
Software-Controlled Multit hreading
Using Informing Memory Operat ions

Sherwyn R. Ramkissoon

4 Thesis submitted in confonnity with the requirements
for the Degree of Master of Appiied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

@ Copyright by Sherwyn R. Ramkissoon 1999

National Library IN .,ana&
Bibliothèque nationale
du Canada

Aquisitions and Acquisitions et
Bibliographie Services S ~ W ~ C ~ S bibliogaphiques

395 Wellington Street 395, rue Wellington
ûttawa ON K1A ON4 ûîtawaON K1AON4
Canada Canada

Your fib Votre ~ & ~ W C I

The author has granted a non- L'auteur a accordé une licence non
exclusive licence dowing the exclusive permettant a la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seIl reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/nlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Software-Controlled Multit hreading
Using Informing Memory Operations

Master of Applied Science, 1999
Depart ment of Elec trical and Computer Engineering

University of Toronto

Abstract

Memory latency is becoming an increasingly important performance bottleneck, espe-

cially in multiprocessors. One technique for tolerating memory latency is multithreading,

whereby we switch between threads upon expensive cache misses. In contrast with previ-

ous work on multithreading, we explore a new approach that is software-controlled rather

than hardware-controlled. Our experimental resul ts demonstrate t hat software-cont rolled

mult ithreading can result in significant performance gains on a shared-memory mu1 tipro-

cessor, with the majority of applications speeding up by 10% or more, and one application

speeding up by 16%. By select ively apply ing a register partitioning opt imization to reduce

thread-switching overhead, the overd speedups increase to as much as 25%. Given the

much simpler hardware support required by our scheme, and the fact that its software over-

heads are expected to become less and Less expensive over time relative to memory latencies,

software-controlled multi threading is attractive alternative to traditional hardware-based

schemes .

Contents

1 Introduction 1

. 1.1 Previous Work on Multithreading 1

1.1.1 Fine-Grained Multithreading: The HEP Architecture 2

. 1.1.2 Coarse-Grained Multithreading: The APRIL Architecture 3

. 1.1.3 Simultaneous Multithreading 4

. 1.1.4 Interleaving 5

. 1.2 Motivation for Software Cont rolled Mu1 ti t hreading 6

. 1.3 Informing Memory Operatioos 7

. 1.4 Objectives of This Study 9

2 Software-Controlled Multithreading 10

. 2.1 Hardware Support 10

. 2.2 Design of the Miss Handler 13

. 2.2.1 Saving and Restoring Thread State 14

. 2.2.2 Deciding When to Switch Threads 16

. 2.3 Avoiding Deadlock and Handling Synchronization Properly 17

Experimental Framework

3.1 Description of Benchmark Applications

Experimental Results

Performance of the Baseline Soft ware-Controlled

. Register Partit ioning

. Miss Prediction

Multithreading Scheme . .
.
.

iii

5 Conclusions

List of Figures

2.1 MIPS pseudecode representation of the miss handler for software-controlled

mult i t hreading. 13

4.1 Performance of the baseline software-controlled multithreading scheme. . . . 24

4.2 Impact of register parti tioning on performance (B = baseline mult i t hreading,

R = mult it hreading with register parti tioning). Execut ion times are normal-

ized to the case without rnultithreading on two processors. 29

4.3 Performance for dynamic miss prediction scheme based on two-bit counters. 31

4.4 Performance for the perfect miss prediction scheme. 34

List of Tables

3.1 Simulation parameten . 20

3.2 Benchmark characteristics table describes the benchmarks, input data set,

and cache miss counts. The total number of misses, misses that hit in local

memory, and remote miss counts are given for the 2-processor case. 20

4.1 Breakdown of the performance of the baseline software-cont rolled mu1 t i t hread-

ing scheme. Performance is normalized to the 2-processor case with no mul-

tithreading. Memory stall time is broken down into misses found in the L2

cache, local memory, or rernote memory, and misses cornbined with other misses. 25

. 4.2 Additional statistics on the baseline multithreading scheme. 27

. 4.3 Impact of register partitioning on thread switching Iatencies. 28

4.4 Breakdown of the performance for the full register partitioning scheme. Per-

formance is norrnalized to the 2-processor case with no multithreading. Mem-

ory stall time is broken down into misses found in the L2 cache, local memory,

. or remote memory, and misses combined with other misses. 30

4.5 Breakdown of performance for the dynamic miss prediction scheme based on

twwbit counters. Performance is normalized to the 2-processor case with no

multithreading. Memory stall time is broken down into misses found in the

L2 cache, locd memory, or remote memory, and misses combined with other

misses. 32

4.6 Breakdown of performance for the perfect miss prediction scheme. Perfor-

mance is nomalized to the Zprocessor case with no multithreading. Memory

stall time is broken d o m into misses found in the L2 cache, local memory, or

remote rnemory, and misses combined with other misses. 34

Chapter 1

Introduction

Memory latency is a key performance bottleneck in modern microprocessor-based systems.

As we look to the future, the relative importance of memory latency is expected to increase

as the gap between processor and memory speeds continues to grow, and as wider-issue pro-

cessors increase the effective performance penalty of each cycle of latency. While memory

latency presents a challenge for al1 systems, the problem is especially acute in large-scale

shared-memory multi processors, w here accesses to remote memory locations can suffer la-

tencies on the order of hundreds of cycles [9]. Although cache hierarchies are an essential first

step toward coping with this problem, they are not a complete solution. To further tolerate

latency, one attractive technique is to use a form of multithreading [l, 15, 181 whereby a

long-latency access from one thread is overlapped with the computation from other parallel

threads. (Note that throughout the remainder of this thesis, we will use the term "multi-

threading" to refer to multithreading for the sake of Iatency tolerance, as opposed to more

general forms of mu1 t i t hreading.)

1.1 Previous Work on Multit hreading

Several researchers have proposed and evaluated hardware-based multithreading schemes in

the past [l, 2, 8, 15, 181. These schemes c m be broken down into roughly three categories:

fine-gmined, coarse-grain ed, and simultaneous mult i t hreading.

1.1.1 Fine-Grained Multit hreading: The HEP Architecture

The HEP [lq computer system is a large scale multiprocessor employing an MIMD archi-

tecture. Its design is strongly adapted to running rnany concurrent processes, through the

use of fie-grained mdtithreading. The idea behind fine-grained multithreading is to uncon-

ditionally switch between threads at a very fine granularity: i.e. once every cycle. The HEP

processor is designed with efficient multit hreading in rnind, and its pipeline dlows for single-

cycle thread switching when sufficient parallel threads are available. It does not contain a

data cache, however lârge memory latencies can be compensated for by adding more threads.

This idea of adding more threads to tolerate latencies fits in well with its modular design,

since the increased latencies that result from expansion can be compensated for by adding

more t hreads.

The architecture of a HEP processor includes a control and data loop. In order to

facilitate fast t hread swi tching, the processor provides 2048 general purpose 64 bit registers

for use by the various threads, and hardware state for storing additional process information

such as the program counter. State information for a HEP process is stored in a structure

called the process status word (PSW); the control loop consists of these PSWs moving around

a circular queue. The control loop issues an instruction to the data loop which executes it.

The control loop also contains a pipelined delay. This is to ensure that the data loop

completes execution by the time a PSW circulates the control loop and is ready to issue the

next instruction. For long latency operations such as memory accesses, a process is removed

from the control loop, and reinserted once the data has been fetched. The control and data

loops are pipelined into eight segments, therefore in order to keep the processor busy at al1

times, a minimum of eight processes must be executing concurrently.

The fine-grained approach to multithreading as used by the HEP architecture is an

efficient design for a large scaie multiprocessor if a large number of threads are available. It

features efficient thread switching and can toierate large latencies by adding more parallel

threads into its control loop. The drawback to this approach, is that if there if is not enough

thread-level parallelism available, performance tends to suffer relative to a conventional,

non-multithreaded processor. For exarnple, if only a single thread is executing on a HEP

processor, at most only one-eighth of its processing resources will be utilized. This problem

is exacerbated when we consider that processors such as HEP often do not have a data cache,

and instead rely on having a large number of threads available to compensate for the longer

lat encies.

