Also, we use actual systems
implemented on a state-of-the-art cluster, allowing usjatare details not present in a simulation environment.

Researchers at Wisconsin and Princeton [23] have alscestie tradeoffs between fine- and coarse-grain
S-DSM systems, but our studies have a number of differenéést, we have studied SMP-aware systems
running on clusters of SMPs. Second, the Wisconsin/Pamncptatform uses custom hardware not available in
commodity systems to provide fine-grain access control.irfime-grain performance results therefore do not
include software checking overhead, which limited perfange in several of our applications. In addition, the
custom hardware delivers an access control fault in onlg5Swhich is fourteen times faster than the delivery
of a page fault on our platform. Third, the processors in duster are an order of magnitude faster than those
in the Wisconsin/Princeton cluster (400MHz vs 66MHZz), whilur network is only 3-4 times better in latency
and bandwidth, thus increasing the relative cost of comoation. All of these differences have manifested
themselves in a number of ways in our performance resultsdtir the fine-grain and coarse-grain systems.

Some of the results of our study mirror those of the WiscdRsinceton study, but others offer new insight
into the granularity issue. For example, both Raytrace asiceld perform well on the coarse-grain protocol
in the Wisconsin/Princeton study, but perform very poory@ashmere in our study. The performance gap can
be attributed to our fast hardware platform, which causeslatated synchronization and in turn magnifies the
effect of unnecessary data transferred in a coarse-gratoqml. More favorably for coarse-grain protocols, we
also found that an SMP-aware implementation can greatigaté the effects of false sharing.

We believe that Cashmere and Shasta are among the mostrefBeSMs in their class. There are still
relatively few S-DSMs that are SMP-aware and capable ofwgker on commodity hardware. The Sirocco
system [20] is a fine-grain S-DSM that uses an SMP-aware gubtbut its instrumentation overheads are much
higher than Shasta’s. SoftFlash [7] was one of the first feged implementations designed for SMP clusters.
The SoftFlash results showed that intra-node synchraaizabuld be excessive. Cashmere-2L [21], however,
combines existing techniques with a novel incoming diffrapien to eliminate most intra-node synchronization.
HLRC-SMP [15] is a more recent protocol that shares severalasities with Cashmere-2L. The Cashmere-2L
protocol, however, has been optimized to take advantadedfiemory Channel network and allows home nodes
to migrate to active writers, thereby potentially reduciwin/diff overhead.

6 Conclusions

In this paper, we have examined the performance tradeoffgelea fine-grain and coarse-grain S-DSM in
the context of two state-of-the-art systems: Shasta antr@a®. In general, we found that the fine-grain,
instrumentation-based approach to S-DSM offers a highgregeof robustness and superior performance in the
presence of fine-grain synchronization, while the coara@igVM-based approach offers higher performance
when coarse-grain synchronization is used.

The performance of applications running under Shasta ig affested by the instrumentation overhead and
by the smaller default block size when accessing data at seaganularity. Conversely, for Cashmere, the

16

main sources of overhead are critical section dilation & phesence of fine-grain synchronization, and the
communication of unneeded data in computations with firéagdata access. Standard programming idioms
such as work-queues, parallel reductions, and atomic emioin cause excessive communication overhead if
they are not tuned for coarse-grain systems. However, a @uailapplications with false sharing at a page-level
performed better than expected on Cashmere because itsa@fslife-protocol enabled most or all of the false
sharing effects to be handled in hardware. Finally, we faiwadl most of the remaining performance differences
between Shasta and Cashmere could be eliminated by progaodlifigations that take the coherence granularity
into account.

References

[1] S.Adve and K. Gharachorloo. Shared Memory Consistenogéls: A Tutorial. INComputey 29(12):66—
76, December 1996.

[2] C.Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ragay, W. Yu, and W. Zwaenepoel. Tread-
Marks: Shared Memory Computing on Networks of WorkstatiolmsComputer 29(2):18-28, February
1996.

[3] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple#on and Performance of Munin. Rro-
ceedings of the Thirteenth ACM Symposium on Operating i18ggS&einciples pages 152-164, October
1991.

[4] D.Culler, A. Dusseau, S. Goldstein, A. Krishnamurthyl 8metta, T. von Eicken, and K. Yelick. Parallel
Programming in Split-C. IfProceedings of Supercomputing ;9%. 262-273, Nov. 1993.

[5] S.Dwarkadas, R. W. Cottingham, A. L. Cox, P. Keleher, AS&affer, and W. Zwaenepoel. Parallelization
of General Linkage Analysis Problems. Human Heredity44:127-141, July 1994.

