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Abstract 

Memory latency is becoming an increasingly important performance bottleneck, espe- 

cially in multiprocessors. One technique for tolerating memory latency is multithreading, 

whereby we switch between threads upon expensive cache misses. In contrast with previ- 

ous work on multithreading, we explore a new approach that is software-controlled rather 

than hardware-controlled. Our experimental resul ts demonstrate t hat software-cont rolled 

mult ithreading can result in significant performance gains on a shared-memory mu1 tipro- 

cessor, with the majority of applications speeding up by 10% or more, and one application 

speeding up by 16%. By select ively apply ing a register partitioning opt imization to reduce 

thread-switching overhead, the overd speedups increase to as much as 25%. Given the 

much simpler hardware support required by our scheme, and the fact that its software over- 

heads are expected to become less and Less expensive over time relative to memory latencies, 

software-controlled multi threading is attractive alternative to traditional hardware-based 

schemes . 
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Chapter 1 

Introduction 

Memory latency is a key performance bottleneck in modern microprocessor-based systems. 

As we look to the future, the relative importance of memory latency is expected to increase 

as the gap between processor and memory speeds continues to grow, and as wider-issue pro- 

cessors increase the effective performance penalty of each cycle of latency. While memory 

latency presents a challenge for al1 systems, the problem is especially acute in large-scale 

shared-memory multi processors, w here accesses to remote memory locations can suffer la- 

tencies on the order of hundreds of cycles [9]. Although cache hierarchies are an essential first 

step toward coping with this problem, they are not a complete solution. To further tolerate 

latency, one attractive technique is to use a form of multithreading [l, 15, 181 whereby a 

long-latency access from one thread is overlapped with the computation from other parallel 

threads. (Note that throughout the remainder of this thesis, we will use the term "multi- 

threading" to refer to multithreading for the sake of Iatency tolerance, as opposed to more 

general forms of mu1 t i t hreading.) 

1.1 Previous Work on Multit hreading 

Several researchers have proposed and evaluated hardware-based multithreading schemes in 

the past [l, 2, 8, 15, 181. These schemes c m  be broken down into roughly three categories: 

fine-gmined, coarse-grain ed, and simultaneous mult i t hreading. 



1.1.1 Fine-Grained Multit hreading: The HEP Architecture 

The HEP [lq computer system is a large scale multiprocessor employing an MIMD archi- 

tecture. Its design is strongly adapted to running rnany concurrent processes, through the 

use of fie-grained mdtithreading. The idea behind fine-grained multithreading is to uncon- 

ditionally switch between threads at a very fine granularity: i.e. once every cycle. The HEP 

processor is designed with efficient multit hreading in rnind, and its pipeline dlows for single- 

cycle thread switching when sufficient parallel threads are available. It does not contain a 

data cache, however lârge memory latencies can be compensated for by adding more threads. 

This idea of adding more threads to tolerate latencies fits in well with its modular design, 

since the increased latencies that result from expansion can be compensated for by adding 

more t hreads. 

The architecture of a HEP processor includes a control and data loop. In order to 

facilitate fast t hread swi tching, the processor provides 2048 general purpose 64 bit registers 

for use by the various threads, and hardware state for storing additional process information 

such as the program counter. State information for a HEP process is stored in a structure 

called the process status word (PSW); the control loop consists of these PSWs moving around 

a circular queue. The control loop issues an instruction to the data loop which executes it. 

The control loop also contains a pipelined delay. This is to ensure that the data loop 

completes execution by the time a PSW circulates the control loop and is ready to issue the 

next instruction. For long latency operations such as memory accesses, a process is removed 

from the control loop, and reinserted once the data has been fetched. The control and data 

loops are pipelined into eight segments, therefore in order to keep the processor busy at al1 

times, a minimum of eight processes must be executing concurrently. 

The fine-grained approach to multithreading as used by the HEP architecture is an 

efficient design for a large scaie multiprocessor if a large number of threads are available. It 

features efficient thread switching and can toierate large latencies by adding more parallel 

threads into its control loop. The drawback to this approach, is that if there if is not enough 

thread-level parallelism available, performance tends to suffer relative to a conventional, 

non-multithreaded processor. For exarnple, if only a single thread is executing on a HEP 

processor, at most only one-eighth of its processing resources will be utilized. This problem 



is exacerbated when we consider that processors such as HEP often do not have a data cache, 

and instead rely on having a large number of threads available to compensate for the longer 

lat encies. 

1.1.2 Coarse-Grained Multit hreading: The APRIL Architecture 

The MIT ALEWIFE multiprocessor is a large-scaie, cache-coherent, distributed shared mem- 

ory machine. APRIL [l], the processing element in ALEWIFE, is a pipelined RISC processor 

with extensions to support course-grained rnultithreading. The idea behind coarse-gained 

multithreading is that rather than switch threads on every cycle, we allow a given thread 

to continue running (with the full processor to itself) until it encounters a long-latency 

operation; only at t hat point does the processor switch to executing another thread. 

The APRIL processor provides four copies of the register file, and associated hardware 

for storing the state of each thread. A frame pointer points to the current thread state. A 

context switch then consists of simply changing this frame pointer, and allowing the pipeline 

to empty. Clearly while this can be done quickly, it is much slower than thread switching on 

the HEP processor. Since there are four copies of the register file, only four threads can be 

resident on the processor at any given tirne. However unlimited threads can exist, residing 

in memory until the task scheduler loads them onto the processor. APRIL implements 

coarse-grained multithreading by having the cache controller force a thread switch on a 

long-latency memory reques t . As mentioned, t hese t hread swit ching times are non-trivial, 

but since switching is done only on long-latency operations, the overhead is small compared 

to the latency it is attempting to hide. Typically a thread switch will occur on remote 

memory accesses and certain synchronization operations. 

Unlike the fine-grained approach, coarse-grained rnultithreading is not reliant on having 

a large number of parallel threads to hide latencies and fully utilize the processing resources. 

Since thread swit ches occur much less frequently than wit h fine-grained m d t  it hreading, 

APRIL can tolerate latencies in the range 150 to 300 cycles, with just the four resident 

threads. Single-threaded performance is also much closer to what one would get on a non- 

multithreaded processor. The disadvantage of this approach, however, is that since cache 

misses are detected relatively late in the pipeline, the minimum thread switching tirne is 



non-trivially large. Hence this scheme is not appropriate for hiding short latencies (e.g., 

primary cache misses which are satisfied by the secondary cache), and it is primarily used to 

hide the large latencies found in shared-memory multiprocessors. Another problem is that 

since under coarse-grained multithreading, a single thread has full control of the processor 

at any given time, there exists the possibility of starvation and deadlock. Resolving this 

adds complexity to the hardware. For example the APRIL architecture requires hardware 

interlocks to prevent this. 

1.1.3 Simult aneous Mult it hreading 

Multithreading allows a processor to perform useful work when a thread becomes stalled, 

by executing instructions from a different thread during the stalled cycles. However on 

a superscalar processor, issue dots are often wasted within a single cycle. For example, 

a processor that is capable of issuing four instructions every cycle, may actually be able 

to issue only one or two instructions much of the time due to pipeline stdls, instruction 

stalls etc. These unused issue slots within a cycle are termed horizontal waste. One study 

found that about 40% of wasted slots are caused by horizontal waste. A recent proposa1 

known as sim-ultaneous multithreading (SM) [IS] expands on the multithreading concept by 

attempting to fil1 al1 available issue slots in a superscalar processor, using instructions from 

possibly several different threads. As long as the appropriate functional units are always 

available to a ready-to-issue instruction, simultaneous multithreading can eliminate much of 

the wastage. 