1.1.2 Coarse-Grained Multit hreading: The APRIL Architecture

The MIT ALEWIFE multiprocessor is a large-scaie, cache-coherent, distributed shared mem-

ory machine. APRIL [l], the processing element in ALEWIFE, is a pipelined RISC processor

with extensions to support course-grained rnultithreading. The idea behind coarse-gained

multithreading is that rather than switch threads on every cycle, we allow a given thread

to continue running (with the full processor to itself) until it encounters a long-latency

operation; only at t hat point does the processor switch to executing another thread.

The APRIL processor provides four copies of the register file, and associated hardware

for storing the state of each thread. A frame pointer points to the current thread state. A

context switch then consists of simply changing this frame pointer, and allowing the pipeline

to empty. Clearly while this can be done quickly, it is much slower than thread switching on

the HEP processor. Since there are four copies of the register file, only four threads can be

resident on the processor at any given tirne. However unlimited threads can exist, residing

in memory until the task scheduler loads them onto the processor. APRIL implements

coarse-grained multithreading by having the cache controller force a thread switch on a

long-latency memory reques t . As mentioned, t hese t hread swit ching times are non-trivial,

but since switching is done only on long-latency operations, the overhead is small compared

to the latency it is attempting to hide. Typically a thread switch will occur on remote

memory accesses and certain synchronization operations.

Unlike the fine-grained approach, coarse-grained rnultithreading is not reliant on having

a large number of parallel threads to hide latencies and fully utilize the processing resources.

Since thread swit ches occur much less frequently than wit h fine-grained m d t it hreading,

APRIL can tolerate latencies in the range 150 to 300 cycles, with just the four resident

threads. Single-threaded performance is also much closer to what one would get on a non-

multithreaded processor. The disadvantage of this approach, however, is that since cache

misses are detected relatively late in the pipeline, the minimum thread switching tirne is

non-trivially large. Hence this scheme is not appropriate for hiding short latencies (e.g.,

primary cache misses which are satisfied by the secondary cache), and it is primarily used to

hide the large latencies found in shared-memory multiprocessors. Another problem is that

since under coarse-grained multithreading, a single thread has full control of the processor

at any given time, there exists the possibility of starvation and deadlock. Resolving this

adds complexity to the hardware. For example the APRIL architecture requires hardware

interlocks to prevent this.

1.1.3 Simult aneous Mult it hreading

Multithreading allows a processor to perform useful work when a thread becomes stalled,

by executing instructions from a different thread during the stalled cycles. However on

a superscalar processor, issue dots are often wasted within a single cycle. For example,

a processor that is capable of issuing four instructions every cycle, may actually be able

to issue only one or two instructions much of the time due to pipeline stdls, instruction

stalls etc. These unused issue slots within a cycle are termed horizontal waste. One study

found that about 40% of wasted slots are caused by horizontal waste. A recent proposa1

known as sim-ultaneous multithreading (SM) [IS] expands on the multithreading concept by

attempting to fil1 al1 available issue slots in a superscalar processor, using instructions from

possibly several different threads. As long as the appropriate functional units are always

available to a ready-to-issue instruction, simultaneous multithreading can eliminate much of

the wastage.

While attempting to utilize al1 issue slots in this way can show some impressive perfor-

mance gains, the hardware required to support SM is quite substantial. In the most general

case, any issue slot can contain an instmction from any thread, and al1 hardware contexts are

connected to al1 functional units. This is referred to as full simultaneous issue. Implementing

this may require unreasonably complex hardware, so researchers have also looked at more

restrictive schemes t hat reduce the hardware requirements. Variations include providing

each thead with a futed number of issue slots per cycle, or connecting each thread to only

one of each type of functional unit. As with the other multithreading schemes, simultaneous

multithreading uses copies of the register file for storing thread state. Note that there can

be instmctions frorn multiple threads in the pipeline at the same time which refer to the

same virtual register. They must be mapped to different physical registers. In effect this is

what register renaming already accomplishes, so existing support for register renaming c m

be leveraged when we look to implementing SM.

In addit ion to reducing horizontal waste, simultaneous mult ithreading is attractive as it

enjoys good single-thread performance without paying a signifiant thread switching penalty.

This is in contrast to the fine-grained approach which showed poor single-thread performance,

and to the couse-grained scheme which had non-trivial thread switching overheads. The ma-

jor disadvant age to simultaneous mult it hreading is the hardware complexi ty of implement ing

it, particularly for the full simultaneous issue method.

1.1.4 Int erleaving

Interleaving [8] is an earlier approach to multithreading which shares aspects of both fine-

grained multithreading and simultaneous multithreading. The idea, as with SM, is to ailow

instructions from different threads to be in the pipeline at the same time. However inter-

leaving does not attempt to hide horizontal waste, and in fact work in this area was done on

a non-superscalar processor. Interleaving t hen is a form of cycle- by-cycle context swi t ching,

but designed to overcome some of the problems witL previous fine-grained processon such

as HEP.

The authors identify two problems with the fine-grained approach. One is the lack of a

data cache, and other is the inability to have more than one instruction per thread in the

pipeline at any given time. The interleaving proposa1 involves adding a data cache, and

adding hardware interlocks to allow multiple instructions €rom the same thread to be in the

pipeline. The addition of a data cache means that long-latency memory accesses will be

much less frequent, so fewer threads are needed to tolerate these latencies. Ailowing more

than one instruction per thread in the pipeline means that the pipeline can be kept full with

just one thread. This is in contrast to the fine-grained approach where with a single-threaded

application, the pipeline will be almost empty most of the time.

Interleaving, then, is in some ways a more restrictive version of simultaneous multithread-

ing. Like SM, thread switching overhead is very low, and it achieves good single-threaded

performance. However interleaving uses a simple round-robin scheme for scheduling instruc-

tions from each thread into the issue slots, rather than the more flexible schemes employed

by SM. And as mentioned, interleaving does not reduce horizontal waste on superscalar pro-

cessors. The flip side is that hardware requirements for interleaving are more modest than

for SM.

1.2 Motivation for Software Cont rolled Mult it hread-

ing

In the previous section we described existing multi t hreading schemes, and note some of t heir

advantages and drawbacks. A common feature of al1 of these multithreading techniques

is that the decision of when to switch between threads and the actual switching itself is

controlled entirely by hardware. As a result, a non-trivial amount of hardware support is

required to manage the multiple threads. For example, to minimize the thread switching

latency, coarse-grained multi t hreaded processors typically replicate key per- t hread state such

as the register file [Il. Under simultaneous multithreading, the concept of '%hread switching"

is effectively eliminated at the point where instructions reach the functional units-i.e. when

they are buffered in dynamic instruction scheduling queues-since register renarning has

already isolated the effects of independent threads. However, simultaneous multithreading

does require some non-trivial hardware support to fetch, issue, and retire instructions from

multiple threads properly. More importantly, simultaneous multit hreading requires a larger

register file to accommodate the multiple threads, and this is likely to increase register

access latencies and possibly add additional stages to the pipeline [li']. Concern over the

potential impact of multithreading hardware support on single-thread performance may be a

contributing factor to why we have yet to see hardware-based multithreading in commodity

microprocessors.

Rather than relying on specialized hardware support, an alternative approach is to use

software to implement multithreading. The advantage of this approach is that there is obvi-

ously no degradation in single-thread performance (since the processor is not rnodified); the

disadvantage, however, is that the thread switching time is significantly larger than when it

is accelerated by special hardware support, and this may limit the types of latency that c m

be successfully hidden. Previous st udies have considered purely software-based mult i thread-

ing in the context of hiding remote latencies in software distributed shared memory (DSM)

machines [12, 161. Purely software-based multit hreading rnakes sense for software DSMs for

two reasons: (i) software is already invoked upon the start of a remote access, and therefore

it knows when to initiate a thread switch; and (ii) remote access latencies are so large in

software DSMs [3] (typically several orders of magnitude larger than in hardware DSMs [9])

that the overhead of switching threads in software is small by cornparison. As a result, both

the Mowry et al. [12] and Thitikamol and Keleher [16] studies found positive results when

using software-based mult i t hreading to hide the large remote latencies in software DSMs.