[6] S.Dwarkadas, K. Gharachorloo, L. Kontothanassis, [Bcales, M. L. Scott, and R. Stets. Comparative
Evaluation of Fine- and Coarse-Grain Approaches for Sao#vizistributed Shared Memory. University
of Rochester CS TR 699, October 1998. Also available as WeBtesearch Lab TR 98/7.

[7]1 A. Erlichson, N. Nuckolls, G. Chesson, and J. HennessgftFRASH: Analyzing the Performance of
Clustered Distributed Virtual Shared Memory. Rroceedings of the Seventh International Conference
on Architectural Support for Programming Languages and 1@jieg Systemspages 210-220, October
1996.

[8] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, Ap@u and J. L. Hennessy. Memory Consis-
tency and Event Ordering in Scalable Shared-Memory Mutipssors. IfProceedings of the Seventeenth
Annual International Symposium on Computer Architectpeges 15-26, May 1990.

[9] R. Gillett. Memory Channel: An Optimized Cluster Intermect.IEEE Micro, 16(2), February 1996.

[10] L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. ImprowynRelease-Consistent Shared Virtual Memory
Using Automatic Update. IfProceedings of the Second Conference on High PerformancepGier
Architecture February 1996.

[11] L. Iftode, J. P. Singh, and K. Li. Understanding Apptica Performance on Shared Virtual Memory. In
Proceedings of the Twenty-Third Annual International Sgsiym on Computer Architectyrivay 1996.

[12] D. Jiang, H. Shan, and J. P. Singh. Application Restmingg and Performance Portability on Shared
Virtual Memory and Hardware-Coherence MultiprocessorsProceedings of the Sixth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programgndune 1997.

[13] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, QGierniak, S. Parthasarathy, W. M. Jr., S.
Dwarkadas, and M. L. Scott. VM-Based Shared Memory on Lowehey, Remote-Memory-Access Net-

works. InProceedings of the Twenty-Fourth Annual International Sgsium on Computer Architectyre
June 1997.

17

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

K. Li and P. Hudak. Memory Coherence in Shared Virtualnvbey Systems. ACM Transactions on
Computer Systemg(4):321-359, November 1989.

R. Samanta, A. Bilas, L. Iftode, and J. Singh. Home-BlaS&M Protocols for SMP Clusters: Design
and Performance. IRroceedings of the Fourth Conference on High Performancm@der Architecture
pages 113-124, February 1998.

D. Scales, K. Gharachorloo, and C. Thekkath. Shastaow-Dverhead Software-Only Approach to Fine-
Grain Shared Memory. IRroceedings of the Seventh International Conference ohi#&atural Support
for Programming Languages and Operating SysteBtober 1996.

D. Scales and K. Gharachorloo. Toward Transparent dficidht Software Distributed Shared Memory.
In Proceedings of the Sixteenth ACM Symposium on Operatingr@y®rinciplesOctober 1997.

D. J. Scales, K. Gharachorloo, and A. Aggarwal. FineiGiSoftware Distributed Shared Memory on
SMP Clusters. IrProceedings of the Fourth Conference on High Performancen@der Architecture
February 1998.

I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. ReinhardiRJLarus, and D. A. Wood. Fine-grain Access
Control for Distributed Shared Memory. Proceedings of the Sixth International Conference on Archi
tectural Support for Programming Languages and Operatipgt@nspages 297-306, October 1994.

I. Schoinas, B. Falsafi, M. Hill, J. Larus, and D. Wood.rd8co: Cost-Effective Fine-Grain Distributed
Shared Memory. IfProceedings of PACT '9&8ctober 1998.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Ktirgnassis, S. Parthasarathy, and M. L. Scott.
Cashmere-2L: Software Coherent Shared Memory on a ClasiRemote-Write Network. IRProceedings

of the Sixteenth ACM Symposium on Operating Systems Regdijctober 1997.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptaetiddological Considerations and Char-
acterization of the SPLASH-2 Parallel Application Suite& FAroceedings of the Twenty-Second Annual
International Symposium on Computer Architecjulgne 1995.

Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R. Toonen, |. Sihas, M. D. Hill, and D. A. Wood. Relaxed

Consistency and Coherence Granularity in DSM Systems: foffeance Evaluation. IRroceedings of
the Sixth ACM SIGPLAN Symposium on Principles and Pracfi®arallel ProgrammingJune 1997.

18