While attempting to utilize al1 issue slots in this way can show some impressive perfor- 

mance gains, the hardware required to support SM is quite substantial. In the most general 

case, any issue slot can contain an instmction from any thread, and al1 hardware contexts are 

connected to al1 functional units. This is referred to as full simultaneous issue. Implementing 

this may require unreasonably complex hardware, so researchers have also looked at more 

restrictive schemes t hat reduce the hardware requirements. Variations include providing 

each thead with a futed number of issue slots per cycle, or connecting each thread to only 

one of each type of functional unit. As with the other multithreading schemes, simultaneous 

multithreading uses copies of the register file for storing thread state. Note that there can 



be instmctions frorn multiple threads in the pipeline at the same time which refer to the 

same virtual register. They must be mapped to different physical registers. In effect this is 

what register renaming already accomplishes, so existing support for register renaming c m  

be leveraged when we look to implementing SM. 

In addit ion to reducing horizontal waste, simultaneous mult ithreading is attractive as it 

enjoys good single-thread performance without paying a signifiant thread switching penalty. 

This is in contrast to the fine-grained approach which showed poor single-thread performance, 

and to the couse-grained scheme which had non-trivial thread switching overheads. The ma- 

jor disadvant age to simultaneous mult it hreading is the hardware complexi ty of implement ing 

it, particularly for the full simultaneous issue method. 

1.1.4 Int erleaving 

Interleaving [8] is an earlier approach to multithreading which shares aspects of both fine- 

grained multithreading and simultaneous multithreading. The idea, as with SM, is to ailow 

instructions from different threads to be in the pipeline at the same time. However inter- 

leaving does not attempt to hide horizontal waste, and in fact work in this area was done on 

a non-superscalar processor. Interleaving t hen is a form of cycle- by-cycle context swi t ching, 

but designed to overcome some of the problems witL previous fine-grained processon such 

as HEP. 

The authors identify two problems with the fine-grained approach. One is the lack of a 

data cache, and other is the inability to have more than one instruction per thread in the 

pipeline at any given time. The interleaving proposa1 involves adding a data cache, and 

adding hardware interlocks to allow multiple instructions €rom the same thread to be in the 

pipeline. The addition of a data cache means that long-latency memory accesses will be 

much less frequent, so fewer threads are needed to tolerate these latencies. Ailowing more 

than one instruction per thread in the pipeline means that the pipeline can be kept full with 

just one thread. This is in contrast to the fine-grained approach where with a single-threaded 

application, the pipeline will be almost empty most of the time. 

Interleaving, then, is in some ways a more restrictive version of simultaneous multithread- 

ing. Like SM, thread switching overhead is very low, and it achieves good single-threaded 



performance. However interleaving uses a simple round-robin scheme for scheduling instruc- 

tions from each thread into the issue slots, rather than the more flexible schemes employed 

by SM. And as mentioned, interleaving does not reduce horizontal waste on superscalar pro- 

cessors. The flip side is that hardware requirements for interleaving are more modest than 

for SM. 

1.2 Motivation for Software Cont rolled Mult it hread- 

ing 

In the previous section we described existing multi t hreading schemes, and note some of t heir 

advantages and drawbacks. A common feature of al1 of these multithreading techniques 

is that the decision of when to switch between threads and the actual switching itself is 

controlled entirely by hardware. As a result, a non-trivial amount of hardware support is 

required to manage the multiple threads. For example, to minimize the thread switching 

latency, coarse-grained multi t hreaded processors typically replicate key per- t hread state such 

as the register file [Il. Under simultaneous multithreading, the concept of '%hread switching" 

is effectively eliminated at the point where instructions reach the functional units-i.e. when 

they are buffered in dynamic instruction scheduling queues-since register renarning has 

already isolated the effects of independent threads. However, simultaneous multithreading 

does require some non-trivial hardware support to fetch, issue, and retire instructions from 

multiple threads properly. More importantly, simultaneous multit hreading requires a larger 

register file to accommodate the multiple threads, and this is likely to increase register 

access latencies and possibly add additional stages to the pipeline [li']. Concern over the 

potential impact of multithreading hardware support on single-thread performance may be a 

contributing factor to why we have yet to see hardware-based multithreading in commodity 

microprocessors. 

Rather than relying on specialized hardware support, an alternative approach is to use 

software to implement multithreading. The advantage of this approach is that there is obvi- 

ously no degradation in single-thread performance (since the processor is not rnodified); the 

disadvantage, however, is that the thread switching time is significantly larger than when it 



is accelerated by special hardware support, and this may limit the types of latency that c m  

be successfully hidden. Previous st udies have considered purely software-based mult i thread- 

ing in the context of hiding remote latencies in software distributed shared memory (DSM) 

machines [12, 161. Purely software-based multit hreading rnakes sense for software DSMs for 

two reasons: (i) software is already invoked upon the start of a remote access, and therefore 

it knows when to initiate a thread switch; and (ii) remote access latencies are so large in 

software DSMs [3] (typically several orders of magnitude larger than in hardware DSMs [9]) 

that the overhead of switching threads in software is small by cornparison. As a result, both 

the Mowry et  al. [12] and Thitikamol and Keleher [16] studies found positive results when 

using software-based mult i t hreading to hide the large remote latencies in software DSMs. 

An open research question is w het her software- based mu1 t i t hreading can successfully 

tolerate more modest forms of latency, such as the remote latencies in hardware DSMs (e.g., 

the SGI Origin [9]). To implement software-based multithreading, we need two software 

mechanisms: ( i )  the ability to switch between threads; and (ii) a mechanism for knowing 

when to trigger thread switches. The former mechanism is clearly feasible, since software can 

Save and restore al1 t hread-specific state (e.g, registers, the program counter, any condition 

codes, etc.). The latter mechanism, however, had been lacking in the past, since there was 

no way for software to directly observe and react to cache misses in a sufficiently lightweight 

fashion. (Note that the signal handler mechanism used to trigger thread switches in software 

DSMs is not applicable to cache misses, since it is too costly and can only react to page-level 

access violations.) Fortunately, a mechanisrn which provides this functionality was recently 

proposed by Horowitz et  al. [5, 61: in f o n i n g  memory operations. 

1.3 Informing Memory Operations 

The idea behind informing memory operations [5, 614s to make cache misses directly ob- 

servable to software, and to enable software to quickly react to these misses. In essence, 

an informing memory operation consists of a memory operation that is combined-either 

implicitly or explicitly-with a conditional branch-and-link operation where the branch is 

taken only if the reference sufEers a cache miss. Horowitz e t  al. [5,6] describe two possible im- 

plementations of informing memory operations: one based on branching on a cache-outcome 



condition code, and another based on a low-overhead trap. 

The low-overhead trap approach works as foilows. Two new user-visible registers are 

added to the architecture: (i) a Miss Handler Addîess Register (MHAR),  which contains 

the address of the miss handler to be invoked upon a cache miss (setting this register to 

zero disables the trapping mechanism); and (ii) a Miss Handler Return Register (MHRR), 

which contains the return address for resuming execution at the end of the trap (i.e. it 

contains the address of the instruction foiIowing the memory reference that missed). Upon 

a cache miss, if the MHAR contains a non-zero value, then a branch-and-link occurs to 

this address, and the MHRR is set appropriately. Unlike traditional trapping mechanisms, 

this one is extremely lightweight since it occurs entirely at the user level (no operating 

system code is executed), and the only state that is saved is the MHRR. In other words, the 

run-time overhead is comparable to a traditional branch-and-link instruction, rather than a 

tradit ional trap. The aut hors demonstrate how this mechanism can be implemented wit hin 

modern in-order and out-of-order superscalar pipelines without much additional complexity, 

since the bulk of the necessary hardware support already exists for handling branches and 

exceptions. The advantage of the low-overhead trap approach is that it potentially incurs no 

overhead on cache hits (unlike the cache-outcome condition code approach, which requires 

an explicit branch to test the condition code even on cache hits). Hence we will focus on the 

low-overhead trap approach throughout the remainder of this thesis. 