An open research question is w het her software- based mu1 t i t hreading can successfully

tolerate more modest forms of latency, such as the remote latencies in hardware DSMs (e.g.,

the SGI Origin [9]). To implement software-based multithreading, we need two software

mechanisms: (i) the ability to switch between threads; and (ii) a mechanism for knowing

when to trigger thread switches. The former mechanism is clearly feasible, since software can

Save and restore al1 t hread-specific state (e.g, registers, the program counter, any condition

codes, etc.). The latter mechanism, however, had been lacking in the past, since there was

no way for software to directly observe and react to cache misses in a sufficiently lightweight

fashion. (Note that the signal handler mechanism used to trigger thread switches in software

DSMs is not applicable to cache misses, since it is too costly and can only react to page-level

access violations.) Fortunately, a mechanisrn which provides this functionality was recently

proposed by Horowitz et al. [5, 61: in f o n i n g memory operations.

1.3 Informing Memory Operations

The idea behind informing memory operations [5, 614s to make cache misses directly ob-

servable to software, and to enable software to quickly react to these misses. In essence,

an informing memory operation consists of a memory operation that is combined-either

implicitly or explicitly-with a conditional branch-and-link operation where the branch is

taken only if the reference sufEers a cache miss. Horowitz e t al. [5,6] describe two possible im-

plementations of informing memory operations: one based on branching on a cache-outcome

condition code, and another based on a low-overhead trap.

The low-overhead trap approach works as foilows. Two new user-visible registers are

added to the architecture: (i) a Miss Handler Addîess Register (MHAR), which contains

the address of the miss handler to be invoked upon a cache miss (setting this register to

zero disables the trapping mechanism); and (ii) a Miss Handler Return Register (MHRR),

which contains the return address for resuming execution at the end of the trap (i.e. it

contains the address of the instruction foiIowing the memory reference that missed). Upon

a cache miss, if the MHAR contains a non-zero value, then a branch-and-link occurs to

this address, and the MHRR is set appropriately. Unlike traditional trapping mechanisms,

this one is extremely lightweight since it occurs entirely at the user level (no operating

system code is executed), and the only state that is saved is the MHRR. In other words, the

run-time overhead is comparable to a traditional branch-and-link instruction, rather than a

tradit ional trap. The aut hors demonstrate how this mechanism can be implemented wit hin

modern in-order and out-of-order superscalar pipelines without much additional complexity,

since the bulk of the necessary hardware support already exists for handling branches and

exceptions. The advantage of the low-overhead trap approach is that it potentially incurs no

overhead on cache hits (unlike the cache-outcome condition code approach, which requires

an explicit branch to test the condition code even on cache hits). Hence we will focus on the

low-overhead trap approach throughout the remainder of this thesis.

There are a number of applications of informing memory operations. For exarnple, since

they can be used to collect memory performance information accurately and with little over-

head, informing memory operations enable a wide range of new perîormance monitoring

tools which can guide either the programmer or the compiler in identifying and eliminat-

ing memory performance problems. In addition, Horowitz et al. [5, 61 also demonstrated

that idonning memory operations can automatically enhance the performance gains from

software-controlled prefet ching [IO, 11, 131, and that they c m accelerate software-based

cache coherence with fine-grained access control [14]. The authon also suggest that infom-

ing memory operations could be used to implement software-controlled multithreading, but

there has been no detailed study of this approach until now.

1.4 Objectives of This Study

In this thesis, we perfom a detailed evaluation of whet her software-controiled multit hreading

based on informing memory operations can successfully improve the performance of parallel

applications ruming on shared-memory multiprocessors with hardware cache coherence. In

addition to evaluating our baseline scheme, we also investigate a number of extensions which

are designed to further enhance the performance of software-controlled multithreading.

We focus on hardware DSMs rather than uniprocessors for two reasons. First, since

applications written for hardware DSMs already contain pardel threads, it is straightforward

to extract the additional parallel threads necessary for multithreading. (In contrat, the bulk

of applications run on uniprocessors contain only a single thread, and parallelizing them is a

non-trivial effort.) Second, hardware DSMs tend to suffer more from memory latency than

uniprocessors-due to the large latency of remote accesses and the additional cache misses

due to communication pat tems-and t herefore t hey are an important target for latency

tolerance. If software-controlled multithreading on hardware DSMs is successful, then we

get the best of both worlds: the benefits of multithreading when it pays off, and maximum

single-thread performance when it does not.

The remainder of the thesis is organized as follows. We begin in Chapter 2 by examining

the issues involved in irnplementing software-controlled multithreading. Chapter 3 discusses

our experimental methodology, and Chapter 4 presents our experimental results. Finally, we

conclude in Chapter 5.

Chapter 2

Software-Cont rolled Mult it hreading

In this section, we discuss the major challenges and tradeoffs involved with implementing

software-controlled multithreading. We begin by discussing the hardware support necessary

for this scheme, and then present a design of the miss handler software which performs the

actual thread switching. Finally, we discuss how our scheme avoids deadlock and handles

synchronizat ion event s properly.

2.1 Hardware Support

The target architecture for our study is a hardware cache-coherent shared-memory mult i-

processor comprised of out-of-order superscalar processors. For the sake of concreteness, we

will use the MIPS RlOOOO processor [21] as the basis for our discussion, although similar

issues apply to other out-of-order superscalar processors.

Our goal is to support software-controlled multithreading with minimal hardware support

beyond infoming memory operations. There are three issues, however, which may require

some additional hardware: the first two involve potential problems that would prevent us

from overlapping enough computation with the cache miss, and the third involves our ability

to select ively s wit ch threads only upon long-latency misses.

The first obstacle to consider is that when a load s d e r s a cache miss, it typically cannot

retire from the reorder buffer until its cache miss has completed. Since ail instructions must

retire in-order (even in an out-of-order issue machine), this means that a l l instructions exe-

cuted after the miss (including thread switching code and the thread that we switch to) must

remain in the reorder buffer until the miss cornpletes. The problern is that reorder buffen are

typically s m d (e.g., 32 entries in the R10000) relative to the number of instructions that one

ivould need to execute to fully hide a remote cache miss (e.g., several hundred instructions in

the SGI Origin). Hence the reorder buffer will fil1 up quickly upon a thread switch, causing

the processor to stall before it can hide the miss latency. For example, the RlOOOO does not

have sufficient buffering to even execute our thread switching code (described later in Sec-

tion S.S), let alone the thread that we are attempting to activate. To address this problem,

we need a mechanism for specifying that the load should be allowed to retire, despite the fact

that its miss is still in progress. In essence, we would like to convert the load into a prefetch,

since prefetches can retire before their misses cornplete. Converting the load to a prefetch

is acceptable because we do not care about the result of the load-only that it brings the

line into the cache-since we will resume execution by re-executing the load that missed (as

discussed Iater in Section 2.2). While there are a number of ways to accomplish this, one

possibility is to set a flag which indicates to the trapping mechanism that upon a cache miss,

the offending load should be ailowed to retire (sirnilar to a prefetch). Such an option may

be useful in other cases where the miss hander would Iike to execute a non-trivial arnount

of code underneath the cache miss, and where the miss handler will resume execution by

re-executing the load which invoked the trap, rather than the instruction which follows it.

The second potential problem is chat during a thread switch, any use of the load destina-

tion register (e.g., if we attempt to Save it to memory as part of saving the thread state) will

result in a data dependence that will stall the processor until the load completes. Since we

do not care about the result of the load (it will be re-executed later), there is no need to Save

this register value. One software-based solution would be to Save ail registers except the load

destination; therefore when the register state of the thread we are switching to is restored,

the act of overwriting this register will break the original data dependence on the load (due to

register renaming), thus avoiding a s t d . While this approach will work, the problem is how

to quickly determine which register is the load target (since this information is not readily

available inside the miss handler) and avoid saving it. One possibility would be to look up

this value in a hash table based on the retum address in the MHRR; however, this will result

in non-trivial software overhead. Another possibility would be for the hardware to make the

destination register number directly visible to the miss handler software, perhaps through

another special architected register. While this would eliminate the need for a hash table

lookup, we would still need to branch to a specialized version of the thread switching code

to avoid saving the given register. The most desirable solution would be for the hardware

to automatically break the data dependence on the load result when it is marking the load

as being able to retire despite its outstanding miss (as discussed earlier). In other words, we

would like to fully convert the load to having the same functionality as a prefetch: Le. it can

graduate immediately, and it produces no register result. Breaking this register dependence

is realistic for the hardware because the Miss Status Handling Register (MSHR) [7]-the

structure which tracks an outstanding miss in a lockupfree cache [4]-already maintains

this register number. In our experiments, we assume that this latter hardware support is

available.

