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Using Informing Memory Operations

Sherwyn R. Ramkissoon
Master of Applied Science, 1999
Department of Electrical and Computer Engineering
University of Toronto

Abstract

Memory latency is becoming an increasingly important performance bottleneck, espe-
cially in multiprocessors. One technique for tolerating memory latency is multithreading,
whereby we switch between threads upon expensive cache misses. In contrast with previ-
ous work on multithreading, we explore a new approach that is software-controlled rather
than hardware-controlled. Our experimental results demonstrate that software-controlled
multithreading can result in significant performance gains on a shared-memory multipro-
cessor, with the majority of applications speeding up by 10% or more, and one application
speeding up by 16%. By selectively applying a register partitioning optimization to reduce
thread-switching overhead, the overall speedups increase to as much as 25%. Given the
much simpler hardware support required by our scheme, and the fact that its software over-
heads are expected to become less and less expensive over time relative to memory latencies,
software-controlled multithreading is attractive alternative to traditional hardware-based

schemes.
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Chapter 1

Introduction

Memory latency is a key performance bottleneck in modern microprocessor-based systems.
As we look to the future, the relative importance of memory latency is expected to increase
as the gap between processor and memory speeds continues to grow, and as wider-issue pro-
cessors increase the effective performance penalty of each cycle of latency. While memory
latency presents a challenge for all systems, the problem is especially acute in large-scale
shared-memory multiprocessors, where accesses to remote memory locations can suffer la-
tencies on the order of hundreds of cycles [9]. Although cache hierarchies are an essential first
step toward coping with this problem, they are not a complete solution. To further tolerate
latency, one attractive technique is to use a form of multithreading [1, 15, 18] whereby a
long-latency access from one thread is overlapped with the computation from other parallel
threads. (Note that throughout the remainder of this thesis, we will use the term “multi-
threading” to refer to muitithreading for the sake of latency tolerance, as opposed to more

general forms of multithreading.)

1.1 Previous Work on Multithreading

Several researchers have proposed and evaluated hardware-based multithreading schemes in
the past [1, 2, 8, 15, 18]. These schemes can be broken down into roughly three categories:

fine-grained, coarse-grained, and simultaneous multithreading.



1.1.1 Fine-Grained Multithreading: The HEP Architecture

The HEP [15] computer system is a large scale multiprocessor employing an MIMD archi-
tecture. Its design is strongly adapted to running many concurrent processes, through the
use of fine-grained multithreading. The idea behind fine-grained multithreading is to uncon-
ditionally switch between threads at a very fine granularity: i.e. once every cycle. The HEP
processor is designed with efficient multithreading in mind, and its pipeline allows for single-
cycle thread switching when sufficient parallel threads are available. It does not contain a
data cache, however large memory latencies can be compensated for by adding more threads.
This idea of adding more threads to tolerate latencies fits in well with its modular design,
since the increased latencies that result from expansion can be compensated for by adding
more threads.

The architecture of a HEP processor includes a control and data loop. In order to
facilitate fast thread switching, the processor provides 2048 general purpose 64 bit registers
for use by the various threads, and hardware state for storing additional process information
such as the program counter. State information for a HEP process is stored in a structure
called the process status word (PSW); the control loop consists of these PSWs moving around
a circular queue. The control loop issues an instruction to the data loop which executes it.
The control loop also contains a pipelined delay. This is to ensure that the data loop
completes execution by the time a PSW circulates the control loop and is ready to issue the
next instruction. For long latency operations such as memory accesses, a process is removed
from the control loop, and reinserted once the data has been fetched. The control and data
loops are pipelined into eight segments, therefore in order to keep the processor busy at all
times, a minimum of eight processes must be executing concurrently.

The fine-grained approach to multithreading as used by the HEP architecture is an
eficient design for a large scale multiprocessor if a large number of threads are available. It
features efficient thread switching and can tolerate large latencies by adding more parallel
threads into its control loop. The drawback to this approach, is that if there if is not enough
thread-level parallelism available, performance tends to suffer relative to a conventional,
non-multithreaded processor. For example, if only a single thread is executing on a HEP

processor, at most only one-eighth of its processing resources will be utilized. This problem



is exacerbated when we consider that processors such as HEP often do not have a data cache,
and instead rely on having a large number of threads available to compensate for the longer

latencies.

1.1.2 Coarse-Grained Multithreading: The APRIL Architecture

The MIT ALEWIFE multiprocessor is a large-scale, cache-coherent, distributed shared mem-
ory machine. APRIL (1], the processing element in ALEWIFE, is a pipelined RISC processor
with extensions to support coarse-grained multithreading. The idea behind coarse-grained
multithreading is that rather than switch threads on every cycle, we allow a given thread
to continue running (with the full processor to itself) until it encounters a long-latency
operation; only at that point does the processor switch to executing another thread.

The APRIL processor provides four copies of the register file, and associated hardware
for storing the state of each thread. A frame pointer points to the current thread state. A
context switch then consists of simply changing this frame pointer, and allowing the pipeline
to empty. Clearly while this can be done quickly, it is much slower than thread switching on
the HEP processor. Since there are four copies of the register file, only four threads can be
resident on the processor at any given time. However unlimited threads can exist, residing
in memory until the task scheduler loads them onto the processor. APRIL implements
coarse-grained multithreading by having the cache controller force a thread switch on a
long-latency memory request. As mentioned, these thread switching times are non-trivial,
but since switching is done only on long-latency operations, the overhead is small compared
to the latency it is attempting to hide. Typically a thread switch will occur on remote
memory accesses and certain synchronization operations.

Unlike the fine-grained approach, coarse-grained multithreading is not reliant on having
a large number of parallel threads to hide latencies and fully utilize the processing resources.
Since thread switches occur much less frequently than with fine-grained multithreading,
APRIL can tolerate latencies in the range 150 to 300 cycles, with just the four resident
threads. Single-threaded performance is also much closer to what one would get on a non-
multithreaded processor. The disadvantage of this approach, however, is that since cache

misses are detected relatively late in the pipeline, the minimum thread switching time is



non-trivially large. Hence this scheme is not appropriate for hiding short latencies (e.g.,
primary cache misses which are satisfied by the secondary cache), and it is primarily used to
hide the large latencies found in shared-memory multiprocessors. Another problem is that
since under coarse-grained multithreading, a single thread has full control of the processor
at any given time, there exists the possibility of starvation and deadlock. Resolving this
adds complexity to the hardware. For example the APRIL architecture requires hardware

interlocks to prevent this.

1.1.3 Simultaneous Multithreading

Multithreading allows a processor to perform useful work when a thread becomes stalled,
by executing instructions from a different thread during the stalled cycles. However on
a superscalar processor, issue slots are often wasted within a single cycle. For example,
a processor that is capable of issuing four instructions every cycle, may actually be able
to issue only one or two instructions much of the time due to pipeline stalls, instruction
stalls etc. These unused issue slots within a cycle are termed horizontal waste. One study
found that about 40% of wasted slots are caused by horizontal waste. A recent proposal
known as simultaneous multithreading (SM) [18] expands on the multithreading concept by
attempting to fill all available issue slots in a superscalar processor, using instructions from
possibly several different threads. As long as the appropriate functional units are always
available to a ready-to-issue instruction, simultaneous multithreading can eliminate much of
the wastage.

While attempting to utilize all issue slots in this way can show some impressive perfor-
mance gains, the hardware required to support SM is quite substantial. In the most general
case, any issue slot can contain an instruction from any thread, and all hardware contexts are
connected to all functional units. This is referred to as full simultaneous issue. Implementing
this may require unreasonably complex hardware, so researchers have also looked at more
restrictive schemes that reduce the hardware requirements. Variations include providing
each thread with a fixed number of issue slots per cycle, or connecting each thread to only
one of each type of functional unit. As with the other multithreading schemes, simultaneous

multithreading uses copies of the register file for storing thread state. Note that there can



be instructions from multiple threads in the pipeline at the same time which refer to the
same virtual register. They must be mapped to different physical registers. In effect this is
what register renaming already accomplishes, so existing support for register renaming can
be leveraged when we look to implementing SM.

In addition to reducing horizontal waste, simultaneous multithreading is attractive as it
enjoys good single-thread performance without paying a significant thread switching penalty.
This is in contrast to the fine-grained approach which showed poor single-thread performance,
and to the coarse-grained scheme which had non-trivial thread switching overheads. The ma-
jor disadvantage to simultaneous multithreading is the hardware complexity of implementing

it, particularly for the full simultaneous issue method.

1.1.4 Interleaving

Interleaving (8] is an earlier approach to multithreading which shares aspects of both fine-
grained multithreading and simultaneous multithreading. The idea, as with SM, is to allow
instructions from different threads to be in the pipeline at the same time. However inter-
leaving does not attempt to hide horizontal waste, and in fact work in this area was done on
a non-superscalar processor. Interleaving then is a form of cycle-by-cycle context switching,
but designed to overcome some of the problems with previous fine-grained processors such
as HEP.