There are a number of applications of informing memory operations. For exarnple, since 

they can be used to collect memory performance information accurately and with little over- 

head, informing memory operations enable a wide range of new perîormance monitoring 

tools which can guide either the programmer or the compiler in identifying and eliminat- 

ing memory performance problems. In addition, Horowitz et al. [5, 61 also demonstrated 

that idonning memory operations can automatically enhance the performance gains from 

software-controlled prefet ching [IO, 11, 131, and that they c m  accelerate software-based 

cache coherence with fine-grained access control [14]. The authon also suggest that infom- 

ing memory operations could be used to implement software-controlled multithreading, but 

there has been no detailed study of this approach until now. 



1.4 Objectives of This Study 

In this thesis, we perfom a detailed evaluation of whet her software-controiled multit hreading 

based on informing memory operations can successfully improve the performance of parallel 

applications ruming on shared-memory multiprocessors with hardware cache coherence. In 

addition to evaluating our baseline scheme, we also investigate a number of extensions which 

are designed to further enhance the performance of software-controlled multithreading. 

We focus on hardware DSMs rather than uniprocessors for two reasons. First, since 

applications written for hardware DSMs already contain pardel threads, it is straightforward 

to extract the additional parallel threads necessary for multithreading. (In contrat, the bulk 

of applications run on uniprocessors contain only a single thread, and parallelizing them is a 

non-trivial effort.) Second, hardware DSMs tend to suffer more from memory latency than 

uniprocessors-due to the large latency of remote accesses and the additional cache misses 

due to communication pat tems-and t herefore t hey are an important target for latency 

tolerance. If software-controlled multithreading on hardware DSMs is successful, then we 

get the best of both worlds: the benefits of multithreading when it pays off, and maximum 

single-thread performance when it does not. 

The remainder of the thesis is organized as follows. We begin in Chapter 2 by examining 

the issues involved in irnplementing software-controlled multithreading. Chapter 3 discusses 

our experimental methodology, and Chapter 4 presents our experimental results. Finally, we 

conclude in Chapter 5. 



Chapter 2 

Software-Cont rolled Mult it hreading 

In this section, we discuss the major challenges and tradeoffs involved with implementing 

software-controlled multithreading. We begin by discussing the hardware support necessary 

for this scheme, and then present a design of the miss handler software which performs the 

actual thread switching. Finally, we discuss how our scheme avoids deadlock and handles 

synchronizat ion event s properly. 

2.1 Hardware Support 

The target architecture for our study is a hardware cache-coherent shared-memory mult i- 

processor comprised of out-of-order superscalar processors. For the sake of concreteness, we 

will use the MIPS RlOOOO processor [21] as the basis for our discussion, although similar 

issues apply to other out-of-order superscalar processors. 

Our goal is to support software-controlled multithreading with minimal hardware support 

beyond infoming memory operations. There are three issues, however, which may require 

some additional hardware: the first two involve potential problems that would prevent us 

from overlapping enough computation with the cache miss, and the third involves our ability 

to select ively s wit ch threads only upon long-latency misses. 

The first obstacle to consider is that when a load s d e r s  a cache miss, it typically cannot 

retire from the reorder buffer until its cache miss has completed. Since ail instructions must 

retire in-order (even in an out-of-order issue machine), this means that a l l  instructions exe- 



cuted after the miss (including thread switching code and the thread that we switch to) must 

remain in the reorder buffer until the miss cornpletes. The problern is that reorder buffen are 

typically s m d  (e.g., 32 entries in the R10000) relative to the number of instructions that one 

ivould need to execute to fully hide a remote cache miss (e.g., several hundred instructions in 

the SGI Origin). Hence the reorder buffer will fil1 up quickly upon a thread switch, causing 

the processor to stall before it can hide the miss latency. For example, the RlOOOO does not 

have sufficient buffering to even execute our thread switching code (described later in Sec- 

tion S.S), let alone the thread that we are attempting to activate. To address this problem, 

we need a mechanism for specifying that the load should be allowed to retire, despite the fact 

that its miss is still in progress. In essence, we would like to convert the load into a prefetch, 

since prefetches can retire before their misses cornplete. Converting the load to a prefetch 

is acceptable because we do not care about the result of the load-only that it brings the 

line into the cache-since we will resume execution by re-executing the load that missed (as 

discussed Iater in Section 2.2). While there are a number of ways to accomplish this, one 

possibility is to set a flag which indicates to the trapping mechanism that upon a cache miss, 

the offending load should be ailowed to retire (sirnilar to a prefetch). Such an option may 

be useful in other cases where the miss hander would Iike to execute a non-trivial arnount 

of code underneath the cache miss, and where the miss handler will resume execution by 

re-executing the load which invoked the trap, rather than the instruction which follows it. 

The second potential problem is chat during a thread switch, any use of the load destina- 

tion register (e.g., if we attempt to Save it to memory as  part of saving the thread state) will 

result in a data dependence that will stall the processor until the load completes. Since we 

do not care about the result of the load (it will be re-executed later), there is no need to Save 

this register value. One software-based solution would be to Save ail registers except the load 

destination; therefore when the register state of the thread we are switching to is restored, 

the act of overwriting this register will break the original data dependence on the load (due to 

register renaming), thus avoiding a s t d .  While this approach will work, the problem is how 

to quickly determine which register is the load target (since this information is not readily 

available inside the miss handler) and avoid saving it. One possibility would be to look up 

this value in a hash table based on the retum address in the MHRR; however, this will result 



in non-trivial software overhead. Another possibility would be for the hardware to make the 

destination register number directly visible to the miss  handler software, perhaps through 

another special architected register. While this would eliminate the need for a hash table 

lookup, we would still need to branch to a specialized version of the thread switching code 

to avoid saving the given register. The most desirable solution would be for the hardware 

to automatically break the data dependence on the load result when it is marking the load 

as being able to retire despite its outstanding miss (as discussed earlier). In other words, we 

would like to fully convert the load to having the same functionality as a prefetch: Le. it can 

graduate immediately, and it produces no register result. Breaking this register dependence 

is realistic for the hardware because the Miss Status Handling Register (MSHR) [7]-the 

structure which tracks an outstanding miss in a lockupfree cache [4]-already maintains 

this register number. In our experiments, we assume that this latter hardware support is 

available. 

The third area where additional hardware support rnay be helpful is in identifying (or 

predicting) whether a given cache miss is likely to suffer a large latency. Since multithreading 

can only improve performance if the miss latency is larger than the latency of switching 

between threads-and since our software-based approach requires roughly 55 cycles to switch 

threads-we cannot hide the latency of primary cache misses which hit in the secondary 

cache. Hence we only want to switch threads upon secondary cache misses (which are still 

large relative to our thread switching time). Ideally, we would like an informing mechanism 

where traps only occur upon secondary misses-however, implementing this may be difficult 

(or even impossible) given how late the secondary cache tags are checked. Instead, we assume 

that traps can only occur upon primary cache misses, but that inside the miss handler we 

can test a flag which indicates whether the primary miss is also a secondary cache miss.' 

This is sirnilar to the condition-code a p p r o d  that was discussed by Horowitz et al. [5, 61. 

Note that in ail three of these cases, the additional hardware support oniy affects actions 

taken upon miss handler invocation, and there is flexibility in how quickly the actions are 

perfomed. Hence we would not expect any of these features to slow down the critical path 

of normal execution. Having described our hardware support, we now discuss how it can be 

'Note that the piocessor d l  interlock on this flag until it is available. 