The third area where additional hardware support rnay be helpful is in identifying (or

predicting) whether a given cache miss is likely to suffer a large latency. Since multithreading

can only improve performance if the miss latency is larger than the latency of switching

between threads-and since our software-based approach requires roughly 55 cycles to switch

threads-we cannot hide the latency of primary cache misses which hit in the secondary

cache. Hence we only want to switch threads upon secondary cache misses (which are still

large relative to our thread switching time). Ideally, we would like an informing mechanism

where traps only occur upon secondary misses-however, implementing this may be difficult

(or even impossible) given how late the secondary cache tags are checked. Instead, we assume

that traps can only occur upon primary cache misses, but that inside the miss handler we

can test a flag which indicates whether the primary miss is also a secondary cache miss.'

This is sirnilar to the condition-code a p p r o d that was discussed by Horowitz et al. [5, 61.

Note that in ail three of these cases, the additional hardware support oniy affects actions

taken upon miss handler invocation, and there is flexibility in how quickly the actions are

perfomed. Hence we would not expect any of these features to slow down the critical path

of normal execution. Having described our hardware support, we now discuss how it can be

'Note that the piocessor d l interlock on this flag until it is available.

HandlsrAddress:
add HHBS, IIHU, -4 // Point t h e l H U t o prsvious i n s t
bne 80, CUF, L2Uiss // Continue i f cacha-miss f l a g is s e t
j IIHU // e l s e L2 h i t , so junt r e tu rn

L2 l i s s :
li HHAR, 80 // Disable riss-handlar
li kO, #Rembasa // Get p t r t o c u r r s n t s t a t e
la kO, O(k0)
s o r i , O(k0) // Save in teger r e g i s t e r s
su r 2 , 4(kO) // excluding kO , k l , rO
* .*

sa r31, 112(k0)
sa fc r31 , 116(k0) // Save f p condition code r e g i s t e r
sd fO, 120(kO) // Save f p r e g i s t e r s
sd f 2 , 128(k0)
.. .
sd 130, 240(k0)
su I H U , 248(k0) // Save UHRR
addu kO, kO, 256 // Find & Save p t r t o new context s t a t e
and kO, kO , 8FFPFOFFW/ Assume 16 contexts ,266 bytes/context

// and round robin s e l a c t i o n i s thod
s a kO, Hambaae
l a r l , O(k0) // Restore in teger r e g i s t e r s
l a r2, 4(k0)
...
l u r31, 112(k0)
l a f c r31 , 116(kO) // Restore f p condi t ion code r e g i s t e r
Id fO, 120(k0) // Restore f p r e g i s t e r r
l d f 2 , 128(k0) . . .
Id f30 , 240Ck0)
Id IIHBB, 248(k0) // Bestore IHitR
li IIHAR, IHandlerAddreJY Re-enabla miss-handler
j UHBB // lump t o nso context

Figure 2.1: MIPS pseudo-code represeatation of the miss handler for software-controlled
rnultit hreading.

used to implement the miss handler.

2.2 Design of the Miss Handler

We use a single miss handler to implement multithreading, as shown in Figure 2.1. The

MHAR is set to contain this handler address at the start of execution, and is restored

alter each trap so that we continue using this same handler. As we see in Figure 2.1, the

miss handler begins by subtracting four bytes (Le. one instruction word) from the MHRR

so that it will eventudy restart the thread at the mernory reference that missed, rather

than at the instruction after it. The reason for doing this is that the original reference has

been converted into a prefetch by the hardware (as discussed in the previous section), and

therefore the reference must be re-executed to complete properly. The handler then tests

whether the primary miss was also a secondary cache miss. If so, then the handler switches

to a new thread; ot herwise, it ret unis immediately?

To switch between threads, the miss handler fist saves the state of the current thread

to memory, it then selects a thread to restart using a simple round-robin scheme, and fi-

n d y it restores the state of this new thread. To prevent the memory references inside the

miss handler from t riggering addi tional informing memory traps, the t rapping mechanism

is disabled during the thread switch by writing a zero into the MHAR. Since user code in

MIPS-based systems does not use the k~ register, we use it as a pointer to where the thread

state is stored. Assuming that the number of active threads per processor is a power of two,

our simple round-robin scheme requires only three instructions to determine the next thread

to be executed. Finally, the handler resumes thread execution by jumping to the address in

the MHRR.

As we observe from this code, there are two major dimensions to consider when perform-

ing multithreading in software: (i) how to manage the saving and restoring of t hread state;

and (ii) how to decide when it is desirable to switch threads. We now consider both of these

issues in greater detail.

2.2.1 Saving and Restoring Thread State

Our multithreading scheme is similar to coarse-grained hardware-based schemes (e.g.,

APRIL [II) in that thread switches are triggered by cache misses. An important difference,

however, is that these hardware-based schemes devote special hardware to quickly saving

and restoring the register state of threads. In contrast, we must save and restore registers

through explicit loads and stores to memory. This overhead accounts for the bulk of our

thread switching latency (which is roughly 55 cycles). The good news is that the thread

state tends to stay in the primary data cache, which prevents the latencies from being even

larger. However, since these non-trivial thread switching times are a potential performance

bottleneck, we would like to reduce them even further.

The major trick for reducing the thread switching overhead is to avoid saving and restor-

?Note that the processor will stall until the secondary cache miss Eiag is valid. If this is likely to take
a non-trivial amount of time, then some of the thread switching code can be scheduled before this test to
avoid wasting tirne.

ing registers that do not need to be preserved. As a simple example, some applications do

not use floating-point registers at all; by recognizing this fact, we could eliminate roughly

half of the thread switching overhead in such applications. In general, the compiler can

determine which registers are live at any given point in the program, and it could use this

information to select a miss handler that bas been customized to only Save these live regis-

ters. While this approach may sound good in theory, it sufKers the following limitations in

pract ice. Fint , customizing the miss haudler on a reference-by-reference bais involves ei t her

setting the MHAR before each reference, or else using the MHRR inside the miss handler to

hash into a jump table. The Horowitz et al. study (51 quantified these types of overheads,

which appear to be large enough to offset a non-trivial portion of the expected gains. A

related limitation is that creating a large number of customized miss handlers will degrade

the instruction cache performance. Finally, while it is easy to specify which registers are

to be saved by choosing the right customized miss handler, it is more difficult to recognize

which registers are to be restored, since this requires that we recognize the context of the

suspended t hread.3

A simpler approach to reducing the overhead of saving and restoring registers is to stat-

ically partition the registers between threads. For example, if we wanted to run two threads

per processor, the compiler could compile each thread to use only half of the user registers.

(Note that special-purpose registers-e.g., the stack pointer-cannot be partitioned.) The

advantage of this approach is that many of the registers would be preserved in the reg-

ister file itself, thus avoiding the need to Save them to memory. The main disadvantage,

however, is that each thread may suffer reduced performance due to having fewer amilable

registers. (Another disadvantage is that code replication may impact the instruction cache

performance.) Rather than taking an all-or-nothing approach, there is in fact a continuum

of possibilities between saving all registers and partitioning al1 user registers. For exarnple,

it may be beneficial to give each thread one additional register at the expense of slightly in-

creased switching overhead. We will evaluate the benefits of this static paxtitioning approach

later in Chapter 4.

30ne way to implement this would be to save the instruction address of the customized code that should
be used to cestore a thread dong with its other register state, and to jump to this address in the process of
swi tching threads.

2.2.2 Deciding When to Switch Threads

The second major challenge for software-controlled multit hreading is s witching threads only

when the miss latency is expected to be large relative to the thread switching overhead. For

our purposes, this means switching only upon secondary cache misses. Unfortunately-as

we mentioned earlier-it is not likely that the result of the secondary cache tag check will be

available early enough to trigger a trap. Instead, the strategy which we outlined in Figure 2.1

is to test whether the primary miss (which triggered the trap) is also a secondary cache miss

once we are inside the miss handler. The main disadvantage of this approach is that if the

reference does hit in the secondary cache, then we have wasted overhead with no benefit.