The authors identify two problems with the fine-grained approach. One is the lack of a
data cache, and other is the inability to have more than one instruction per thread in the
pipeline at any given time. The interleaving proposal involves adding a data cache, and
adding hardware interlocks to allow multiple instructions from the same thread to be in the
pipeline. The addition of a data cache means that long-latency memory accesses will be
much less frequent, so fewer threads are needed to tolerate these latencies. Allowing more
than one instruction per thread in the pipeline means that the pipeline can be kept full with
just one thread. This is in contrast to the fine-grained approach where with a single-threaded
application, the pipeline will be almost empty most of the time.

Interleaving, then, is in some ways a more restrictive version of simultaneous multithread-

ing. Like SM, thread switching overhead is very low, and it achieves good single-threaded



performance. However interleaving uses a simple round-robin scheme for scheduling instruc-
tions from each thread into the issue slots, rather than the more flexible schemes employed
by SM. And as mentioned, interleaving does not reduce horizontal waste on superscalar pro-
cessors. The flip side is that hardware requirements for interleaving are more modest than

for SM.

1.2 Motivation for Software Controlled Multithread-
ing

In the previous section we described existing multithreading schemes, and note some of their
advantages and drawbacks. A common feature of all of these multithreading techniques
is that the decision of when to switch between threads and the actual switching itself is
controlled entirely by hardware. As a result, a non-trivial amount of hardware support is
required to manage the multiple threads. For example, to minimize the thread switching
latency, coarse-grained multithreaded processors typically replicate key per-thread state such
as the register file [1]. Under simultaneous multithreading, the concept of “thread switching”
is effectively eliminated at the point where instructions reach the functional units—i.e. when
they are buffered in dynamic instruction scheduling queues—since register renaming has
already isolated the effects of independent threads. However, simultaneous multithreading
does require some non-trivial hardware support to fetch, issue, and retire instructions from
multiple threads properly. More importantly, simultaneous multithreading requires a larger
register file to accommodate the multiple threads, and this is likely to increase register
access latencies and possibly add additional stages to the pipeline [17]. Concern over the
potential impact of multithreading hardware support on single-thread performance may be a
contributing factor to why we have yet to see hardware-based multithreading in commodity
MiCroprocessors.

Rather than relying on specialized hardware support, an alternative approach is to use
software to implement multithreading. The advantage of this approach is that there is obvi-
ously no degradation in single-thread performance (since the processor is not modified); the

disadvantage, however, is that the thread switching time is significantly larger than when it



is accelerated by special hardware support, and this may limit the types of latency that can
be successfully hidden. Previous studies have considered purely software-based multithread-
ing in the context of hiding remote latencies in software distributed shared memory (DSM)
machines [12, 16]. Purely software-based multithreading makes sense for software DSMs for
two reasons: (i) software is already invoked upon the start of a remote access, and therefore
it knows when to initiate a thread switch; and (ii) remote access latencies are so large in
software DSMs (3] (typically several orders of magnitude larger than in hardware DSMs [9])
that the overhead of switching threads in software is small by comparison. As a result, both
the Mowry et al. {12] and Thitikamol and Keleher [16] studies found positive results when
using software-based multithreading to hide the large remote latencies in software DSMs.
An open research question is whether software-based multithreading can successfully
tolerate more modest forms of latency, such as the remote latencies in hardware DSMs (e.g.,
the SGI Origin [9]). To implement software-based multithreading, we need two software
mechanisms: (i) the ability to switch between threads; and (ii) a mechanism for knowing
when to trigger thread switches. The former mechanism is clearly feasible, since software can
save and restore all thread-specific state (e.g, registers, the program counter, any condition
codes, etc.). The latter mechanism, however, had been lacking in the past, since there was
no way for software to directly observe and react to cache misses in a sufficiently lightweight
fashion. (Note that the signal handler mechanism used to trigger thread switches in software
DSMs is not applicable to cache misses, since it is too costly and can only react to page-level
access violations.) Fortunately, a mechanism which provides this functionality was recently

proposed by Horowitz et al. [5, 6]: informing memory operations.

1.3 Informing Memory Operations

The idea behind informing memory operations [5, 6]-is to make cache misses directly ob-
servable to software, and to enable software to quickly react to these misses. In essence,
an informing memory operation consists of a memory operation that is combined—either
implicitly or explicitly—with a conditional branch-and-link operation where the branch is
taken only if the reference suffers a cache miss. Horowitz et al. [5, 6] describe two possible im-

plementations of informing memory operations: one based on branching on a cache-outcome
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condition code, and another based on a low-overhead trap.

The low-overhead trap approach works as follows. Two new user-visible registers are
added to the architecture: (i) a Miss Handler Address Register (MHAR), which contains
the address of the miss handler to be invoked upon a cache miss (setting this register to
zero disables the trapping mechanism); and (ii) a Miss Handler Return Register (MHRR),
which contains the return address for resuming execution at the end of the trap (i.e. it
contains the address of the instruction following the memory reference that missed). Upon
a cache miss, if the MHAR contains a non-zero value, then a branch-and-link occurs to
this address, and the MHRR is set appropriately. Unlike traditional trapping mechanisms,
this one is extremely lightweight since it occurs entirely at the user level (no operating
system code is executed), and the only state that is saved is the MHRR. In other words, the
run-time overhead is comparable to a traditional branch-and-link instruction, rather than a
traditional trap. The authors demonstrate how this mechanism can be implemented within
modern in-order and out-of-order superscalar pipelines without much additional complexity,
since the bulk of the necessary hardware support already exists for handling branches and
exceptions. The advantage of the low-overhead trap approach is that it potentially incurs no
overhead on cache hits (unlike the cache-outcome condition code approach, which requires
an explicit branch to test the condition code even on cache hits). Hence we will focus on the
low-overhead trap approach throughout the remainder of this thesis.

There are a number of applications of informing memory operations. For example, since
they can be used to collect memory performance information accurately and with little over-
head, informing memory operations enable a wide range of new performance monitoring
tools which can guide either the programmer or the compiler in identifying and eliminat-
ing memory performance problems. In addition, Horowitz et al. [5, 6] also demonstrated
that informing memory operations can automatically enhance the performance gains from
software-controlled prefetching [10, 11, 13], and that they can accelerate software-based
cache coherence with fine-grained access control [14]. The authors also suggest that inform-
ing memory operations could be used to implement software-controlled multithreading, but

there has been no detailed study of this approach until now.



1.4 Objectives of This Study

In this thesis, we perform a detailed evaluation of whether software-controlled multithreading
based on informing memory operations can successfully improve the performance of parallel
applications running on shared-memory multiprocessors with hardware cache coherence. In
addition to evaluating our baseline scheme, we also investigate a number of extensions which
are designed to further enhance the performance of software-controlled multithreading.

We focus on hardware DSMs rather than uniprocessors for two reasons. First, since
applications written for hardware DSMs already contain parallel threads, it is straightforward
to extract the additional parallel threads necessary for multithreading. (In contrast, the bulk
of applications run on uniprocessors contain only a single thread, and parallelizing them is a
non-trivial effort.) Second, hardware DSMs tend to suffer more from memory latency than
uniprocessors—due to the large latency of remote accesses and the additional cache misses
due to communication patterns—and therefore they are an important target for latency
tolerance. If software-controlled multithreading on hardware DSMs is successful, then we
get the best of both worlds: the benefits of multithreading when it pays off, and maximum
single-thread performance when it does not.

The remainder of the thesis is organized as follows. We begin in Chapter 2 by examining
the issues involved in implementing software-controlled multithreading. Chapter 3 discusses
our experimental methodology, and Chapter 4 presents our experimental results. Finally, we

conclude in Chapter 5.



Chapter 2

Software-Controlled Multithreading

In this section, we discuss the major challenges and tradeoffs involved with implementing
software-controlled multithreading. We begin by discussing the hardware support necessary
for this scheme, and then present a design of the miss handler software which performs the
actual thread switching. Finally, we discuss how our scheme avoids deadlock and handles

synchronization events properly.

2.1 Hardware Support

The target architecture for our study is a hardware cache-coherent shared-memory multi-
processor comprised of out-of-order superscalar processors. For the sake of concreteness, we
will use the MIPS R10000 processor [21] as the basis for our discussion, although similar
issues apply to other out-of-order superscalar processors.

Our goal is to support software-controlled multithreading with minimal hardware support
beyond informing memory operations. There are three issues, however, which may require
some additional hardware: the first two involve potential problems that would prevent us
from overlapping enough computation with the cache miss, and the third involves our ability
to selectively switch threads only upon long-latency misses.