HandlsrAddress: 
add HHBS, IIHU, -4 // Point t h e  l H U  t o  prsvious i n s t  
bne 80, CUF, L2Uiss // Continue i f  cacha-miss f l a g  is s e t  
j IIHU // e l s e  L2 h i t ,  so junt  r e tu rn  

L2 l i s s  : 
li HHAR, 80 // Disable riss-handlar 
li kO, #Rembasa // Get p t r  t o  c u r r s n t  s t a t e  
la kO, O(k0) 
s o  r i ,  O(k0) // Save in teger  r e g i s t e r s  
su  r 2 ,  4(kO) // excluding kO , k l  , rO 
* .*  

sa  r31, 112(k0) 
sa  fc r31 ,  116(k0) // Save f p  condition code r e g i s t e r  
sd  fO, 120(kO) // Save f p  r e g i s t e r s  
sd f 2 ,  128(k0) 
.. . 
sd 130, 240(k0) 
su I H U ,  248(k0) // Save UHRR 
addu kO, kO, 256 // Find & Save p t r  t o  new context s t a t e  
and kO, kO , 8FFPFOFFW/ Assume 16 contexts  ,266 bytes/context 

// and round robin s e l a c t i o n  i s thod  
s a  kO, Hambaae 
l a  r l ,  O(k0) // Restore in teger  r e g i s t e r s  
l a  r2, 4(k0) 
... 
l u  r31, 112(k0) 
l a  f c r31 ,  116(kO) // Restore f p  condi t ion code r e g i s t e r  
Id  fO, 120(k0) // Restore f p  r e g i s t e r r  
l d  f 2 ,  128(k0) . . . 
Id  f30 ,  240Ck0) 
Id  IIHBB, 248(k0) // Bestore IHitR 
li IIHAR, IHandlerAddreJY Re-enabla miss-handler 
j UHBB // lump t o  nso context  

Figure 2.1: MIPS pseudo-code represeatation of the miss handler for software-controlled 
rnultit hreading. 

used to implement the miss handler. 

2.2 Design of the Miss Handler 

We use a single miss handler to implement multithreading, as shown in Figure 2.1. The 

MHAR is set to contain this handler address at the start of execution, and is restored 

alter each trap so that we continue using this same handler. As we see in Figure 2.1, the 

miss handler begins by subtracting four bytes (Le. one instruction word) from the MHRR 

so that it will eventudy restart the thread at the mernory reference that missed, rather 

than at the instruction after it. The reason for doing this is that the original reference has 

been converted into a prefetch by the hardware (as discussed in the previous section), and 

therefore the reference must be re-executed to complete properly. The handler then tests 



whether the primary miss was also a secondary cache miss. If so, then the handler switches 

to a new thread; ot herwise, it ret unis immediately? 

To switch between threads, the miss handler fist saves the state of the current thread 

to memory, it then selects a thread to restart using a simple round-robin scheme, and fi- 

n d y  it restores the state of this new thread. To prevent the memory references inside the 

miss handler from t riggering addi tional informing memory traps, the t rapping mechanism 

is disabled during the thread switch by writing a zero into the MHAR. Since user code in 

MIPS-based systems does not use the k~ register, we use it as a pointer to where the thread 

state is stored. Assuming that the number of active threads per processor is a power of two, 

our simple round-robin scheme requires only three instructions to determine the next thread 

to be executed. Finally, the handler resumes thread execution by jumping to the address in 

the MHRR. 

As we observe from this code, there are two major dimensions to consider when perform- 

ing multithreading in software: ( i )  how to manage the saving and restoring of t hread state; 

and (ii) how to decide when it is desirable to switch threads. We now consider both of these 

issues in greater detail. 

2.2.1 Saving and Restoring Thread State 

Our multithreading scheme is similar to coarse-grained hardware-based schemes (e.g., 

APRIL [II) in that thread switches are triggered by cache misses. An important difference, 

however, is that these hardware-based schemes devote special hardware to quickly saving 

and restoring the register state of threads. In contrast, we must save and restore registers 

through explicit loads and stores to memory. This overhead accounts for the bulk of our 

thread switching latency (which is roughly 55 cycles). The good news is that the thread 

state tends to stay in the primary data cache, which prevents the latencies from being even 

larger. However, since these non-trivial thread switching times are a potential performance 

bottleneck, we would like to reduce them even further. 

The major trick for reducing the thread switching overhead is to avoid saving and restor- 

?Note that the processor will stall until the secondary cache miss Eiag is valid. If this is likely to take 
a non-trivial amount of time, then some of the thread switching code can be scheduled before this test to 
avoid wasting tirne. 



ing registers that do not need to be preserved. As a simple example, some applications do 

not use floating-point registers at all; by recognizing this fact, we could eliminate roughly 

half of the thread switching overhead in such applications. In general, the compiler can 

determine which registers are live at any given point in the program, and it could use this 

information to select a miss handler that bas been customized to only Save these live regis- 

ters. While this approach may sound good in theory, it sufKers the following limitations in 

pract ice. Fint , customizing the miss haudler on a reference-by-reference bais involves ei t her 

setting the MHAR before each reference, or else using the MHRR inside the miss handler to 

hash into a jump table. The Horowitz et al. study (51 quantified these types of overheads, 

which appear to be large enough to offset a non-trivial portion of the expected gains. A 

related limitation is that creating a large number of customized miss handlers will degrade 

the instruction cache performance. Finally, while it is easy to specify which registers are 

to be saved by choosing the right customized miss handler, it is more difficult to recognize 

which registers are to be restored, since this requires that we recognize the context of the 

suspended t hread.3 

A simpler approach to reducing the overhead of saving and restoring registers is to stat- 

ically partition the registers between threads. For example, if we wanted to run two threads 

per processor, the compiler could compile each thread to use only half of the user registers. 

(Note that special-purpose registers-e.g., the stack pointer-cannot be partitioned.) The 

advantage of this approach is that many of the registers would be preserved in the reg- 

ister file itself, thus avoiding the need to Save them to memory. The main disadvantage, 

however, is that each thread may suffer reduced performance due to having fewer amilable 

registers. ( Another disadvantage is that code replication may impact the instruction cache 

performance.) Rather than taking an all-or-nothing approach, there is in fact a continuum 

of possibilities between saving all registers and partitioning al1 user registers. For exarnple, 

it may be beneficial to give each thread one additional register at the expense of slightly in- 

creased switching overhead. We will evaluate the benefits of this static paxtitioning approach 

later in Chapter 4. 

30ne way to implement this would be to save the instruction address of the customized code that should 
be used to cestore a thread dong with its other register state, and to jump to this address in the process of 
swi tching threads. 



2.2.2 Deciding When to Switch Threads 

The second major challenge for software-controlled multit hreading is s witching threads only 

when the miss latency is expected to be large relative to the thread switching overhead. For 

our purposes, this means switching only upon secondary cache misses. Unfortunately-as 

we mentioned earlier-it is not likely that the result of the secondary cache tag check will be 

available early enough to trigger a trap. Instead, the strategy which we outlined in Figure 2.1 

is to test whether the primary miss (which triggered the trap) is also a secondary cache miss 

once we are inside the miss handler. The main disadvantage of this approach is that if the 

reference does hit in the secondary cache, then we have wasted overhead with no benefit. 