To avoid this useless overhead, we would iike to predict a priori whether a given reference

is likely to resuit in an expensive cache miss. If we believe that it will not, then we can

disable the t rapping rnechaoism for t hat reference. One possibility would be for the compiler

to statically analyze the data locality 111, 191; this technique has mainly been successful a t

predicting cache misses in matrix-based codes. Another possibility would be to collect a

profile of how frequently each memory reference sufTers a long-latency miss, and to feed this

information back into the compiler. Finally, another possibility would be to use hardware

to predict the conditional probability of a reference suffering a long-latency miss, given that

it has suffered a primary cache miss. Such a prediction mechanism could use techniques

similar to those used for branch prediction. With this information, the user could specify

that they would Like informing traps to occur only upon primary cache misses which are also

predicted to be expensive misses. Implementing this behavior would be feasible since both

the primary cache miss signal and the "expensive miss" prediction value would be mailable

early enough to control the trap mechanism.

Of course, the drawback of using a prediction mechanism is that if it incorrectly predicts

that a miss will be inexpensive when it turns to be expensive, then it is too late to invoke

the thread switching code to hide the miss latency. We will evaluate the potential benefit of

such techniques later in Chapter 4.

2.3 Avoiding Deadlock and Handling Synchronizat ion

Properly

By interleaving multiple t hreads on the same physical processor, multi t hreading introduces

the possibility of deadlock in two ways. First, a repeated pattern could occur where thread

A steals resource X from thread B (which is currently suspended, also waiting for resource

X), only to suffer a thread switch back to B before .A can use X; when thread B restarts,

it steals resource X back from thread A, but also switches back to A before B can use

X, etc. Such a pattern could be repeated infinitely as the two threads rapidly switch back

and forth but neither thread makes progress. This scenario can arise when multiple threads

suffer cache misses for unique addresses which map into the same cache entry. To prevent

this problem, we swap out a given thread only once when it encounters a cache miss. If the

miss has not completed by the tirne the round-robin scheduler react ivates the thread, then

the thread stails at that point until the miss completes (rather thaa switching to another

t hread). Hence forward progress is guaranteed.

Although it is not clear from our pseudecode in Figure 2.1 how we stall for miss corn-

pletion when a thread is restarted, there are several ways this might be accomplished. One

possibility is to combine an explicit test for a partial-latency miss with the test for a sec-

ondary cache miss inside the miss handler. If the reference is already outstanding, the miss

handler returns immediately rather than invoke a thread switch. An alternative idea is to

postpone turning the miss handler back on until after the original reference completes when

the thread is restarted. This can be accomplished if the hardware supports sampling coun-

t en with the informing memory traps, or by scheduling explicit instructions in the code to

turn the handler back on only after the stalling reference is restarted. In our experiments,

we mode1 the sampling counter approach.

The second scenario which can result in deadlock is if thread A spin-waits for a resource

that is held by thread B, where B is currently suspended on the same processor as A, and

A never yields the processor to B in the course of spin-waiting. This scenario can arise

with any form of synchronization that involves spin-waiting (e.g., locks and barriers). Our

solution is to force a thread switch (in software) as part of all spin-waiting loops. Not only

does this approach avoid deadlock, it also has the added benefit that it helps the processor

tolerate synchronization latency.

Chapter 3

Experiment al Framework

To evaluat e our so ftware-con t rolled mult i t hreading scheme, we performed det ailed cycle-

by-cycle simulations of a collection of seven applications from the SP LASH-:! benchmark

suite [20] on a shared-memory multiprocessor with out-of-order superscalar processors sim-

ilar to the MIPS RlOOOO [21]. Our simulation model varies slightly from the actual MIPS

R1000O-e.g., we mode1 two memory units, and we assume that al1 functional units are fully-

pipelined. However, we do model the rich details of the processor, including the pipeline, reg-

is ter renaming, t he reorder buffer , branch predict ion, instruction fet ching, branching penal-

ties, the memory hierarchy (including contention), etc. The parameters of our model are

shown in Table 3.1.

Our multiprocessor system model is roughly based on the SGI Origin [9]. We use a full-

map directory to implement invalidation-based cache coherence. Remote accesses require

either two or three network hops, depending on whether the data can be supplied by the

home node or whether it must be forwarded from a dirty-remote node. We do not model

network contention, but we do model memory contention in detail. As shown in Table 3.1,

the two and three hop remote accesses result in nominal latencies of 200 and 300 cycles,

respectively, not including addi tional delays due to memory content ion.

We would Iike to emphasize that we simulate the actual thread-switching instructions

shown in Figure 2.1, rather than simply modeling thread-switching as some fixed latency.

In addition, we precisely model the timing of the trap mechanisrn for informing memory

operations in the R10000, as desaibed by Horowitz et al. [5, 61. Our thread-switching code

Table 3.1: Simulation parameters

1 Remote Memory 1 300 cycles '(3 h&S)

/ Branch Prediction 1 2-bit Counten

Table 3.2: Benchmark characteristics table describes the benchmarks, input data set, and
cache miss counts. The total nurnber of misses, misses that hit in local memory, and remote

,
Pipeline Parameters

miss counts are given for the 2-processor case.

Memory Parameters

Issue Width
Functional Units

Reorder Bufkr Size
Integer Multiply
Integer Divide
Al1 Other Cnteger
FP Dividc
FP Square Root
All Other FP

Local Memory
Total Miss Latency t o

Namc Description Input Data Set

Line Size
Instruction Cache
Data Cache 4

- 2 Int, 2 FP,
2 Mem, 1 Branch

32
12 cycles
76 cycles

. L cycle
15 cycles
20 cycles

2 cycles

200 cycles (2 hops),

I 1 1 1 I

1 CHOLESKY 1 Sparse Cholesky factorizatic., , -. - -.-put file [44.6M 1 289K

328
. 32KB, 2-way set-assoc
32KB, 2-way set-assoc

I 1D fast Fatiricr tranafnrrn 1 85536 comolex aoints I 30.1M 1 256K

I LU-CONT 1 LU tctorization with 1 512x512 matrix, I 184M 1 755K

Unif id Sccondacy Cache
Data Cache Banks
Data Cache Fill Time
(Requires Exclusive Access)

' Miss Handlers (MSHRs)
Main Memory Bandwidth
Totai Miss Latency t o
Secondary Cache
Total Miss Latency t o

contiguous partitions 32x32 elem. blocks
LU-NCONT LU factorization with 512x512 matrix 205M 7508K

non-contiguous partitions 32x32 elem. blocks
OCEAN-CONT Large-scale ocean simulation 130x130 grid 48.9M 2009K

with contiguous partitions
OCEAN-NCONT Large-scale ocean simulation 130x130 grid 65.6M 2374K

with non-contiguous partitions
RADIX Integer radix sort 262144 keys, radix=1024, 25.9M 197K

max key value=l024

2MB, 2-way set-assoc
2

4 cycles

16 for data, 2 for insts
1 access per 20 cycles

14 cycles

78 cycles

:ache Miss Count
Local Mern. 1 Remote

consists of a total of 104 instructions-of these, 94 are memory references. Given that our

processor has two memory units, the memory references alone would dictate a minimum

thread switching time of at least 47 cycles. Since we also mode1 the instruction and data

cache misses caused by the miss handler code, data dependences, resource constraints, etc.,

we observe a thread switching latency that is closer to 55 cycles. (The actual thread switching

time varies across applications, and in one case is over 100 cycles, as we will see later in

Chapter 4.)

We performed our experirnents on the following applications from SPLASH-2:

CHOLESKY, FFT, LU-CONT, LU-NCONT, OCEAN-CONT, OCEAN-NCONT, and RADIX. Ta-

ble 3.2 briefly summarizes each application, dong with the input data sets and other statis-

tics. The applications are described in more detail below, but for a more complete analysis

of the entire SPLASH-2 suite see the study by Woo e l al. [20]. Al1 applications were corn-

piled using version 2.8.0 of the gcc compiler, with -03 optimization. We used the & . T 3

MIPS instruction interpreter tool (provided by MIPS) to drive our detailed performance

model, thus dowing us to simulate al1 instructions (including the t hread-swi tching code) in

a detailed, execution-driven fashion.

3.1 Description of Benchmark Applications

CHOLESKY performs a blocked Cholesky factorization on a sparse matrix. The rnatrix is

factored into the product of a lower triangular matrix and its transpose. It is similar to LU

factorization but operates on sparse matrices, which tend to have a larger communication

to computation ratio. CHOLESKY has a large amount of synchronization overhead, which is

even more pronounced in our simulations because of Load imbalance problems.

FFT performs a one-dimensional version of the radix-fi six-step FFT aigorithm. The

data set consists of n cornplex points to be transformed, and another n points referred to as

the roots of unity. These are organized as fi x fi matrices. The data is distributed among

the processors, so that each processor has contiguous rows in local memory. This algorithm is

optimized to minimize interprocessor communication, so there is very little synchronization

overhead in FFT other than some possible load imbalance.