The first obstacle to consider is that when a load suffers a cache miss, it typically cannot
retire from the reorder buffer until its cache miss has completed. Since all instructions must

retire in-order (even in an out-of-order issue machine), this means that all instructions exe-
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cuted after the miss (including thread switching code and the thread that we switch to) must
remain in the reorder buffer until the miss completes. The problem is that reorder buffers are
typically small (e.g., 32 entries in the R10000) relative to the number of instructions that one
would need to execute to fully hide a remote cache miss (e.g., several hundred instructions in
the SGI Origin). Hence the reorder buffer will fill up quickly upon a thread switch, causing
the processor to stall before it can hide the miss latency. For example, the R10000 does not
have sufficient buffering to even execute our thread switching code (described later in Sec-
tion 2.2), let alone the thread that we are attempting to activate. To address this problem,
we need a mechanism for specifying that the load should be allowed to retire, despite the fact
that its miss is still in progress. In essence, we would like to convert the load into a prefetch,
since prefetches can retire before their misses complete. Converting the load to a prefetch
is acceptable because we do not care about the result of the load—only that it brings the
line into the cache—since we will resume execution by re-executing the load that missed (as
discussed later in Section 2.2). While there are a number of ways to accomplish this, one
possibility is to set a flag which indicates to the trapping mechanism that upon a cache miss,
the offending load should be allowed to retire (similar to a prefetch). Such an option may
be useful in other cases where the miss handler would like to execute a non-trivial amount
of code underneath the cache miss, and where the miss handler will resume execution by
re-executing the load which invoked the trap, rather than the instruction which follows it.
The second potential problem is that during a thread switch, any use of the load destina-
tion register (e.g., if we attempt to save it to memory as part of saving the thread state) will
result in a data dependence that will stall the processor until the load completes. Since we
do not care about the result of the load (it will be re-executed later), there is no need to save
this register value. One software-based solution would be to save all registers except the load
destination; therefore when the register state of the thread we are switching to is restored,
the act of overwriting this register will break the original data dependence on the load (due to
register renaming), thus avoiding a stall. While this approach will work, the problem is how
to quickly determine which register is the load target (since this information is not readily
available inside the miss handler) and avoid saving it. One possibility would be to look up

this value in a hash table based on the return address in the MHRR; however, this will result
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in non-trivial software overhead. Another possibility would be for the hardware to make the
destination register number directly visible to the miss handler software, perhaps through
another special architected register. While this would eliminate the need for a hash table
lookup, we would still need to branch to a specialized version of the thread switching code
to avoid saving the given register. The most desirable solution would be for the hardware
to automatically break the data dependence on the load result when it is marking the load
as being able to retire despite its outstanding miss (as discussed earlier). In other words, we
would like to fully convert the load to having the same functionality as a prefetch: i.e. it can
graduate immediately, and it produces no register result. Breaking this register dependence
is realistic for the hardware because the Miss Status Handling Register (MSHR) [7]—the
structure which tracks an outstanding miss in a lockup-free cache [4|—already maintains
this register number. In our experiments, we assume that this latter hardware support is
available.

The third area where additional hardware support may be helpful is in identifying (or
predicting) whether a given cache miss is likely to suffer a large latency. Since multithreading
can only improve performance if the miss latency is larger than the latency of switching
between threads—and since our software-based approach requires roughly 55 cycles to switch
threads—we cannot hide the latency of primary cache misses which hit in the secondary
cache. Hence we only want to switch threads upon secondary cache misses (which are still
large relative to our thread switching time). Ideally, we would like an informing mechanism
where traps only occur upon secondary misses—however, implementing this may be difficult
(or even impossible) given how late the secondary cache tags are checked. Instead, we assume
that traps can only occur upon primary cache misses, but that inside the miss handler we
can test a flag which indicates whether the primary miss is also a secondary cache miss.!
This is similar to the condition-code approach that was discussed by Horowitz et al. [5, 6].

Note that in all three of these cases, the additional hardware support only affects actions
taken upon miss handler invocation, and there is flexibility in how quickly the actions are
performed. Hence we would not expect any of these features to slow down the critical path

of normal execution. Having described our hardware support, we now discuss how it can be

INote that the processor will interlock on this flag until it is available.
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HandlerAddress:
add MHRR, MHRR, -4 // Point the MHRR to previous inst
bne #0, CHF, L2Miss // Continue if cache-miss flag is set

j WHRR // else L2 hit, so just return
L2Niss:

1i MHAR, %0 // Disable miss-handler

1i kO, #Membase // Get ptr to current state

1w k0, 0(k0)

sw r1, 0(k0) // Save integer registers

sw r2, 4(k0) // excluding kO,k1,r0

sw 31, 112(k0)

sw fcr31, 116(k0) // Save fp condition code register
sd £0, 120(k0) // Save fp registers

sd £2, 128(k0)

sd £30, 240(k0)

se MHRR, 248(k0) // Save MHRR

addu kO, kO, 256 // Find & save ptr to new context state

and kO, kO, SFFFFOFFH/ Assume 16 contexts,256 bytes/context
// and round robin selection mathod

39 kO, Membase

1w r1, 0(kO) // Restore integer registers

1w r2, 4(k0)

1w r31, 112(k0)

1w fcr31, 116(k0)  // Restore fp condition code register
1d £0, 120(k0) // Restore fp registers

1d £2, 128(k0)

1d £30, 240(k0)

1d MHRR, 248(kO) // Restore MHRR

1i MHAR, #HandlerAddres’y Re-enable miss-handler
3J MHRR // Jump to new context

Figure 2.1: MIPS pseudo-code representation of the miss handler for software-controlled
multithreading.

used to implement the miss handler.

2.2 Design of the Miss Handler

We use a single miss handler to implement multithreading, as shown in Figure 2.1. The
MHAR is set to contain this handler address at the start of execution, and is restored
after each trap so that we continue using this same handler. As we see in Figure 2.1, the
miss handler begins by subtracting four bytes (i.e. one instruction word) from the MHRR
so that it will eventually restart the thread at the memory reference that missed, rather
than at the instruction after it. The reason for doing this is that the original reference has
been converted into a prefetch by the hardware (as discussed in the previous section), and

therefore the reference must be re-executed to complete properly. The handler then tests
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whether the primary miss was also a secondary cache miss. If so, then the handler switches
to a new thread; otherwise, it returns immediately.?

To switch between threads, the miss handler first saves the state of the current thread
to memory, it then selects a thread to restart using a simple round-robin scheme, and fi-
nally it restores the state of this new thread. To prevent the memory references inside the
miss handler from triggering additional informing memory traps, the trapping mechanism
is disabled during the thread switch by writing a zero into the MHAR. Since user code in
MIPS-based systems does not use the kO register, we use it as a pointer to where the thread
state is stored. Assuming that the number of active threads per processor is a power of two,
our simple round-robin scheme requires only three instructions to determine the next thread
to be executed. Finally, the handler resumes thread execution by jumping to the address in
the MHRR.

As we observe from this code, there are two major dimensions to consider when perform-
ing multithreading in software: (i) how to manage the saving and restoring of thread state;
and (ii) how to decide when it is desirable to switch threads. We now consider both of these

issues in greater detail.

2.2.1 Saving and Restoring Thread State

Our multithreading scheme is similar to coarse-grained hardware-based schemes (e.g.,
APRIL [1]) in that thread switches are triggered by cache misses. An important difference,
however, is that these hardware-based schemes devote special hardware to quickly saving
and restoring the register state of threads. In contrast, we must save and restore registers
through explicit loads and stores to memory. This overhead accounts for the bulk of our
thread switching latency (which is roughly 55 cycles). The good news is that the thread
state tends to stay in the primary data cache, which prevents the latencies from being even
larger. However, since these non-trivial thread switching times are a potential performance
bottleneck, we would like to reduce them even further.

The major trick for reducing the thread switching overhead is to avoid saving and restor-

>Note that the processor will stall until the secondary cache miss flag is valid. If this is likely to take
a non-trivial amount of time, then some of the thread switching code can be scheduled before this test to
avoid wasting time.
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ing registers that do not need to be preserved. As a simple example, some applications do
not use floating-point registers at all; by recognizing this fact, we could eliminate roughly
half of the thread switching overhead in such applications. In general, the compiler can
determine which registers are live at any given point in the program, and it could use this
information to select a miss handler that has been customized to only save these live regis-
ters. While this approach may sound good in theory, it suffers the following limitations in
practice. First, customizing the miss handler on a reference-by-reference basis involves either
setting the MHAR before each reference, or else using the MHRR inside the miss handler to
hash into a jump table. The Horowitz et al. study [5] quantified these types of overheads,
which appear to be large enough to offset a non-trivial portion of the expected gains. A
related limitation is that creating a large number of customized miss handlers will degrade
the instruction cache performance. Finally, while it is easy to specify which registers are
to be saved by choosing the right customized miss handler, it is more difficult to recognize
which registers are to be restored, since this requires that we recognize the context of the
suspended thread.?