To avoid this useless overhead, we would iike to predict a priori whether a given reference 

is likely to resuit in an expensive cache miss. If we believe that it will not, then we can 

disable the t rapping rnechaoism for t hat reference. One possibility would be for the compiler 

to statically analyze the data locality 111, 191; this technique has mainly been successful a t  

predicting cache misses in matrix-based codes. Another possibility would be to collect a 

profile of how frequently each memory reference sufTers a long-latency miss, and to feed this 

information back into the compiler. Finally, another possibility would be to use hardware 

to predict the conditional probability of a reference suffering a long-latency miss, given that 

it has suffered a primary cache miss. Such a prediction mechanism could use techniques 

similar to those used for branch prediction. With this information, the user could specify 

that they would Like informing traps to occur only upon primary cache misses which are also 

predicted to be expensive misses. Implementing this behavior would be feasible since both 

the primary cache miss signal and the "expensive miss" prediction value would be mailable 

early enough to control the trap mechanism. 

Of course, the drawback of using a prediction mechanism is that if it incorrectly predicts 

that a miss will be inexpensive when it turns to be expensive, then it is too late to invoke 

the thread switching code to hide the miss latency. We will evaluate the potential benefit of 

such techniques later in Chapter 4. 



2.3 Avoiding Deadlock and Handling Synchronizat ion 

Properly 

By interleaving multiple t hreads on the same physical processor, multi t hreading introduces 

the possibility of deadlock in two ways. First, a repeated pattern could occur where thread 

A steals resource X from thread B (which is currently suspended, also waiting for resource 

X), only to suffer a thread switch back to B before .A can use X; when thread B restarts, 

it steals resource X back from thread A, but also switches back to A before B can use 

X, etc. Such a pattern could be repeated infinitely as the two threads rapidly switch back 

and forth but neither thread makes progress. This scenario can arise when multiple threads 

suffer cache misses for unique addresses which map into the same cache entry. To prevent 

this problem, we swap out a given thread only once when it encounters a cache miss. If the 

miss has not completed by the tirne the round-robin scheduler react ivates the thread, then 

the thread stails at that point until the miss completes (rather thaa switching to another 

t hread). Hence forward progress is guaranteed. 

Although it is not clear from our pseudecode in Figure 2.1 how we stall for miss corn- 

pletion when a thread is restarted, there are several ways this might be accomplished. One 

possibility is to combine an explicit test for a partial-latency miss with the test for a sec- 

ondary cache miss inside the miss handler. If the reference is already outstanding, the miss 

handler returns immediately rather than invoke a thread switch. An alternative idea is to 

postpone turning the miss handler back on until after the original reference completes when 

the thread is restarted. This can be accomplished if the hardware supports sampling coun- 

t en  with the informing memory traps, or by scheduling explicit instructions in the code to 

turn the handler back on only after the stalling reference is restarted. In our experiments, 

we mode1 the sampling counter approach. 

The second scenario which can result in deadlock is if thread A spin-waits for a resource 

that is held by thread B, where B is currently suspended on the same processor as A, and 

A never yields the processor to B in the course of spin-waiting. This scenario can arise 

with any form of synchronization that involves spin-waiting (e.g., locks and barriers). Our 

solution is to force a thread switch (in software) as part of all spin-waiting loops. Not only 



does this approach avoid deadlock, it also has the added benefit that it helps the processor 

tolerate synchronization latency. 



Chapter 3 

Experiment al Framework 

To evaluat e our so ftware-con t rolled mult i t hreading scheme, we performed det ailed cycle- 

by-cycle simulations of a collection of seven applications from the SP LASH-:! benchmark 

suite [20] on a shared-memory multiprocessor with out-of-order superscalar processors sim- 

ilar to the MIPS RlOOOO [21]. Our simulation model varies slightly from the actual MIPS 

R1000O-e.g., we mode1 two memory units, and we assume that al1 functional units are fully- 

pipelined. However, we do model the rich details of the processor, including the pipeline, reg- 

is ter renaming, t he reorder buffer , branch predict ion, instruction fet ching, branching penal- 

ties, the memory hierarchy (including contention), etc. The parameters of our model are 

shown in Table 3.1. 

Our multiprocessor system model is roughly based on the SGI Origin [9]. We use a full- 

map directory to implement invalidation-based cache coherence. Remote accesses require 

either two or three network hops, depending on whether the data can be supplied by the 

home node or whether it must be forwarded from a dirty-remote node. We do not model 

network contention, but we do model memory contention in detail. As shown in Table 3.1, 

the two and three hop remote accesses result in nominal latencies of 200 and 300 cycles, 

respectively, not including addi tional delays due to memory content ion. 

We would Iike to emphasize that we simulate the actual thread-switching instructions 

shown in Figure 2.1, rather than simply modeling thread-switching as some fixed latency. 

In addition, we precisely model the timing of the trap mechanisrn for informing memory 

operations in the R10000, as desaibed by Horowitz et al. [5, 61. Our thread-switching code 



Table 3.1: Simulation parameters 

1 Remote Memory 1 300 cycles '(3 h&S) 

/ Branch Prediction 1 2-bit Counten 

Table 3.2: Benchmark characteristics table describes the benchmarks, input data set, and 
cache miss counts. The total nurnber of misses, misses that hit in local memory, and remote 

, 
Pipeline Parameters 

miss counts are given for the 2-processor case. 

Memory Parameters 

Issue Width 
Functional Units 

Reorder Bufkr  Size 
Integer Multiply 
Integer Divide 
Al1 Other Cnteger 
FP Dividc 
FP Square Root 
All Other FP 

Local Memory 
Total Miss Latency t o  

Namc Description Input Data Set 

Line Size 
Instruction Cache 
Data Cache 4 

- 2 Int, 2 FP, 
2 Mem, 1 Branch 

32 
12 cycles 
76 cycles 

. L cycle 
15 cycles 
20 cycles 

2 cycles 

200 cycles (2 hops), 

I 1 1 1 I 

1 CHOLESKY 1 Sparse Cholesky factorizatic., , -. - -.-put file [ 44.6M 1 289K 

328 
. 32KB, 2-way set-assoc 
32KB, 2-way set-assoc 

I 1D fast Fatiricr tranafnrrn 1 85536 comolex aoints I 30.1M 1 256K 

I LU-CONT 1 LU tctorization with 1 512x512 matrix, I 184M 1 755K 

Unif id  Sccondacy Cache 
Data Cache Banks 
Data Cache Fill Time 
(Requires Exclusive Access) 

' Miss Handlers (MSHRs) 
Main Memory Bandwidth 
Totai Miss Latency t o  
Secondary Cache 
Total Miss Latency t o  

contiguous partitions 32x32 elem. blocks 
LU-NCONT LU factorization with 512x512 matrix 205M 7508K 

non-contiguous partitions 32x32 elem. blocks 
OCEAN-CONT Large-scale ocean simulation 130x130 grid 48.9M 2009K 

with contiguous partitions 
OCEAN-NCONT Large-scale ocean simulation 130x130 grid 65.6M 2374K 

with non-contiguous partitions 
RADIX Integer radix sort 262144 keys, radix=1024, 25.9M 197K 

max key value=l024 

2MB, 2-way set-assoc 
2 

4 cycles 

16 for data, 2 for insts 
1 access per 20 cycles 

14 cycles 

78 cycles 

:ache Miss Count 
Local Mern. 1 Remote 

consists of a total of 104 instructions-of these, 94 are memory references. Given that our 

processor has two memory units, the memory references alone would dictate a minimum 

thread switching time of at least 47 cycles. Since we also mode1 the instruction and data 

cache misses caused by the miss handler code, data dependences, resource constraints, etc., 

we observe a thread switching latency that is closer to 55 cycles. (The actual thread switching 

time varies across applications, and in one case is over 100 cycles, as we will see later in 

Chapter 4.) 