LU-CONT and LU-NCONT perform a blocked factorization of a dense matrix into the

product of lower triangular and upper triangular matrices. The matrix is divided into blocks

to exploit temporal locality. The user can specify a block size to optimize for both good

locali ty and good load balancing. The difference between the contiguous and non-contiguous

versions is that in the case of LU-CONT, the elements in a block are docated contiguously

in memory, whereas for LU-NCONT they are not. Using contiguous memory improves spatial

locali ty and reduces false sharing.

OCEAN-CONT and OCEAN-NCONT study large-scale ocean movements based on eddy

and boundary currents. The problem grid, which is represented by a 4D-array, is partitioned

into smaller subgrids containing the data for each cell. OCEAN-CONT docates subgrids

contiguously in the processor which owns it, while OCEAN-NCONT allocates the subgrids

non-contiguously. As with LU, we would expect better locality and reduced fdse sharing in

the contiguous case.

RADIX performs an integer radix sort using an iterative algorithm. In each iteration, a

processor generates a local histograrn from its assigned keys. The local histograrns are then

accumulated into a global histogram. Findy , each processor uses the global histogram to

permute its keys into a new m a y for the next iteration.

Chapter 4

Experiment al Result s

We now present results from our simulation studies. We begin by evaluating the performance

of our baseline software-controlled multit hreading scheme. To furt her improve upon t his

scheme, we evaluate the performance potential of two techniques for reducing overheads: (i)

register partitioning to reduce the t hread swi tching overheads, and (ii) miss prediction to

avoid invoking the miss handler upon secondary cache hits.

4.1 Performance of the Baseline Software-Controlled

Mult it hreading Scheme

The results of our first set of experiments can be found in Figure 4.1 along with Tables 4.1

and 4.2. Figure 4.1 shows the performance impact of multithreading with two and four

threads per processor on a two-processor machine, and with two threads per processor on a

four-processor machine.' Each bar is labeled with the number of threads per processor, with

the nurnber of processors below that.

The execut ion times are normalized to the case wit hout multit hreading on two processors,

and they are broken down into nine categories explaining what happened during all potential

'Since MINT3 can only simulate up to eight parallel threads at this point, we were not able to explore
larger machine configurations. By focusing on smaller machine configurations, we tend to underestimate
the fraction of secondary cache misses that would be remote in a iarger machinehence out resdts are
conservative since the potential performance gains are likely to be larger in Iarger-scale machines.

TS Regs
TS Setup
Mem Staîl
Sync SEaU

lnst sbn
Bwy

Procosson 2 4 2 4 2 4 2 4 2 4 2 4 2 4

CHOLESKY FFT LU-CONT LU-NCONT OC€AN-CONT OCEAN-NCOW W I X

Figure 4.1 : Performance of the baseline software-cont rolled mult it hreading scheme.

graduation s10ts.~ The bottom section (Busy) is the riumber of slots when instructions

actually graduate. The klem Stall and Sync Stall sections are any non-graduating slots that -

can be directly attributed to data cache misses or synchronization, respectively. Table 4.1

breaks dowo the Mem Stall slots further into four categories: the first three are when a

primary cache miss is ultimately found in the secondary cache, local memory, or requires

a remote access, respectively; the fourth case (labeled Comb.) is when a primary cache

miss is combined with another outstanding miss in progress. Returning to Figure 4.1, the

top two sections in the multithreading cases represent dots due to the thread switching

code; these are broken down into time spent saving and restoring registers (TS Regs) and

the rernaining miss handler time (TS Setup). Finally, the Inst Stall section is al1 other

slots where instructions do not graduate. Note that these categories are only a first-order

approximation of what is limi ting performance, due to the inherent parallelisrn within an out-

of-order superscalar processor and the fact that delaying one dependence tends to exacerbate

subsequent dependences.

As we see in Figure 4.1, software-controlled mult i threading results in significant speedups

ranging from 10% to 16% in four of the seven applications (FFT, LU-CONT, LU-NCONT, and

OCEAN-CONT), and more modest speedups of 1-2% in the other three cases. We also see that

adding more threads does not necessarily improve performance. For example, OCEAN-CONT

(on two processors) goes from a 12% speedup with two threads per processor to a comparable

*The nurnber of graduation slots is the issue width (4 in this case) multiplieci by the number of cycles.
We focus on graduation rather than issue slots to avoid counting speculative operations that are squashed.

Table 4.1: Breakdown of the performance of the baseline software-controlled multithreading
scheme. Performance is normalized to the 2-processor case with no multithreading. Mernory
stall time is broken down into misses found in the L2 cache, local rnernory, or remote mernori,
and misses combined with other misses.

I

slowdown with four threads per processor. For all applications, however, there is at least

one configuration where software-controlled multithreading improves performance.

Let us begin by focusing on the impact of multithreading on memory stall times. We

observe that without multithreading, six of the seven applications (all except RADIX) are

spending over a third of their time stalled waiting for data when ninning on two processors;

in three of these cases (FFT, LU-NCONT, and OCEAN-NCONT), about one-half of execution

time is lost to memory s tds . By exploiting 2-way multithreading on two processors, we are

Breakdown of Normalized Graduation Slots
I I I Stalls Due t o L1 Misses 1 Thnad

Benchmark
of
Procs

per
Proc

Exec.
Time Busy

Inst.
Stall

Sync
Stall

Faund in Location Below
L2 1 Mem f Rem. j Cornb.

Switching
Setup 1 Regs '

able to hide 23% to 63% of the memory stall time; in six of the seven cases, multithreading

hides over 35% of these stalls. As we see in Table 4.1, the bulk of the remaining miss latency

with multithreading is due to misses that combine with other outstanding misses. For these

combined misses, we are able to partially (but not fully) hide the memory latency. This effect

is accentuated in part because our simple round-robin scheduling scheme blindly restarts the

next thread without taking into consideration whether i ts miss has completed, or whether

there are ot her t hreads t hat are ready to mn. We chose our simple t hread scheduling scheme,

however, to minimize thread switching overhead and to avoid deadlock.

The benefit of reduced memory stall times is at least partially offset by the thread switch-

ing overheads. In four of the seven applications (CHOLESKY, LU-CONT, LU-NCONT, and

OCEAN-CONT), the switching overhead with two threads each on two processors is less than

30% of the original memory stall time; in the other three cases, however, this overhead is al-

most one-half of the original mernory stall time. It is not surprising t bat the thread swi tching

times are non-trivially large, given t hat al1 of the thread swi tching is performed by software.

The good news, however, is that the thread switching times are actually small enough that

we do see some non-trivial performance gains. For example, even though FFT experiences a

large t hread-swit ching overhead, i t st il1 enjoys a 16% speedup with software-controlled mul-

tithreading. As we see Figure 4.1 and Table 4.1, the bulk of the thread switching overhead

is usually due to swing and restoring registers, as opposed to other tirne spent in the miss

handler. (The major exception to this is LU-NCONT, where most of the time is spent en-

tering the miss handler and then deciding not to switch threads due to the reference hitting

in the secondary cache.) Later in this chapter, we will evaluate techniques for reducing this

thread-switching overhead.

We observe that multithreading generally had no positive impact on synchronization

stalls. Part of the reason for this is that the bulk of the synchronization s t d s in these appli-

cations are due to barriers. Since barrier stall times are dominated by load irnbalance, which

is not directly improved by latency tolerance, there is lit tle opportunity for multithreading

to improve their performance. In fact , the synchronization stall times become noticeably

worse wi th four threads in several applications due to load imbalance problems.

To provide further insight into the multithreading behavior, Table 4.2 shows the following

Table 4.2: Addit ional statistics on the baseline multithreading scheme.