A simpler approach to reducing the overhead of saving and restoring registers is to stat-
ically partition the registers between threads. For example, if we wanted to run two threads
per processor, the compiler could compile each thread to use only half of the user registers.
(Note that special-purpose registers—e.g., the stack pointer—cannot be partitioned.) The
advantage of this approach is that many of the registers would be preserved in the reg-
ister file itself, thus avoiding the need to save them to memory. The main disadvantage,
however, is that each thread may suffer reduced performance due to having fewer available
registers. (Another disadvantage is that code replication may impact the instruction cache
performance.) Rather than taking an all-or-nothing approach, there is in fact a continuum
of possibilities between saving all registers and partitioning all user registers. For example,
it may be beneficial to give each thread one additional register at the expense of slightly in-
creased switching overhead. We will evaluate the benefits of this static partitioning approach

later in Chapter 4.

30ne way to implement this would be to save the instruction address of the customized code that should
be used to restore a thread along with its other register state, and to jump to this address in the process of
switching threads.
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2.2.2 Deciding When to Switch Threads

The second major challenge for software-controlled multithreading is switching threads only
when the miss latency is expected to be large relative to the thread switching overhead. For
our purposes, this means switching only upon secondary cache misses. Unfortunately—as
we mentioned earlier—it is not likely that the result of the secondary cache tag check will be
available early enough to trigger a trap. Instead, the strategy which we outlined in Figure 2.1
is to test whether the primary miss (which triggered the trap) is also a secondary cache miss
once we are inside the miss handler. The main disadvantage of this approach is that if the
reference does hit in the secondary cache, then we have wasted overhead with no benefit.

To avoid this useless overhead, we would like to predict a priori whether a given reference
is likely to result in an expensive cache miss. [f we believe that it will not, then we can
disable the trapping mechanism for that reference. One possibility would be for the compiler
to statically analyze the data locality [11, 19]; this technique has mainly been successful at
predicting cache misses in matrix-based codes. Another possibility would be to collect a
profile of how frequently each memory reference suffers a long-latency miss, and to feed this
information back into the compiler. Finally, another possibility would be to use hardware
to predict the conditional probability of a reference suffering a long-latency miss, given that
it has suffered a primary cache miss. Such a prediction mechanism could use techniques
similar to those used for branch prediction. With this information, the user could specify
that they would like informing traps to occur only upon primary cache misses which are also
predicted to be expensive misses. Implementing this behavior would be feasible since both
the primary cache miss signal and the “expensive miss” prediction value would be available
early enough to control the trap mechanism.

Of course, the drawback of using a prediction mechanism is that if it incorrectly predicts
that a miss will be inexpensive when it turns to be expensive, then it is too late to invoke
the thread switching code to hide the miss latency. We will evaluate the potential benefit of

such techniques later in Chapter 4.
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2.3 Avoiding Deadlock and Handling Synchronization
Properly

By interleaving multiple threads on the same physical processor, multithreading introduces
the possibility of deadlock in two ways. First, a repeated pattern could occur where thread
A steals resource X from thread B (which is currently suspended, also waiting for resource
X), only to suffer a thread switch back to B before A can use X; when thread B restarts,
it steals resource X back from thread A, but also switches back to A before B can use
X, etc. Such a pattern could be repeated infinitely as the two threads rapidly switch back
and forth but neither thread makes progress. This scenario can arise when multiple threads
suffer cache misses for unique addresses which map into the same cache entry. To prevent
this problem, we swap out a given thread only once when it encounters a cache miss. If the
miss has not completed by the time the round-robin scheduler reactivates the thread, then
the thread stalls at that point until the miss completes (rather than switching to another
thread). Hence forward progress is guaranteed.

Although it is not clear from our pseudo-code in Figure 2.1 how we stall for miss com-
pletion when a thread is restarted, there are several ways this might be accomplished. One
possibility is to combine an explicit test for a partial-latency miss with the test for a sec-
ondary cache miss inside the miss handler. If the reference is already outstanding, the miss
handler returns immediately rather than invoke a thread switch. An alternative idea is to
postpone turning the miss handler back on until after the original reference completes when
the thread is restarted. This can be accomplished if the hardware supports sampling coun-
ters with the informing memory traps, or by scheduling explicit instructions in the code to
turn the handler back on only after the stalling reference is restarted. In our experiments,
we model the sampling counter approach.

The second scenario which can result in deadlock is if thread A spin-waits for a resource
that is held by thread B, where B is currently suspended on the same processor as A, and
A never yields the processor to B in the course of spin-waiting. This scenario can arise
with any form of synchronization that involves spin-waiting (e.g., locks and barriers). Qur

solution is to force a thread switch (in software) as part of all spin-waiting loops. Not only
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does this approach avoid deadlock, it also has the added benefit that it helps the processor

tolerate synchronization latency.
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Chapter 3

Experimental Framework

To evaluate our software-controlled multithreading scheme, we performed detailed cycle-
by-cycle simulations of a collection of seven applications from the SPLASH-2 benchmark
suite [20] on a shared-memory multiprocessor with out-of-order superscalar processors sim-
ilar to the MIPS R10000 [21]. Our simulation model varies slightly from the actual MIPS
R10000—e.g., we model two memory units, and we assume that all functional units are fully-
pipelined. However, we do model the rich details of the processor, including the pipeline, reg-
ister renaming, the reorder buffer, branch prediction, instruction fetching, branching penal-
ties, the memory hierarchy (including contention), etc. The parameters of our model are
shown in Table 3.1.

Our multiprocessor system model is roughly based on the SGI Origin [9). We use a full-
map directory to implement invalidation-based cache coherence. Remote accesses require
either two or three network hops, depending on whether the data can be supplied by the
home node or whether it must be forwarded from a dirty-remote node. We do not model
network contention, but we do model memory contention in detail. As shown in Table 3.1,
the two and three hop remote accesses result in nominal latencies of 200 and 300 cycles,
respectively, not including additional delays due to memory contention.

We would like to emphasize that we simulate the actual thread-switching instructions
shown in Figure 2.1, rather than simply modeling thread-switching as some fixed latency.
In addition, we precisely model the timing of the trap mechanism for informing memory

operations in the R10000, as described by Horowitz et al. [5, 6]. Our thread-switching code
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Table 3.1: Simulation parameters
| Memory Parameters |

Line Size 32B
[ Pipeline Parameters | Instruction Cache 32KB, 2-way set-assoc
Issue Width 4 Data Cache 32KB, 2-way set-assoc
Functional Units 2 Int, 2 FP, Unified Secondary Cache 2MB, 2-way set-assoc
2 Mem, 1 Branch Data Cache Banks 2
Reorder Buffer Size 32 Data Cache Fill Time 4 cycles
Integer Multiply 12 cycles (Requires Exclusive Access)
Integer Divide 76 cycles Miss Handlers (MSHRs) 16 for data, 2 for insts
All Other Integer 1 cycle Main Memory Bandwidth 1 access per 20 cycles
FP Divide 15 cycles Total Miss Latency to 14 cycles
FP Square Root 20 cycles Secondary Cache
All Other FP 2 cycles Total Miss Latency to 78 cycles
Branch Prediction 2-bit Counters Local Memory

Total Miss Latency to

200 cycles (2 hops),

Remote Memory 300 cycles (3 hops)

Table 3.2: Benchmark characteristics table describes the benchmarks, input data set, and
cache miss counts. The total number of misses, misses that hit in local memory, and remote
miss counts are given for the 2-processor case.

Name Description Input Data Set Instructions Cache Miss Count
| Graduated Total | Local Mem. | Remote
CHOLESKY Sparse Cholesky factorization tk14.0 input file 44.6M 289K 28.8K 22.5K
FFT 1D fast Fourier transform 65536 complex points 30.1M 256K 123.8K 59.6K |
Lu-conT LU factorization with 512x512 matrix, 184M 755K 45.8K 50.7K
contiguous partitions 32x32 elem. blocks
Lu-NCONT LU factorization with 512x512 matrix 205M 7508K 66.7TK 62.7K
non-contiguous partitions 32x32 elem. blocks
OCEAN-CONT Large-scale ocean simulation 130x130 grid 48.9M 2009K 52.2K 1.5K
with contiguous partitions
OCEAN-NCONT | Large-scale ocean simulation 130x130 grid 65.6M 2374K 284.4K 15.9K
with non-contiguous partitions
Rapix Integer radix sort 262144 keys, radix=1024, 25.9M 197K 23.2K 24.4K
max key value=1024

consists of a total of 104 instructions—of these, 94 are memory references. Given that our
processor has two memory units, the memory references alone would dictate a minimum
thread switching time of at least 47 cycles. Since we also model the instruction and data
cache misses caused by the miss handler code, data dependences, resource constraints, etc.,
we observe a thread switching latency that is closer to 55 cycles. (The actual thread switching
time varies across applications, and in one case is over 100 cycles, as we will see later in
Chapter 4.)

We performed our experiments on the following applications from SPLASH-2:
CHOLESKY, FFT, LU-CONT, LU-NCONT, OCEAN-CONT, OCEAN-NCONT, and RADIX. Ta-
ble 3.2 briefly summarizes each application, along with the input data sets and other statis-

tics. The applications are described in more detail below, but for a more complete analysis



of the entire SPLASH-2 suite see the study by Woo et al. [20]. All applications were com-
piled using version 2.8.0 of the gcc compiler, with -03 optimization. We used the MINT3
MIPS instruction interpreter tool (provided by MIPS) to drive our detailed performance
model, thus allowing us to simulate all instructions (including the thread-switching code) in

a detailed, execution-driven fashion.