We performed our experirnents on the following applications from SPLASH-2: 

CHOLESKY, FFT, LU-CONT, LU-NCONT, OCEAN-CONT, OCEAN-NCONT, and RADIX. Ta- 

ble 3.2 briefly summarizes each application, dong with the input data sets and other statis- 

tics. The applications are described in more detail below, but for a more complete analysis 



of the entire SPLASH-2 suite see the study by Woo e l  al. [20]. Al1 applications were corn- 

piled using version 2.8.0 of the gcc compiler, with -03 optimization. We used the & . T 3  

MIPS instruction interpreter tool (provided by MIPS) to drive our detailed performance 

model, thus dowing us to simulate al1 instructions (including the t hread-swi tching code) in 

a detailed, execution-driven fashion. 

3.1 Description of Benchmark Applications 

CHOLESKY performs a blocked Cholesky factorization on a sparse matrix. The rnatrix is 

factored into the product of a lower triangular matrix and its transpose. It is similar to LU 

factorization but operates on sparse matrices, which tend to have a larger communication 

to computation ratio. CHOLESKY has a large amount of synchronization overhead, which is 

even more pronounced in our simulations because of Load imbalance problems. 

FFT performs a one-dimensional version of the radix-fi six-step FFT aigorithm. The 

data set consists of n cornplex points to be transformed, and another n points referred to as 

the roots of unity. These are organized as fi x fi matrices. The data is distributed among 

the processors, so that each processor has contiguous rows in local memory. This algorithm is 

optimized to minimize interprocessor communication, so there is very little synchronization 

overhead in FFT other than some possible load imbalance. 

LU-CONT and LU-NCONT perform a blocked factorization of a dense matrix into the 

product of lower triangular and upper triangular matrices. The matrix is divided into blocks 

to exploit temporal locality. The user can specify a block size to optimize for both good 

locali ty and good load balancing. The difference between the contiguous and non-contiguous 

versions is that in the case of LU-CONT, the elements in a block are docated contiguously 

in memory, whereas for LU-NCONT they are not. Using contiguous memory improves spatial 

locali ty and reduces false sharing. 

OCEAN-CONT and OCEAN-NCONT study large-scale ocean movements based on eddy 

and boundary currents. The problem grid, which is represented by a 4D-array, is partitioned 

into smaller subgrids containing the data for each cell. OCEAN-CONT docates subgrids 

contiguously in the processor which owns it, while OCEAN-NCONT allocates the subgrids 

non-contiguously. As with LU, we would expect better locality and reduced fdse sharing in 



the contiguous case. 

RADIX performs an integer radix sort using an iterative algorithm. In each iteration, a 

processor generates a local histograrn from its assigned keys. The local histograrns are then 

accumulated into a global histogram. Findy ,  each processor uses the global histogram to 

permute its keys into a new m a y  for the next iteration. 



Chapter 4 

Experiment al Result s 

We now present results from our simulation studies. We begin by evaluating the performance 

of our baseline software-controlled multit hreading scheme. To furt her improve upon t his 

scheme, we evaluate the performance potential of two techniques for reducing overheads: (i) 

register partitioning to reduce the t hread swi tching overheads, and (ii ) miss prediction to 

avoid invoking the miss handler upon secondary cache hits. 

4.1 Performance of the Baseline Software-Controlled 

Mult it hreading Scheme 

The results of our first set of experiments can be found in Figure 4.1 along with Tables 4.1 

and 4.2. Figure 4.1 shows the performance impact of multithreading with two and four 

threads per processor on a two-processor machine, and with two threads per processor on a 

four-processor machine.' Each bar is labeled with the number of threads per processor, with 

the nurnber of processors below that. 

The execut ion times are normalized to the case wit hout multit hreading on two processors, 

and they are broken down into nine categories explaining what happened during all potential 

'Since MINT3 can only simulate up to eight parallel threads at this point, we were not able to explore 
larger machine configurations. By focusing on smaller machine configurations, we tend to underestimate 
the fraction of secondary cache misses that would be remote in a iarger machinehence out resdts are 
conservative since the potential performance gains are likely to be larger in Iarger-scale machines. 
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TS Setup 
Mem Staîl 
Sync SEaU 
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Figure 4.1 : Performance of the baseline software-cont rolled mult it hreading scheme. 

graduation s10ts.~ The bottom section (Busy) is the riumber of slots when instructions 

actually graduate. The klem Stall and Sync Stall sections are any non-graduating slots that - 

can be directly attributed to data cache misses or synchronization, respectively. Table 4.1 

breaks dowo the Mem Stall slots further into four categories: the first three are when a 

primary cache miss is ultimately found in the secondary cache, local memory, or requires 

a remote access, respectively; the fourth case (labeled Comb.) is when a primary cache 

miss is combined with another outstanding miss in progress. Returning to Figure 4.1, the 

top two sections in the multithreading cases represent dots due to the thread switching 

code; these are broken down into time spent saving and restoring registers (TS Regs) and 

the rernaining miss handler time ( TS Setup). Finally, the Inst Stall section is al1 other 

slots where instructions do not graduate. Note that these categories are only a first-order 

approximation of what is limi ting performance, due to the inherent parallelisrn within an out- 

of-order superscalar processor and the fact that delaying one dependence tends to exacerbate 

subsequent dependences. 

As we see in Figure 4.1, software-controlled mult i threading results in significant speedups 

ranging from 10% to 16% in four of the seven applications (FFT, LU-CONT, LU-NCONT, and 

OCEAN-CONT), and more modest speedups of 1-2% in the other three cases. We also see that 

adding more threads does not necessarily improve performance. For example, OCEAN-CONT 

(on two processors) goes from a 12% speedup with two threads per processor to a comparable 

*The nurnber of graduation slots is the issue width (4 in this case) multiplieci by the number of cycles. 
We focus on graduation rather than issue slots to avoid counting speculative operations that are squashed. 



Table 4.1: Breakdown of the performance of the baseline software-controlled multithreading 
scheme. Performance is normalized to the 2-processor case with no multithreading. Mernory 
stall time is broken down into misses found in the L2 cache, local rnernory, or remote mernori, 
and misses combined with other misses. 

I 

slowdown with four threads per processor. For all applications, however, there is at least 

one configuration where software-controlled multithreading improves performance. 

Let us begin by focusing on the impact of multithreading on memory stall times. We 

observe that without multithreading, six of the seven applications (all except RADIX) are 

spending over a third of their time stalled waiting for data when ninning on two processors; 

in three of these cases (FFT, LU-NCONT, and OCEAN-NCONT), about one-half of execution 

time is lost to memory s tds .  By exploiting 2-way multithreading on two processors, we are 

Breakdown of Normalized Graduation Slots 
I I I Stalls Due t o  L1 Misses 1 Thnad 

Benchmark 
# of 
Procs 

per 
Proc 

Exec. 
Time Busy 

Inst. 
Stall 

Sync 
Stall 

Faund in Location Below 
L2 1 Mem f Rem. j Cornb. 

Switching 
Setup 1 Regs ' 



able to hide 23% to 63% of the memory stall time; in six of the seven cases, multithreading 

hides over 35% of these stalls. As we see in Table 4.1, the bulk of the remaining miss latency 

with multithreading is due to misses that combine with other outstanding misses. For these 

combined misses, we are able to partially (but not fully) hide the memory latency. This effect 

is accentuated in part because our simple round-robin scheduling scheme blindly restarts the 

next thread without taking into consideration whether i ts miss has completed, or whether 

there are ot her t hreads t hat are ready to mn. We chose our simple t hread scheduling scheme, 

however, to minimize thread switching overhead and to avoid deadlock. 