1 1 Latcncy 1 Length 1 Switch Time 1
I

statistics: (i) the average secondary cache miss latency, which is the latency that a thread

switch attempts to hide; (ii) the average run length, which is how long a thread executes

between thread switches; and (iii) the average thread switching latency. (These numbers

were collected from the case with two threads per processor on two processors, but the same

trends hold in the other multithreading configurations.) First, we observe that the average

secondary cache miss latency is significantly larger than the average thread switching latency

in al1 cases. If this were not true, then the overhead of multithreading would offset any

potential gains. Aside from the two versions of OCEAN (which are dominated by capacity

misses, and where there is sufficient locality in the data distribut ion such that most secondary

cache misses hi t in local memory), the average miss latencies in the other applications are over

110 cycles due to the fact that a reasonably large fraction of secondary cache misses require

remote communication. While five of the seven applications have t hread switching latencies

ranging from 53 to 57 cycles, CHOLESKY and RADIX experience much larger switching

latencies: 71 and 108 cycles, respectively. These larger switching latencies are primarily

caused by the application displacing the thread switching instructions and data from the

caches between t hread swi tches.

Roughly speaking, we would expect the performance to saturate when the number of

additional threads beyond the main thread is equal to &, where L, R, and C are the

average miss latency, nin length, and thread switching latency, respectiveiy. Given the data

in Table 4.2, we would expect to reach this saturation point with only one additional thread

per processor, which is generdy t me. The one noticeable exception-FFT, which benefits

from having four threads each on two processors-is also the case with the smallest average

run length.

Benchmark
CHOLESKY

Average
Thread

Avg. LZ
Cache Miss

Average
Run

(cycles) 1 (cycles)
127 1 826

(cycles)
71

Table 4.3: Impact of register partitioning on thread switching latencies.

Avg. Thread Switching Latency (cycles)
Benchmark Baseline Case 1 Register Partitioning

'

Finally, we observe that when multiple threads share the same physical cache, they can

potentially interfere with each other either constructiueiy (by effectively prefetching another

thread's working set) or destrvctively (by displacing another thread's working set). While

we did not observe any cases where destructive interference was problematic, we did observe

a case of positive interference. In LU-NCONT, consecutive threads often access the same

cache lines. When these threads axe on separate processors, this sharing pattern results in

communication and remote accesses. When consecutive threads are assigned to the same

processor, however (as occurs under multi t hreading), one thread effect ively prefetches the

data set of another thread.

In summary, we have seen that our baseline software-controlled multithreading scheme

can yield non-trivial performance gains. However, a key bottleneck which is limiting further

performance improvement is the time spent switching between threads in software. To

address this problem, we now consider techniques for reducing this overhead.

4.2 Regist er Partit ioning

As we discussed earlier in Section 2.2.1, one approach to reducing the thread switching

overhead is to partition the register set between threads, thereby reducing the number of

registers that must be saved and restored. To perfom these experiments, we recompiled

each application using the -ffixed flag in gcc to control how many user registers could

be docated to a given thread. The following special-putpose MIPS registers could not be

partitioned, and must still be saved and restored upon a thread switch: at, vO-VI, aO-a3,

gp, sp, f p, ra and f c m . By partitioning the remaining registen between threads, we were

Rouuori 2 4 2 4 2 4 2 4 2 4 2 4 2 4
CWESKY FR LU-COM LU-NCONT OCEAN-CONT OCEAN-NCONT RAûlX

Figure 4.2: Impact of register partitioning on performance (B = baseline multithreading,
R = rnultithreading with register partitioning). Execution times are normalized to the case
wi t hou t mult it hreading on two processors.

able to reduce the thread switching code to only 34 instructions, 24 of which were memory

references. This reduced the average thread switching latency to as little as 18 cycles, as

shown in Table 4.3. As we see in Table 4.3, register partitioning reduces the thread switching

latency by at least a factor of 2.5 in ail cases.

Figure 4.2 shows the impact of register partitioning on performance. For each multi-

threading case, we show two bars: the bar labeled B is the base case (shown earlier in

Figure 4.1), and the bar labeled R is the case with register partitioning. As we see in

Figure 4.2, the results are mixed.

In the cases with four threads per processor, register pastitioning improves the perfor-

mance of only one application: FFT, which enjoys a 7% speedup. For the other six applica-

tions, the negative impact of increased register spilling more than offsets the positive impact

of faster thread switching. The problem in this case is that partitioning the registers between

four threads eliminates three fourths of the user registers amilable to a given thread. As

threads run for longer periods of time between thread switches, it becomes more important

to have good register ailocation rather than fast thread switching. Hence it is not surprising

that the one application which actually benefits from four-way partitioning (FFT) also had

the shortest average nin length (as s h o w eadier in Table 4.2).

Register partitioning is more successful when there are only two threads per processor,

in part because each thread loses only half of its user registen. As we see in Figure 4.2, two

applications (FFT and RAD IX) enjoy significant performance gains from register partitioning

Table 4.4: Breakdown of the performance for the full register partitioning scheme. Perfor-
mance is normalized to the 2-processor case with no multithreading. Memory stall time is
broken down into misses found in the L2 cache, local memory, or remote memory, and misses
combined wi t h ot her misses.

I I Breakdown of Norrnalized Graduation Slots fl - - - - - -

Total 11 1 1 1 StallsDuetoLlMisses 1 T h m d 1
Exec. hst. Sync Found in Location Bclow Switching
Time Busy Stall Stall ' L2 Mem Rem. Comb. Setup Rcga

'

I 100.0 12.0 21.9 32.9 2.2 3.3 5.0 22.7 0.0 0.0

with two threads per processor, and one application (LU-CONT) enjoys a modest speedup.

As we saw earlier in Figure 4.1, FFT, OCEAN-NCONT, and RADIX each spend over 10% of

their time swing and restoring registers to perform thread switches in the baseline case.

Hence it is not surprising that we see large performance gains due to register partitioning in

FFT and RADIX. In contrat, OCEAN-NCONT has higher register pressure than either FFT

or RADIX, and consequently it loses too much performance due to register s p i h g to make

up for the faster thread switching time.

CHOLESKY FFT LU-CONT LU-NCONT OCEAN-CONT OCEAN-NCONT RAOlX

Figure 4.3: Performance for dynamic miss prediction scherne based on two-bit counters.

Overall, we see t hat register partit ioning can potent ially improve performance by reduc-

ing the number of registers that must be saved and restored upon a thread switch. For

example, in the case of RADIX, software-controlled mult ithreading offers almost no speedup

on two processors in the baseline case, but it enjoys a 7% speedup with register partitioning.

However, register partitiooing is a technique that must be used with caution, since it can

hurt performance if it causes too much register spilling. For example, with four threads

per processor, the penalty of increased spilling due to having only 25% of the original user

registers almost always outweighs the benefits of reduced switching overhead. Since the

decision of whether to perform partitioning is controlled by software, the programmer has

the flexibility to choose the option that works best for a given application. An even better

solution would be for the compiler to make this decision automatically, which may be feasible

since the compiler is aware of register spilling when it performs register allocation, and could

adjust the degree of partit ioning accordingly.

4.3 Miss Prediction

The final optimization that we consider is using prediction techniques to avoid invoking the

miss handler upon primary cache misses which hit in the secondary cache (as discussed earlier

in Section 2.2.2). The basic idea is to predict the conditional probability of a secondary cache

miss given a p n m w cache miss for a specific reference, and to use this information at the

tirne when a primary miss is detected to decide whether or not to actually invoke the miss

Table 4.5: Breakdown of performance for the dynamic miss prediction scheme based on
twebit counters. Performance is normalized to the 2-processor case with no multithreading.
Memory stall tirne is broken d o m into misses found in the L2 cache, local memory, or remote
memory, and misses combined with other misses.

P-

of Breakdown of Normalized Graduation Slots Miss
Thrcads Total Stalls Due to L1 Misacs Thnad

"
P r d

of pcr Exec, Inst. Sync Found in Location Below Switching Acc.
Benchmark Procs Proc Time Busy Stall Stall L2 1 Mem 1 Rem. 1 Comb. Setup 1 Reg "

(%)

..
2 1 100.0 - 15.1 65.0 2.5 1.8 3.4 7.2 5.0 0.0 0.0 1 0.0

2 99.9 13.3 64.9 0.5 1.7 1.7 1.0 5.5 0.5 10.7 71.9
RADIX 4 107.7 13.8 65.3 4.8 0.6 0.6 0.9 6.8 1.3 12.8

' '

69.5
1

4 I 56.1 8.5 32.6 1-9 0.1 0.3 9.8 2.9 0.0 0.0 0.0

L 2 55.4 6.2 32.6 0.5 0.1 1 0.2 0.9 3.2 0.5 11.1
'

71.4

handler. In th-, this could allow us to reduce some of the TS Setup time shown earlier

in Figure 4.1. However, based on the results of our experiments, this optimization does not

appear to be useful in practice.