3.1 Description of Benchmark Applications

CHOLESKY performs a blocked Cholesky factorization on a sparse matrix. The matrix is
factored into the product of a lower triangular matrix and its transpose. It is similar to LU
factorization but operates on sparse matrices, which tend to have a larger communication
to computation ratio. CHOLESKY has a large amount of synchronization overhead, which is
even more pronounced in our simulations because of load imbalance problems.

FFT performs a one-dimensional version of the radix-/n six-step FFT algorithm. The
data set consists of n complex points to be transformed, and another n points referred to as
the roots of unity. These are organized as \/n X \/n matrices. The data is distributed among
the processors, so that each processor has contiguous rows in local memory. This algorithm is
optimized to minimize interprocessor communication, so there is very little synchronization
overhead in FFT other than some possible load imbalance.

Lu-coNT and LU-NCONT perform a blocked factorization of a dense matrix into the
product of lower triangular and upper triangular matrices. The matrix is divided into blocks
to exploit temporal locality. The user can specify a block size to optimize for both good
locality and good load balancing. The difference between the contiguous and non-contiguous
versions is that in the case of LU-CONT, the elements in a block are allocated contiguously
in memory, whereas for LU-NCONT they are not. Using contiguous memory improves spatial
locality and reduces false sharing.

OCEAN-CONT and OCEAN-NCONT study large-scale ocean movements based on eddy
and boundary currents. The problem grid, which is represented by a 4D-array, is partitioned
into smaller subgrids containing the data for each cell. OCEAN-CONT allocates subgrids
contiguously in the processor which owns it, while OCEAN-NCONT allocates the subgrids

non-contiguously. As with LU, we would expect better locality and reduced false sharing in
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the contiguous case.

RADIX performs an integer radix sort using an iterative algorithm. In each iteration, a
processor generates a local histogram from its assigned keys. The local histograms are then
accumulated into a global histogram. Finally, each processor uses the global histogram to

permute its keys into a new array for the next iteration.



Chapter 4

Experimental Results

We now present results from our simulation studies. We begin by evaluating the performance
of our baseline software-controlled multithreading scheme. To further improve upon this
scheme, we evaluate the performance potential of two techniques for reducing overheads: (i)
register partitioning to reduce the thread switching overheads, and (ii) miss prediction to

avoid invoking the miss handler upon secondary cache hits.

4.1 Performance of the Baseline Software-Controlled

Multithreading Scheme

The results of our first set of experiments can be found in Figure 4.1 along with Tables 4.1
and 4.2. Figure 4.1 shows the performance impact of multithreading with two and four
threads per processor on a two-processor machine, and with two threads per processor on a
four-processor machine.! Each bar is labeled with the number of threads per processor, with
the number of processors below that.

The execution times are normalized to the case without multithreading on two processors,

and they are broken down into nine categories explaining what happened during all potential

1Since MINT3 can only simulate up to eight parallel threads at this point, we were not able to explore
larger machine configurations. By focusing on smaller machine configurations, we tend to underestimate
the fraction of secondary cache misses that would be remote in a larger machine—hence our results are
conservative since the potential performance gains are likely to be larger in larger-scale machines.
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Figure 4.1: Performance of the baseline software-controlled mulitithreading scheme.

graduation slots.>? The bottom section (Busy) is the number of slots when instructions
actually graduate. The Mem Stall and Sync Stall sections are any non-graduating slots that
can be directly attributed to data cache misses or synchronization, respectively. Table 4.1
breaks down the Mem Stall slots further into four categories: the first three are when a
primary cache miss is ultimately found in the secondary cache, local memory, or requires
a remote access, respectively; the fourth case (labeled Comb.) is when a primary cache
miss is combined with another outstanding miss in progress. Returning to Figure 4.1, the
top two sections in the multithreading cases represent slots due to the thread switching
code; these are broken down into time spent saving and restoring registers ( 7S Regs) and
the remaining miss handler time (TS Setup). Finally, the Inst Stall section is all other
slots where instructions do not graduate. Note that these categories are only a first-order
approximation of what is limiting performance, due to the inherent parallelism within an out-
of-order superscalar processor and the fact that delaying one dependence tends to exacerbate
subsequent dependences.

As we see in Figure 4.1, software-controlled multithreading results in significant speedups
ranging from 10% to 16% in four of the seven applications (FFT, LU-CONT, LU-NCONT, and
OCEAN-CONT), and more modest speedups of 1-2% in the other three cases. We also see that
adding more threads does not necessarily improve performance. For example, OCEAN-CONT

{on two processors) goes from a 12% speedup with two threads per processor to a comparable

2The number of graduation slots is the issue width (4 in this case) multiplied by the number of cycles.
We focus on graduation rather than issue slots to avoid counting speculative operations that are squashed.
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Table 4.1: Breakdown of the performance of the baseline software-controlled multithreading
scheme. Performance is normalized to the 2-processor case with no multithreading. Memory
stall time is broken down into misses found in the L2 cache, local memory, or remote memory,
and misses combined with other misses.

" # of T Breakdown of Normalized Graduation Slots
Threads || Total Stalls Due to L1 Misses Thread
#of per Exec. Inst. | Sync Found in Location Below Switching
Benchmark || Procs Proc l Time || Busy | Stall | Stall [ L2 ] Mem | Rem. | Comb. | Setup | Regs |
2 1 1000 ][ 120] 219 329 ] 2.2] 33 50 | 22.7 0.0] 00
2 98.2 || 11.4 | 234 | 339 | 0.7 1.1 0.0 | 19.1 21| 65
CHOLESKY 1 109.2 || 11.0) 233 | 454 ] 0.7 1.0 0.0 | 19.1 21| 66
1 1 841 64| 112 | 160 | 0.8 25 i8 | 125 00| 00
p) 87.8 58| 125 | 465 | 0.1 035 00 | 148 15| 5.7
2 1 1000 ] 12.1] 208 ] 195 ] 1.1 ] 155 ] 158 151 00 00
2 899 || 114 190 182 | 00| 00 00 ] 175 54| 184
FFT 3 856 || 101 | 201 ] 167 00 ] 00 0.0 | 154 5.2 | 18.1
3 1 €5.1 56| 9.7 207 | 05 76| 150 6.1 0.0 | 00
3 59.6 38| 100] 198 ] 00| 00 00 | 87 | 42 131
2 1 1000 || 17.8 | 32.0 | 14.5 | 2.0 1.2 32 ] 292 | 00| 00
2 909 || 175 ] 284 [ 13.2] 0.1 0.2 0.0 | 27.2 15| 1.8
Lu- 1 968 || 168 | 308 | 169 0.1 03 0.0 | 274 25 2.0
CONT 3 1 61.3 89| 1490 16.1] 09| 08 57 [ 141 00 | 0.0
2 574 79| 1560 ] 177 0.1 0.0 0.0 | 133 1.1 1.8
2 T 1000 ] 196 154 ] 7.6 23.3 14 34 | 29.4 0.0 ] 0.0
2 875 || 210 140 7.1 ]| 03] 02 0.0 | 32.3 10.4 | 2.2
Lu- 1 868 | 198 133] 91| 03] 03 0.0 | 319 9.9 | 22
NCONT 1 T G40 || 114 | 7.4 126 | 80 01 58 | 18.5 0.0 ] 00
2 577 || 10.1] 78] 11.0] 02| 00 0.0 | 213 a8 | 24
2 1 1000 || 196 | 43.7 | 4.4 ] 12.7 | 3.8 04 ] 155 0.0 ] 00
2 893 || 204 | 39.2| 46| 00| 00 00 ] 17.5 A9 27
OcEan- 3 1129 ] 206 435 110 00| 00| 00| 289 55 34
CONT 3 1 506 || 104 | 2.1 31| 61 07| 05 383 00| 00
| 2 || 481 95| 198 33| 00| 00 0.0 | 105 35 | 2.3
T 2 1 [l 100.0 | 156 | 32.1 6.5] 11.2 | 13.9 1.2 | 19.5 0.0 ] 0.0
2 991 || 156 319 | 6.1 | 00| 00 0.0 | 280 6.1 | 114
Ocean- 1 1212 || 160 354 | 164 00| 00 0.0 | 33.8 6.5 | 13.1
NCONT 1 T 50.9 82 163 | 30| 49| 70 0] 96 00| 00
| 2 18.8 71] 162| 31| 00| 00 00| 139 27| 5.8
2 1 1000 || 188 | 535 ] 2.5] 2.1 38 8.1 ] 11.2 0.0] 00
2 99.1 || 18.1 | 529 | 1.3 0.1 0.2 00 | 138 09 | 113
RADIX 1 106.1 | 19.0| 54.3 | 4.8 0.1 02 0.0 | 144 15| 115
a 1 53.6 97 ] 2651 16| 1.0 T4 78| 57 00| 00
2 53.8 84| 260 09 0.1 0.1 00| 7.9 06| 93

slowdown with four threads per processor. For all applications, however, there is at least
one configuration where software-controlled multithreading improves performance.