The benefit of reduced memory stall times is at least partially offset by the thread switch- 

ing overheads. In four of the seven applications (CHOLESKY, LU-CONT, LU-NCONT, and 

OCEAN-CONT), the switching overhead with two threads each on two processors is less than 

30% of the original memory stall time; in the other three cases, however, this overhead is al- 

most one-half of the original mernory stall time. It is not surprising t bat the thread swi tching 

times are non-trivially large, given t hat al1 of the thread swi tching is performed by software. 

The good news, however, is that the thread switching times are actually small enough that 

we do see some non-trivial performance gains. For example, even though FFT experiences a 

large t hread-swit ching overhead, i t st il1 enjoys a 16% speedup with software-controlled mul- 

tithreading. As we see Figure 4.1 and Table 4.1, the bulk of the thread switching overhead 

is usually due to swing and restoring registers, as opposed to other tirne spent in the miss 

handler. (The major exception to this is LU-NCONT, where most of the time is spent en- 

tering the miss handler and then deciding not to switch threads due to the reference hitting 

in the secondary cache.) Later in this chapter, we will evaluate techniques for reducing this 

thread-switching overhead. 

We observe that multithreading generally had no positive impact on synchronization 

stalls. Part of the reason for this is that the bulk of the synchronization s t d s  in these appli- 

cations are due to barriers. Since barrier stall times are dominated by load irnbalance, which 

is not directly improved by latency tolerance, there is lit tle opportunity for multithreading 

to improve their performance. In fact , the synchronization stall times become noticeably 

worse wi th four threads in several applications due to load imbalance problems. 

To provide further insight into the multithreading behavior, Table 4.2 shows the following 



Table 4.2: Addit ional statistics on the baseline multithreading scheme. 

1 1 Latcncy 1 Length 1 Switch Time 1 
I 

statistics: ( i )  the average secondary cache miss latency, which is the latency that a thread 

switch attempts to hide; (ii) the average run length, which is how long a thread executes 

between thread switches; and (iii) the average thread switching latency. (These numbers 

were collected from the case with two threads per processor on two processors, but the same 

trends hold in the other multithreading configurations.) First, we observe that the average 

secondary cache miss latency is significantly larger than the average thread switching latency 

in al1 cases. If this were not true, then the overhead of multithreading would offset any 

potential gains. Aside from the two versions of OCEAN (which are dominated by capacity 

misses, and where there is sufficient locality in the data distribut ion such that most secondary 

cache misses hi t in local memory), the average miss latencies in the other applications are over 

110 cycles due to the fact that a reasonably large fraction of secondary cache misses require 

remote communication. While five of the seven applications have t hread switching latencies 

ranging from 53 to 57 cycles, CHOLESKY and RADIX experience much larger switching 

latencies: 71 and 108 cycles, respectively. These larger switching latencies are primarily 

caused by the application displacing the thread switching instructions and data from the 

caches between t hread swi tches. 

Roughly speaking, we would expect the performance to saturate when the number of 

additional threads beyond the main thread is equal to &, where L, R, and C are the 

average miss latency, nin length, and thread switching latency, respectiveiy. Given the data 

in Table 4.2, we would expect to reach this saturation point with only one additional thread 

per processor, which is generdy t me. The one noticeable exception-FFT, which benefits 

from having four threads each on two processors-is also the case with the smallest average 

run length. 

Benchmark 
CHOLESKY 

Average 
Thread 

Avg. LZ 
Cache Miss 

Average 
Run 

(cycles) 1 (cycles) 
127 1 826 

(cycles) 
71 



Table 4.3: Impact of register partitioning on thread switching latencies. 

Avg. Thread Switching Latency (cycles) 
Benchmark Baseline Case 1 Register Partitioning 

' 

Finally, we observe that when multiple threads share the same physical cache, they can 

potentially interfere with each other either constructiueiy (by effectively prefetching another 

thread's working set) or destrvctively (by displacing another thread's working set). While 

we did not observe any cases where destructive interference was problematic, we did observe 

a case of positive interference. In LU-NCONT, consecutive threads often access the same 

cache lines. When these threads axe on separate processors, this sharing pattern results in 

communication and remote accesses. When consecutive threads are assigned to the same 

processor, however (as occurs under multi t hreading), one thread effect ively prefetches the 

data set of another thread. 

In summary, we have seen that our baseline software-controlled multithreading scheme 

can yield non-trivial performance gains. However, a key bottleneck which is limiting further 

performance improvement is the time spent switching between threads in software. To 

address this problem, we now consider techniques for reducing this overhead. 

4.2 Regist er Partit ioning 

As we discussed earlier in Section 2.2.1, one approach to reducing the thread switching 

overhead is to partition the register set between threads, thereby reducing the number of 

registers that must be saved and restored. To perfom these experiments, we recompiled 

each application using the -ffixed flag in gcc to control how many user registers could 

be docated to a given thread. The following special-putpose MIPS registers could not be 

partitioned, and must still be saved and restored upon a thread switch: at, vO-VI, aO-a3, 

gp, sp, f p, ra and f c m .  By partitioning the remaining registen between threads, we were 
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Figure 4.2: Impact of register partitioning on performance (B = baseline multithreading, 
R = rnultithreading with register partitioning). Execution times are normalized to the case 
wi t hou t mult it hreading on two processors. 

able to reduce the thread switching code to only 34 instructions, 24 of which were memory 

references. This reduced the average thread switching latency to as little as 18 cycles, as 

shown in Table 4.3. As we see in Table 4.3, register partitioning reduces the thread switching 

latency by at least a factor of 2.5 in ail cases. 

Figure 4.2 shows the impact of register partitioning on performance. For each multi- 

threading case, we show two bars: the bar labeled B is the base case (shown earlier in 

Figure 4.1), and the bar labeled R is the case with register partitioning. As we see in 

Figure 4.2, the results are mixed. 

In the cases with four threads per processor, register pastitioning improves the perfor- 

mance of only one application: FFT, which enjoys a 7% speedup. For the other six applica- 

tions, the negative impact of increased register spilling more than offsets the positive impact 

of faster thread switching. The problem in this case is that partitioning the registers between 

four threads eliminates three fourths of the user registers amilable to a given thread. As 

threads run for longer periods of time between thread switches, it becomes more important 

to have good register ailocation rather than fast thread switching. Hence it is not surprising 

that the one application which actually benefits from four-way partitioning (FFT) also had 

the shortest average nin length (as s h o w  eadier in Table 4.2). 

Register partitioning is more successful when there are only two threads per processor, 

in part because each thread loses only half of its user registen. As we see in Figure 4.2, two 

applications (FFT and RAD IX) enjoy significant performance gains from register partitioning 



Table 4.4: Breakdown of the performance for the full register partitioning scheme. Perfor- 
mance is normalized to the 2-processor case with no multithreading. Memory stall time is 
broken down into misses found in the L2 cache, local memory, or remote memory, and misses 
combined wi t h ot her misses. 

I I  Breakdown of Norrnalized Graduation Slots fl - . . . . . . . . . . . . . . . . - - - - - . . . . . . . 

Total 11 1 1 1 StallsDuetoLlMisses 1 T h m d  1 
Exec. hst. Sync Found in Location Bclow Switching 
Time Busy Stall Stall ' L2 Mem Rem. Comb. Setup Rcga 

' 

I 100.0 12.0 21.9 32.9 2.2 3.3 5.0 22.7 0.0 0.0 

with two threads per processor, and one application (LU-CONT) enjoys a modest speedup. 

As we saw earlier in Figure 4.1, FFT, OCEAN-NCONT, and RADIX each spend over 10% of 

their time swing and restoring registers to perform thread switches in the baseline case. 