Figure 4.3 shows the results of our experiments with dynamic hardware prediction, based

on two-bit saturating counters. Table 4.5 shows this same information with memory over-

heads further broken down. As can be seen, we were unable to achieve any speedup over

the baseline case. The fundamental problem is that accurately predicting the conditional

probability of a secondary cache miss given a primary cache miss is difficult, and the penalty

of a fdse negative (i.e. failing to predict a secondary cache miss) is extremely large, since

we will fail to hide any of the miss latency in that case. (In contrat, the penalty of a false

positive is much smder, since we will quickly discover the mistake after entering the miss

handler.)

Another possibility is to use stride predictors. However these are not likely to be helpful

to us, since both the primary and secondary caches share the same line size. While it is easy

to predict that a large fraction of references will hit in the secondary cache (especidy those

that enjoy spatial locality), most of these references also hit in the primary cache, in which

case the miss handler would not be invoked anyway.

In order to find the upper bound on performance improvernent through miss prediction

schemes, we performed simulations for perfect miss prediction, i.e. a mechanism with a

prediction accuracy of 100%. The results are shown in Figure 4.4 and Table 4.6. While

a few applications show improvement, the gains are only a few percent over the baseline

case. Applications Iike LU-NCONT and OCEAN-CONT which have a large number of primary

cache misses that hit in the secondary cache show the most improvement. This is because

we no longer incur the overhead of unnecessarily calling the miss-handler, and imrnediately

returning when the miss is determined to be a secondary cache hit. As a result, LU-NCONT

shows a 7% improvement over the baseline case, with smaller improvements in the remaining

applications. 3

Hence al1 of the realistic predictors that we considered actually hurt performance by

generating too many false negatives. The lesson that we have learned from these experiments

is that it is far more important to reduce the overhead associated with actually switching

threads (the largest component of which is saving and restoring registers) than trying to

avoid invoking the miss handler in cases where a thread switch is unnecessary. Even if a

very accurate miss predictor could feasibly be implemented, it would only be noticeably

useful for applications in which the vast majority of cache misses are secondary cache hits.

-

3Note that only a fraction of the TS Setup time can be elbinateci, since much of it is due to real thread
switches.

FFT LU-CONT LU-NCONT OCEAN-CONT OCEAN-NCONT RADIX

Figure 4.4: Performance for the perfect miss prediction scheme.

Table 4.6: Breakdown of performance for the perfect miss prediction scheme. Performance is
normalized to the 2-processor case with no multithreadiog. Memory stall time is broken down
into misses found in the L% cache, local memory, or remote memory, and misses combined
with other misses.

n Breakdown of Normalized Graduation Slots
I I r Stdls Due to L1 Misses

Chapter 5

Conclusions

In contrast with previous s tudies on using multithreading to tolerate memory latencies

in tightly-coupled machines, we have considered a completely new approach: one that is

sofiware-controlled, rather than hardware-controlled. The advantage of our approach is that

due to its much simpler hardware support, it does not run the risk of degrading single-thread

performance in applications which cannot benefit from mult i t hreading (e.g., t hose that do

not contain parallel threads). For example, our scheme does not require any modifications

to the register file, unlike hardware-controlled schemes which typica1.y require a much larger

register file (thereby increasing register access latencies). The primary hardware support

required by our scheme is informing memory operations, which have already been shown

to be useful for a wide variety of purposes other than multithreading, and which are not

expected to degrade single-thread performance.

Our experimental resul ts demonstrate t hat software-cont rolled mult i t hreading can result

in significant performance gains. In our baseline scheme, four of seven applications speed

up by 10% or more, with one application speeding up by 16% (FFT). By judiciously a p

plying register partitioning to reduce the thread switching overhead in cases where it does

not result in excessive register spilling, we can enjoy even larger speedups: e.g., an overall

speedup of 25% in the case of FFT. Since both remote latencies and the arnount of remote

communication are expected to increase with larger numbers of processors, we expect even

greater performance gains on larger scale multiprocessors.

As we look to the future, software-controlled multithreading should become even more at-

tractive as instruction overhead becomes less and less expensive relative to memory latency.

Software-controlled mult i t hreading is a gent le pat h to providing the performance benefits of

multithreading when it matters the most, without biting off the full cost and overheads as

sociated wi t h hardware-controlled multithreading. The attract iveness of software-controlled

multithreading provides aaother compelling reason for future rnicroprocessors to support

informing memory operat ions.

Bibliography

A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Architecture for
Multiprocessing. in Proceedinp O/ the 17th Annual International Symposium on Computer
Amhitecture, pages 104-114, May 1990.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera
Computer System. In Proceedings of the International Conference on Supercomputing, pages
1-6, June 1990.

S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An Integrated Compile-Tirne/ Run-Time Soft-
ware Distributed Shared Memory System. In Proceedings of the 7th International Conference
on Architectuml Support for Progmmming Languages and Opemting Systems, October 1996.

K. Farkas and N. Jouppi. Complexity/performance t radeoffs wit h non-blocking loads. In
Proceedings O/ the 21 st International Symposium on Computer Architecture, pages 2 11-222,
April 2994.

M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Informing Memory Operations:
Providing Performance Feedback in Modern Processors. In Proceedings of the 23d Interna-
tional Symposium on Computer Architecture, pages 260-270, May 1996.

M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Informing Memory Operations:
Memory Performance Feedback Mechanisms and Their Applications. ACM Tmnsactions on
Computer Systems, 16(2):170-205, May 1998.

D. Kroft. Lockupfree Instruction FetchIPrefetch Cache Organization. In Pmeedings of the
8th International Symposium on Computer Architecture, pages 81-85, 1981.

J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A Multithreading Technique Targeting
Multiprocessors and Workstations. In Proceedings of the Sixth International Conierence on
Architectuml Support for Progmmming Languages and Opemting Systems, pages 308-318,
October 1994.

J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceedings
of the 24th International Symposium on Cornpu ter Amhitecture, pages 241-251, June 1997.

C. K. Luk and T. C. Mowry. Compiler-Based Prefetching for Recursive Data Structures. In
Proceedings of the 7th International Conference on Arcliitectuml Support /or Progmmming
Languages and Opemting Systems, pages 222-233, October 1996.

T. C. Mowry. Tolemting Latency Thmugh Software-Contmlled Data Pn$etching. PhD thesis,
Stanford University, March 1994. Technical Report CSGTR-94626.

[12] T . C. Mowry, C. Q. C. Chan, and A. K. W. Lo. Comparative Evaluation of Latency Tol-
erance Techniques for Software Distributed Shared Memory. In Pmeedings of the 4th IEEE
Symposium on Kgh-Performance Computer Architecturr, pages 300-311, February 1998.

[13] A. K. Porteriield. S o b r e Methods for Improvement 01 Cache Performance on Supercornputer
Applications. PhD thesis, Department of Computer Science, Rice University, May 1989.

[14] 1. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J . R. Larus, and D. A. Wood. Fine-Grain
Access Control for Distributed Shared Memory. In Proceedings of the 6th Intemational Con-
ference on Aîchitectural Support for Progmmming Languages and Opemting Systems, pages
297-306, October 1994.

[15] B. J. Smith. Architecture and applications of the HEP multiprocessor computer system. SPIE,
298241-248, 1981.

[16] K. Thitikamol and P. Keleher. Multi-threading and Remote Latency in Software DSMs. In
Pmeedings of the 17th International Conference on Distributed Computing Systems, 1997.

[lï] D. M. Tullsen, S. J . Eggers, J . S. Emer, H. M. Levy, J . L. Lo, and R. L. Stamm. Exploiting
Choice: Instruction Fetch and Issue on an Implementable Sirnultaneous Multithreading Pro-
cessor. In Proceedings of the 23rd International Symposium on Computer Architecture, pages
191-202, May 1996.

[I8] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing
On-Chip Parallelism. In Pmceedings of ISCA 22, pages 392-403, June 1995.

[19] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Pmeedings of the
SIGPLA N '91 Con ference on Pmgmmming Languoge Design and Implementation, pages 30-
44, June 1991.

P O] S . C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs: Characteri-
zation and methodological considerations. In Pmeedings of the 22nd International Symposium
on Computer Architecture, pages 24-38, June 1995.

[21] K. Yeager. The MIPS RlOOOO Superscalar Microprocessor. IEEE Micro, April 1996.