Let us begin by focusing on the impact of muitithreading on memory stall times. We
observe that without multithreading, six of the seven applications (all except RADIX) are
spending over a third of their time stalled waiting for data when running on two processors;
in three of these cases (FFT, LU-NCONT, and OCEAN-NCONT), about one-half of execution

time is lost to memory stalls. By exploiting 2-way multithreading on two processors, we are
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able to hide 23% to 63% of the memory stall time; in six of the seven cases, multithreading
hides over 35% of these stalls. As we see in Table 4.1, the bulk of the remaining miss latency
with multithreading is due to misses that combine with other outstanding misses. For these
combined misses, we are able to partially (but not fully) hide the memory latency. This effect
is accentuated in part because our simple round-robin scheduling scheme blindly restarts the
next thread without taking into consideration whether its miss has completed, or whether
there are other threads that are ready to run. We chose our simple thread scheduling scheme,
however, to minimize thread switching overhead and to avoid deadlock.

The benefit of reduced memory stall times is at least partially offset by the thread switch-
ing overheads. In four of the seven applications (CHOLESKY, LU-CONT, LU-NCONT, and
OCEAN-CONT), the switching overhead with two threads each on two processors is less than
30% of the original memory stall time; in the other three cases, however, this overhead is al-
most one-half of the original memory stall time. It is not surprising that the thread switching
times are non-trivially large, given that all of the thread switching is performed by software.
The good news, however, is that the thread switching times are actually small enough that
we do see some non-trivial performance gains. For example, even though FFT experiences a
large thread-switching overhead, it still enjoys a 16% speedup with software-controlled mul-
tithreading. As we see Figure 4.1 and Table 4.1, the bulk of the thread switching overhead
is usually due to saving and restoring registers, as opposed to other time spent in the miss
handler. (The major exception to this is LU-NCONT, where most of the time is spent en-
tering the miss handler and then deciding not to switch threads due to the reference hitting
in the secondary cache.) Later in this chapter, we will evaluate techniques for reducing this
thread-switching overhead.

We observe that multithreading generally had no positive impact on synchronization
stalls. Part of the reason for this is that the bulk of the synchronization stalls in these appli-
cations are due to barriers. Since barrier stall times are dominated by load imbalance, which
is not directly improved by latency tolerance, there is little opportunity for multithreading
to improve their performance. In fact, the synchronization stall times become noticeably
worse with four threads in several applications due to load imbalance problems.

To provide further insight into the multithreading behavior, Table 4.2 shows the following

26



Table 4.2: Additional statistics on the baseline multithreading scheme.

Avg. L2 Average Average
Cache Miss Run Thread
Latency Length | Switch Time
|__Benchmark (cycles) (cycles) (cycles)
[ CHOLESKY 127 826 71
FrT 114 161 56
Lu-coNT 143 1769 57
LU-NCONT 139 1366 53
OCEAN-CONT 84 1125 55
OCEAN-NCONT 83 260 54
RaADIX 137 627 108

statistics: (i) the average secondary cache miss latency, which is the latency that a thread
switch attempts to hide; (ii) the average run length, which is how long a thread executes
between thread switches; and (iii) the average thread switching latency. (These numbers
were collected from the case with two threads per processor on two processors, but the same
trends hold in the other multithreading configurations.) First, we observe that the average
secondary cache miss latency is significantly larger than the average thread switching latency
in all cases. If this were not true, then the overhead of multithreading would offset any
potential gains. Aside from the two versions of OCEAN (which are dominated by capacity
misses, and where there is sufficient locality in the data distribution such that most secondary
cache misses hit in local memory), the average miss latencies in the other applications are over
110 cycles due to the fact that a reasonably large fraction of secondary cache misses require
remote communication. While five of the seven applications have thread switching latencies
ranging from 53 to 57 cycles, CHOLESKY and RADIX experience much larger switching
latencies: 71 and 108 cycles, respectively. These larger switching latencies are primarily
caused by the application displacing the thread switching instructions and data from the
caches between thread switches.

Roughly speaking, we would expect the performance to saturate when the number of
additional threads beyond the main thread is equal to 71—_'_[‘-5, where L, R, and C are the
average miss latency, run length, and thread switching latency, respectively. Given the data
in Table 4.2, we would expect to reach this saturation point with only one additional thread
per processor, which is generally true. The one noticeable exception—FFT, which benefits
from having four threads each on two processors—is also the case with the smallest average

run length.
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Table 4.3: Impact of register partitioning on thread switching latencies.

Avg. Thread Switching Latency (cycles)
Benchmark Baseline Case Register Partitioning
CHOLESKY Tl 26
FFT 56 18
Lu-conT 57 20
LU-NCONT 53 21
OCEAN-CONT 55 20
OCBAN-NCONT 54 19
RADIX 108 37

Finally, we observe that when multiple threads share the same physical cache, they can
potentially interfere with each other either constructively (by effectively prefetching another
thread’s working set) or destructively (by displacing another thread’s working set). While
we did not observe any cases where destructive interference was problematic, we did observe
a case of positive interference. In LU-NCONT, consecutive threads often access the same
cache lines. When these threads are on separate processors, this sharing pattern results in
communication and remote accesses. When consecutive threads are assigned to the same
processor, however (as occurs under multithreading), one thread effectively prefetches the
data set of another thread.

In summary, we have seen that our baseline software-controlled multithreading scheme
can yield non-trivial performance gains. However, a key bottleneck which is limiting further
performance improvement is the time spent switching between threads in software. To

address this problem, we now consider techniques for reducing this overhead.

4.2 Register Partitioning

As we discussed earlier in Section 2.2.1, one approach to reducing the thread switching
overhead is to partition the register set between threads, thereby reducing the number of
registers that must be saved and restored. To perform these experiments, we recompiled
each application using the -ffixed flag in gce to control how many user registers could
be allocated to a given thread. The following special-purpose MIPS registers could not be
partitioned, and must still be saved and restored upon a thread switch: at, v0-v1, a0-a3,

gp, sp; £p, ra and fcr31. By partitioning the remaining registers between threads, we were
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Figure 4.2: Impact of register partitioning on performance (B = baseline multithreading,
R = multithreading with register partitioning). Execution times are normalized to the case
without multithreading on two processors.

able to reduce the thread switching code to only 34 instructions, 24 of which were memory
references. This reduced the average thread switching latency to as little as 18 cycles, as
shown in Table 4.3. As we see in Table 4.3, register partitioning reduces the thread switching
latency by at least a factor of 2.5 in all cases.

Figure 4.2 shows the impact of register partitioning on performance. For each multi-
threading case, we show two bars: the bar labeled B is the base case (shown earlier in
Figure 4.1), and the bar labeled R is the case with register partitioning. As we see in
Figure 4.2, the results are mixed.

In the cases with four threads per processor, register partitioning improves the perfor-
mance of only one application: FFT, which enjoys a 7% speedup. For the other six applica-
tions, the negative impact of increased register spilling more than offsets the positive impact
of faster thread switching. The problem in this case is that partitioning the registers between
four threads eliminates three fourths of the user registers available to a given thread. As
threads run for longer periods of time between thread switches, it becomes more important
to have good register allocation rather than fast thread switching. Hence it is not surprising
that the one application which actually benefits from four-way partitioning (FFT) also had
the shortest average run length (as shown earlier in Table 4.2).

Register partitioning is more successful when there are only two threads per processor,
in part because each thread loses only half of its user registers. As we see in Figure 4.2, two

applications (FFT and RADIX) enjoy significant performance gains from register partitioning
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Table 4.4: Breakdown of the performance for the full register partitioning scheme. Perfor-
mance is normalized to the 2-processor case with no multithreading. Memory stall time is
broken down into misses found in the L2 cache, local memory, or remote memory, and misses
combined with other misses.