Hence it is not surprising that we see large performance gains due to register partitioning in 

FFT and RADIX. In contrat, OCEAN-NCONT has higher register pressure than either FFT 

or RADIX, and consequently it loses too much performance due to register s p i h g  to make 

up for the faster thread switching time. 
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Figure 4.3: Performance for dynamic miss prediction scherne based on two-bit counters. 

Overall, we see t hat register partit ioning can potent ially improve performance by reduc- 

ing the number of registers that must be saved and restored upon a thread switch. For 

example, in the case of RADIX, software-controlled mult ithreading offers almost no speedup 

on two processors in the baseline case, but it enjoys a 7% speedup with register partitioning. 

However, register partitiooing is a technique that must be used with caution, since it can 

hurt performance if it causes too much register spilling. For example, with four threads 

per processor, the penalty of increased spilling due to having only 25% of the original user 

registers almost always outweighs the benefits of reduced switching overhead. Since the 

decision of whether to perform partitioning is controlled by software, the programmer has 

the flexibility to choose the option that works best for a given application. An even better 

solution would be for the compiler to make this decision automatically, which may be feasible 

since the compiler is aware of register spilling when it performs register allocation, and could 

adjust the degree of partit ioning accordingly. 

4.3 Miss Prediction 

The final optimization that we consider is using prediction techniques to avoid invoking the 

miss handler upon primary cache misses which hit in the secondary cache (as discussed earlier 

in Section 2.2.2). The basic idea is to predict the conditional probability of a secondary cache 

miss given a p n m w  cache miss for a specific reference, and to use this information at the 

tirne when a primary miss is detected to decide whether or not to actually invoke the miss 



Table 4.5: Breakdown of performance for the dynamic miss prediction scheme based on 
twebit counters. Performance is normalized to the 2-processor case with no multithreading. 
Memory stall tirne is broken d o m  into misses found in the L2 cache, local memory, or remote 
memory, and misses combined with other misses. 

P- 

# of Breakdown of Normalized Graduation Slots Miss 
Thrcads Total Stalls Due to L1 Misacs Thnad 

" 
P r d  

# of pcr Exec, Inst. Sync Found in Location Below Switching Acc. 
Benchmark Procs Proc Time Busy Stall Stall L2 1 Mem 1 Rem. 1 Comb. Setup 1 Reg " 

(%) 

.. 
2 1 100.0 - 15.1 65.0 2.5 1.8 3.4 7.2 5.0 0.0 0.0 1 0.0 

2 99.9 13.3 64.9 0.5 1.7 1.7 1.0 5.5 0.5 10.7 71.9 
RADIX 4 107.7 13.8 65.3 4.8 0.6 0.6 0.9 6.8 1.3 12.8 

' ' 

69.5 
1 

4 I 56.1 8.5 32.6 1-9 0.1 0.3 9.8 2.9 0.0 0.0 0.0 

L 2 55.4 6.2 32.6 0.5 0.1 1 0.2 0.9 3.2 0.5 11.1 
' 

71.4 

handler. In th-, this could allow us to reduce some of the TS Setup time shown earlier 

in Figure 4.1. However, based on the results of our experiments, this optimization does not 

appear to be useful in practice. 

Figure 4.3 shows the results of our experiments with dynamic hardware prediction, based 

on two-bit saturating counters. Table 4.5 shows this same information with memory over- 

heads further broken down. As can be seen, we were unable to achieve any speedup over 

the baseline case. The fundamental problem is that accurately predicting the conditional 



probability of a secondary cache miss given a primary cache miss is difficult, and the penalty 

of a fdse negative (i.e. failing to predict a secondary cache miss) is extremely large, since 

we will fail to hide any of the miss latency in that case. (In contrat, the penalty of a false 

positive is much smder,  since we will quickly discover the mistake after entering the miss 

handler. ) 

Another possibility is to use stride predictors. However these are not likely to be helpful 

to us, since both the primary and secondary caches share the same line size. While it is easy 

to predict that a large fraction of references will hit in the secondary cache (especidy those 

that enjoy spatial locality), most of these references also hit in the primary cache, in which 

case the miss handler would not be invoked anyway. 

In order to find the upper bound on performance improvernent through miss prediction 

schemes, we performed simulations for perfect miss prediction, i.e. a mechanism with a 

prediction accuracy of 100%. The results are shown in Figure 4.4 and Table 4.6. While 

a few applications show improvement, the gains are only a few percent over the baseline 

case. Applications Iike LU-NCONT and OCEAN-CONT which have a large number of primary 

cache misses that hit in the secondary cache show the most improvement. This is because 

we no longer incur the overhead of unnecessarily calling the miss-handler, and imrnediately 

returning when the miss is determined to be a secondary cache hit. As a result, LU-NCONT 

shows a 7% improvement over the baseline case, with smaller improvements in the remaining 

applications. 3 

Hence al1 of the realistic predictors that we considered actually hurt performance by 

generating too many false negatives. The lesson that we have learned from these experiments 

is that it is far more important to reduce the overhead associated with actually switching 

threads (the largest component of which is saving and restoring registers) than trying to 

avoid invoking the miss handler in cases where a thread switch is unnecessary. Even if a 

very accurate miss predictor could feasibly be implemented, it would only be noticeably 

useful for applications in which the vast majority of cache misses are secondary cache hits. 

- 

3Note that only a fraction of the TS Setup time can be elbinateci, since much of it is due to real thread 
switches. 



FFT LU-CONT LU-NCONT OCEAN-CONT OCEAN-NCONT RADIX 

Figure 4.4: Performance for the perfect miss prediction scheme. 

Table 4.6: Breakdown of performance for the perfect miss prediction scheme. Performance is 
normalized to the 2-processor case with no multithreadiog. Memory stall time is broken down 
into misses found in the L% cache, local memory, or remote memory, and misses combined 
with other misses. 

n Breakdown of Normalized Graduation Slots 
I I r Stdls Due to L1 Misses 



Chapter 5 

Conclusions 

In contrast with previous s tudies on using multithreading to tolerate memory latencies 

in tightly-coupled machines, we have considered a completely new approach: one that is 

sofiware-controlled, rather than hardware-controlled. The advantage of our approach is that 

due to its much simpler hardware support, it does not run the risk of degrading single-thread 

performance in applications which cannot benefit from mult i t hreading (e.g., t hose that do 

not contain parallel threads). For example, our scheme does not require any modifications 

to the register file, unlike hardware-controlled schemes which typica1.y require a much larger 

register file (thereby increasing register access latencies). The primary hardware support 

required by our scheme is informing memory operations, which have already been shown 

to be useful for a wide variety of purposes other than multithreading, and which are not 

expected to degrade single-thread performance. 

Our experimental resul ts demonstrate t hat software-cont rolled mult i t hreading can result 

in significant performance gains. In our baseline scheme, four of seven applications speed 

up by 10% or more, with one application speeding up by 16% (FFT). By judiciously a p  

plying register partitioning to reduce the thread switching overhead in cases where it does 

not result in excessive register spilling, we can enjoy even larger speedups: e.g., an overall 

speedup of 25% in the case of FFT. Since both remote latencies and the arnount of remote 

communication are expected to increase with larger numbers of processors, we expect even 

greater performance gains on larger scale multiprocessors. 

As we look to the future, software-controlled multithreading should become even more at- 



tractive as instruction overhead becomes less and less expensive relative to memory latency. 

Software-controlled mult i t hreading is a gent le pat h to providing the performance benefits of 

multithreading when it matters the most, without biting off the full cost and overheads as 

sociated wi t h hardware-controlled multithreading. The attract iveness of software-controlled 

multithreading provides aaother compelling reason for future rnicroprocessors to support 

informing memory operat ions. 
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