# of It Breakdown of Normalized Graduation Slots
Threads || Total Stalls Due to L1 Misses Thread

#of per Exec. Inst. | Sync Found in Location Below Switching |

Benchmark || Procs Proc Time {| Busy | Stall | Stall | L2 ] Mem | Rem. | Comb. | Setup | Regs |
T 2 1 1000 ]| 120] 219 ] 329 ] 22] 33 50 22.7 00| 00
2 1099 || 147 232 | 351 | 07| 1.1| 00| 31.2 21| 1.9
CHOLESKY ] 1403 || 227 | 232 | 521 | 07| 10| 00| 37.2 21| 14
1 T 811 64| 112 ] 60| 08| 25 48] 125 00 00

2 30.5 72 115 | 486 ] 0.1 ] 05| 00| 188 21| 1.8

2 1 1000 ]| 12.1] 208 | 195 ] 1.1] 155 158 ] 15.1 00| 0.0 ]
2 810 || 115 ] 221 ] 174 00| 00| 00| 20.1 55 | 4.3
FFT ] 798 | 106 ] 221 | 187 | 00| 00| 00 | 189 54 4.0
1 T 65.1 56 97| 207 | 05| 76 150 6.1 00| 00
) 58.9 46 ] 111 | 210 00] 00| 00| 146 35| 3.0

2 1 1000 178 ] 320 145 20] 12| 3.2 29.2 0.0 00
Lu 2 900 || 175 ] 288 | 13.2 ] 01| 02 00| 28.3 151 04
- 1 1038 || 160 ] 33.7 | 159 ] 01| 03] 00| 349 25| 04
CONT 3 1 613 || 89 149 161 ] 09| 08 57 ] 141 00| 00
2 55.9 82 142 ] 167 ] 01 ] 00 00 152 T1]| 04
2 1 1000 ]| 196 ] 154 | 7.6 ] 23.3 T4 34| 294 | 00] 0.0
3 515 || 223 ] 140 | 74| 03| 02 00 ] 363 104 ] 0.7
Lu- 3 903 [ 201 | 144 | 128 [ 03[ 03] 00 ] 319 99 07
NCONT ) T 841 || 114 ] 74| 126 80| 0.1 53 | 187 0.0 | 00
" 2 608 || 121 78| 120 02| 00| 00| 23.3 18| 0.7
2 1 1000 || 196 ] 437 | 4.4 ] 127 ] 38| 04 155 00 00
2 964 || 237 413 ] 46 ] 00| 00| 00| 210 51 0.7
OCEAN- 1 Ta28 || 308 | 470 ] 203 | 00| 00| 00 ] 37.1 65| L1
CONT 1 1 505 || 104 ] 2ta| 31 ] 61| 07 09 ] 33 0.0 | 00
2 || 516 11.9] 208 | 39| 00| 00| 00 117 27| 06
2 1 ] 1000 156 321 ] 65| 11.2 ] 13.9 1.2 ] 195 00| 00
2 983 || 18.1 ] 314 ] 62| 00] 00| 00 330 64| 3.2
Ocean- 1 1827 || 275 | 398 | 474 | 00| 00| 00 57.1 75| 3.4
NCONT 1 1 50.0 82 ] 1631 30| 49| 70 o[ 9.6 0.0 00
2__||_500 99| 1701 30| 00| 00] 00| 155 29 | 1.7
2 1 ][ 1000 188 535 ] 25| 21] 38| 81 I1L2 00| 0.0
F) 935 || 181 ] 520 12| o1 o1 00 179 09| 32
RADIX 1 1090 || 249 551 65| 00 00| 00 179 14| 3.2
1 T 53.6 971 265 16| 10| 14| 76| 57 0.0 00
2 51.3 97 262 ] 12] 00] 01 0.0 | 110 0.6 | 2.5

with two threads per processor, and one application (LU-CONT) enjoys a modest speedup.
As we saw earlier in Figure 4.1, FFT, OCEAN-NCONT, and RADIX each spend over 10% of
their time saving and restoring registers to perform thread switches in the baseline case.
Hence it is not surprising that we see large performance gains due to register partitioning in
FFT and RADIX. In contrast, OCEAN-NCONT has higher register pressure than either FFT
or RADIX, and consequently it loses too much performance due to register spilling to make

up for the faster thread switching time.
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Figure 4.3: Performance for dynamic miss prediction scheme based on two-bit counters.

Overall, we see that register partitioning can potentially improve performance by reduc-
ing the number of registers that must be saved and restored upon a thread switch. For
example, in the case of RADIX, software-controlled multithreading offers almost no speedup
on two processors in the baseline case, but it enjoys a 7% speedup with register partitioning.
However, register partitioning is a technique that must be used with caution, since it can
hurt performance if it causes too much register spilling. For example, with four threads
per processor, the penalty of increased spilling due to having only 25% of the original user
registers almost always outweighs the benefits of reduced switching overhead. Since the
decision of whether to perform partitioning is controlled by software, the programmer has
the flexibility to choose the option that works best for a given application. An even better
solution would be for the compiler to make this decision automatically, which may be feasible
since the compiler is aware of register spilling when it performs register allocation, and could

adjust the degree of partitioning accordingly.

4.3 Miss Prediction

The final optimization that we consider is using prediction techniques to avoid invoking the
miss handler upon primary cache misses which hit in the secondary cache (as discussed earlier
in Section 2.2.2). The basic idea is to predict the conditional probability of a secondary cache
miss given a primary cache miss for a specific reference, and to use this information at the

time when a primary miss is detected to decide whether or not to actually invoke the miss
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Table 4.5: Breakdown of performance for the dynamic miss prediction scheme based on
two-bit counters. Performance is normalized to the 2-processor case with no multithreading.
Memory stall time is broken down into misses found in the L2 cache, local memory, or remote
memory, and misses combined with other misses.

# of Breakdown of Normalized Graduation Slots Miss
Threads || Total Stalls Due to L1 Misses Thread Pred
# of per Exec. Inst. | Sync Found in Location Below Switching Acc.
Benchmark || Procs Proc Time || Busy | Stall | Stall [ T2 T Mem | Rem. [ Comb. | Setup | Regs || (%)
2 1 1000 ] 113 179 ] 340] 2.2 38] 58] 250 0.0 0.0 0.0
2 1028 || 1L.1 ]| 196 | 345 | 20| 23 0.2 | 236 17| 78| 786
CHOLESKY 1 1072 || 11.7 ] 18.7 | 35.3 | 2.2 79 1.2 | 24.7 18| 86 [ 702
4 1 83.6 58| 92| 462 ] 09 28 55 | 13.2 0.0 | 0.0 0.0
Z B7.8 5.1 1L.1 | 476 | 1.0 1.2 0.6 | 139 T.1| 6.2 8.7
2 1 1000 ] 116] I86] 181 ] 1.7 160 169 | 17.0 0.0 | 0.0 0.0
2z 903 | 103 | 172 | 189 | 1.1 23 0.9 | 17.0 11| 206 || 786
FFT 1 924 || 109 | 206 | 135 | 1.4 2.6 1.7 | 18.7 36| 19.5 || 79.3
1 1 845 81| 109 ] 230 1.1 15| 124 ] 65 0.0 00 0.0
2 B1.2 31| 123 | 226 1.0] 03 0.1 | 7.7 2.6 | 114 || 96.1
2 1 1000 || 153 ] 245] 19.6 | 2.9 1.3 3.6 | 32.7 0.0] 0.0 0.0
7 94.0 || 149 | 224 ] 19.4 | 3.2 1.1 0.7 | 295 0.5 | 2.4 | 742
Lu- 4 1029 || 13.4 | 21.8 | 24.0 | 55 7.0 1.9 | 31.3 05 | 2.6 || 67.7
CONT 1 T 69.5 73| 116 ] 239 | 1.3 1.0 74| 164 0.0 | 0.0 0.0
2 67.3 65 | 11.2] 293 | 1.0] 0.0 1.2 ] 153 04| 24 768
2 1 1000 ] 160] 75] 8.1]27.9 1.9 4.4 | 343 “0.0 ] 0.0 0.0
3 96.3 || 146 | 7.5 6. ] 276 15 1.7 | 34.9 04| 2.0 359
Lu- 1 932 || 153 | 78| 44| 276 20 0.6 | 329 05| 201 716
NCONT 1 1 62.2 9.1 ] 40| 135 ] 88| 0. 73 | 194 60| o001l 00
L 2 59.9 81 40 13.0] 83| 0.1 3.1 | 20.4 04| 2.4 833
T 2 1 1000 || (7.5] 39.8 | 3.3 19.2 4.5 0.4 | 15.2 0.0 ] 0.0 0.0
o 2 104.0 16.7 | 38.3 3.8 | 18.7 3.9 09 | 15.2 1.1 5.2 || 56.5
CEAN- 3 90| 70 397 ] 112|152 57 08| 228 13| 54 539
CONT r 1 50.3 93| 19.7] 2.7 89| 038 .1 | 7.9 0.0 | 0.0 0.0
p) 50.8 8.1 194 | 35 7.2 1.3 66| 7.9 0.4 | 24 491
2 1 1000 || 154 | 30.7] 3.3 | 11.5 ] 18.1 1.1 ] 19.9 0.0 ] 0.0 0.0
2 989 || 12.7 | 300 | 3.2 10.2 34 0.1 2L.1 37| 146 | 7.3
OcEan- a 1195 || 11.3 ] 316 ] 16.1 | 105 5.3 08 | 24.9 38 | 152 || 68.1
NCONT ] 1 50.6 80| 1562 ] 21| 568 91 10| 96 0.0 | 0.0 0.0
2 50.7 39 ] 1756 | 49| 4.0 1.9 0.7 | 10.2 1.1 | 65 ] 54.7 ||
2 1 100.0 || 15.1 | 65.0 25] 1.8 3.4 7.2 5.0 0.0 0.0 0.0 |
2 999 || 133 | 649 ] 05| L7 1.7 10| 55 0.5 | 10.7 || 719
RADIX ] 1077 || 138 ] 663 ] 48] 06| 086 09| 68 1.3 | 12.8 || 69.5
1 1 56.1 85 | 32.6 1.9 0.1 0.3 9.8 | 2.9 0.0 | 00 0.0
B 2 554 || 6.2 ] 326 ] 05| 01 0.2 0.9 | 3.2 0.5 | 1.1 | 714 |

handler. In theory, this could allow us to reduce some of the T'S Setup time shown earlier

in Figure 4.1. However, based on the results of our experiments, this optimization does not

appear to be useful in practice.

Figure 4.3 shows the results of our experiments with dynamic hardware prediction, based

on two-bit saturating counters. Table 4.5 shows this same information with memory over-

heads further broken down. As can be seen, we were unable to achieve any speedup over

the baseline case. The fundamental problem is that accurately predicting the conditional
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probability of a secondary cache miss given a primary cache miss is difficult, and the penalty
of a false negative (i.e. failing to predict a secondary cache miss) is extremely large, since
we will fail to hide any of the miss latency in that case. (In contrast, the penalty of a false
positive is much smaller, since we will quickly discover the mistake after entering the miss
handler.)

Another possibility is to use stride predictors. However these are not likely to be helpful
to us, since both the primary and secondary caches share the same line size. While it is easy
to predict that a large fraction of references will hit in the secondary cache (especially those
that enjoy spatial locality), most of these references also hit in the primary cache, in which
case the miss handler would not be invoked anyway.

[n order to find the upper bound on performance improvement through miss prediction
schemes, we performed simulations for perfect miss prediction, i.e. a mechanism with a
prediction accuracy of 100%. The results are shown in Figure 4.4 and Table 4.6. While
a few applications show improvement, the gains are only a few percent over the baseline
case. Applications like LU-NCONT and OCEAN-CONT which have a large number of primary
cache misses that hit in the secondary cache show the most improvement. This is because
we no longer incur the overhead of unnecessarily calling the miss-handler, and immediately
returning when the miss is determined to be a secondary cache hit. As a result, LU-NCONT
shows a 7% improvement over the baseline case, with smaller improvements in the remaining
applications. *

Hence all of the realistic predictors that we considered actually hurt performance by
generating too many false negatives. The lesson that we have learned from these experiments
is that it is far more important to reduce the overhead associated with actually switching
threads (the largest component of which is saving and restoring registers) than trying to
avoid invoking the miss handler in cases where a thread switch is unnecessary. Even if a
very accurate miss predictor could feasibly be implemented, it would only be noticeably

useful for applications in which the vast majority of cache misses are secondary cache hits.

3Note that only a fraction of the TS Setup time can be eliminated, since much of it is due to real thread
switches.
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Figure 4.4: Performance for the perfect miss prediction scheme.

Table 4.6: Breakdown of performance for the perfect miss prediction scheme. Performance is
normalized to the 2-processor case with no multithreading. Memory stall time is broken down
into misses found in the L2 cache, local memory, or remote memory, and misses combined
with other misses.

#of | Breakdown of Normalized Graduation Slots
Threads || Total Stalls Due to L1 Misses Thread
# of per Exec. Inst. | Sync Found in Location Below Switching

Benchmark || Procs Proc Time || Busy { Stall | Stall [ L2 [ Mem em. | Comb. | Setup | Regs ||
2 1 100.0 |] 11.3] 17.9 ] 340 | 2.2 3.6 5.9 | 25.1 0.0 ] 0.0 ]

2 96.8 || 106 | 194 | 34.3 | 2.0 1.2 0.0 | 215 09 ] 68

CHOLESKY 4 104.0 9.7 | 19.3 | 44.8 | 2.0 T.1 0.0 | 19.9 08| 63

1 1 83.5 58| 9.2 46.1| 0.9 2.8 55 | 13.2 00| 0.0

2 84.3 45 ] 107 | 47.1 | L0 0.6 0.0 | 13.3 0.8 | 6.2

2 1 1000]] L1161 186 181 ] 1.7 ] 160] 169] 17.0 0.0 ] 0.0

2 86.7 || 101 ] 19.6 | 169 ] 13 0.0 0.0 | 19.0 1.8 | 18.0

FFT 1 82.0 95 | 19.0] 153 ] 1.2 0.0 0.0 | 18.2 1.7 | 17.1

1 T 64.5 54| 88 189 ] 0.7 78| 15.7 | 7.1 00| 0.0

2 56.2 || 3.0 | 105 ] 180] 0.7 0.0 00| 83 1.1 | 13.6

2 T 1000 ] 153 ] 24.5 19.7 ] 29 1.3 36 | 32.7 00] 00

2 91.3 || 14.8 | 22.1 | 19.4 | 2.9 0.3 0.0 | 29.2 03| 2.3

Lu- 1 95.0 || 14.4 | 22.8 | 24.1 | 2.9 0.4 00| 276 03| 25

CONT 1 1 69.5 78| 116 239§ 1.3 10 74| 164 00 00

N 2 65.7 70| 119 ] 24.3| 1.6 0.2 0.0 | 183 03 | 2.1

T 2 1 100.0 ] 160] 7.5 8.1] 27.9 1.9 4.4 | 34.3 0.0] 00

2 820 185] 7.6| 87| 03 0.3 0.0 | 44.1 0.3 | 2.2

Lu- 1 814 || 17.3| 72| 113} 03 0.3 0.0 | 423 0.3 | 24

NCONT 3 1 62.2 91 40| 135 ] 88| 0.1 73 | 194 00 | 00

2 54.7 || 82| 42| 12.2] 02 0.2 00 | 2638 03| 26

2 1 1000 || 17.5] 39.8 ] 3.3 ] 19.2 1.5 0.4 ] 152 0.0] 00

2 85.1 || 186 | 38.3| 36| 00 0.0 0.0 ] 198 06 | 4.2

OcEan- 1 105.7 || 188 ] 399 ] 121 | 00| 0.0 0.0 | 285 08| 56

CONT 1 1 50.3 93 | 19.7 | 2.7 | 89 0.8 1.1] 7.9 00| 00

2 43| 82] 195| 29| 00 0.0 0.0 | 105 04| 2.8

2 1 1000 || 154 ] 30.7 | 3.3] 115 ] 18.1 1.1] 199 0.0 0.0

2 96.2 || 12.8 | 30.6| 3.0 104 0.0 0.0 | 22.7 26 | 13.9

OcEan- 1 1122 || 127] 335 ] 141 | 99| 00| 00 245 2.7 | 15.0

NCONT 1 1 50.6 80| 152 21| 56 91 10| 96 00| 00
2 48.1 33| 15.8] 26| 52 0.0 0.0 | 115 13| 84 ||

2 1 1000 ] 15.1] 65.0] 2.5] 1.8 3.4 72| 5.0 00| 0.0

2 990 || 135 ] 65.0| 04| LB 0.5 0.7 | 46 05 | 11.9

RaDIX 4 104.9 || 13.9 | 65.3 4.2 | 1.8 0.6 0.8 5.2 05 | 12.5

r 1 56.1 85| 326 19| 01 0.3 98 | 2.9 00| 0.0

2 |[ 542 61 327 | 05| 01 0.3 9.7 | 3.3 0.4 ] 10.0
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Chapter 5

Conclusions

In contrast with previous studies on using multithreading to tolerate memory latencies
in tightly-coupled machines, we have considered a completely new approach: one that is
software-controlled, rather than hardware-controlled. The advantage of our approach is that
due to its much simpler hardware support, it does not run the risk of degrading single-thread
performance in applications which cannot benefit from multithreading (e.g., those that do
not contain parallel threads). For example, our scheme does not require any modifications
to the register file, unlike hardware-controlled schemes which typically require a much larger
register file (thereby increasing register access latencies). The primary hardware support
required by our scheme is informing memory operations, which have already been shown
to be useful for a wide variety of purposes other than multithreading, and which are not
expected to degrade single-thread performance.

Our experimental results demonstrate that software-controlled multithreading can result
in significant performance gains. In our baseline scheme, four of seven applications speed
up by 10% or more, with one application speeding up by 16% (FFT). By judiciously ap-
plying register partitioning to reduce the thread switching overhead in cases where it does
not result in excessive register spilling, we can enjoy even larger speedups: e.g., an overall
speedup of 25% in the case of FFT. Since both remote latencies and the amount of remote
communication are expected to increase with larger numbers of processors, we expect even
greater performance gains on larger scale multiprocessors.

As we look to the future, software-controlled multithreading should become even more at-
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tractive as instruction overhead becomes less and less expensive relative to memory latency.
Software-controlled multithreading is a gentle path to providing the performance benefits of
multithreading when it matters the most, without biting off the full cost and overheads as-
sociated with hardware-controlled multithreading. The attractiveness of software-controlled

multithreading provides another compelling reason for future microprocessors to support

informing memory operations.
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