
Cache-Efficient Matrix Transposition�

Siddhartha Chatterjeey Sandeep Senz

SUBMITTED FOR PUBLICATION

Abstract

We investigate the memory system performance of
several algorithms for transposing an N �N matrix
in-place, where N is large. Specifically, we investi-
gate the relative contributions of the data cache, the
translation lookaside buffer, register tiling, and the
array layout function to the overall running time of
the algorithms. We use various memory models to
capture and analyze the effect of various facets of
cache memory architecture that guide the choice of
a particular algorithm, and attempt to experimentally
validate the predictions of the model. Our major con-
clusions are as follows: limited associativity in the
mapping from main memory addresses to cache sets
can significantly degrade running time; the limited
number of TLB entries can easily lead to thrashing;
the fanciest optimal algorithms are not competitive
on real machines even at fairly large problem sizes
unless cache miss penalties are quite high; low-level
performance tuning “hacks”, such as register tiling
and array alignment, can significantly distort the ef-
fects of improved algorithms; and hierarchical non-
linear layouts are inherently superior to the standard

�This work is supported in part by DARPA Grant DABT63-
98-1-0001, NSF Grants CDA-97-2637 and CDA-95-12356, The
University of North Carolina at Chapel Hill, Duke University,
and an equipment donation through Intel Corporation’s Tech-
nology for Education 2000 Program. The views and conclusions
contained herein are those of the authors and should not be in-
terpreted as representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

yDepartment of Computer Science, University of North
Carolina, Chapel Hill, NC 27599-3175, USA. E-mail:
sc@cs.unc.edu.

zDepartment of Computer Science, University of North
Carolina, Chapel Hill, NC 27599-3175, USA and Depart-
ment of Computer Science and Engineering, IIT Delhi, New
Delhi 1100116, India. E-mail:ssen@cs.unc.edu and
ssen@cse.iitd.ernet.in.

canonical layouts (such as row- or column-major) for
this problem.

1 Introduction

Matrix transposition is a fundamental operation in
linear algebra and in other computational primi-
tives such as multi-dimensional Fast Fourier Trans-
forms. This seemingly innocuous permutation prob-
lem lacks both temporal and spatial locality and is
therefore tricky to implement efficiently for large
matrices. Indeed, there is no temporal locality to
be exploited, since each element of the matrix is ac-
cessed at most once. As far as spatial locality is con-
cerned, the pairwise exchanges of matrix elements
(i; j) and (j; i) implied by the semantics of trans-
position, when translated into memory addresses us-
ing a canonical row-major or column-major order-
ing, pairs up memory locations ni + j and nj + i.
Depending on the values of i and j, these may be
either close together or far apart in terms of cache
sets or virtual memory pages. Careful scheduling of
these exchange operations is required to obtain any
advantage of multi-word cache lines. Given the dif-
ficulty of avoiding performance problems in imple-
menting such permutations, Gatlin and Carter [19]
have named them Murphy permutations.

This paper uses the matrix transposition problem
as a test case to evaluate six algorithms, designed
to be “optimal” under various memory models, on
a real modern machine. The purpose of this exercise
is twofold: first, to understand how well the asymp-
totic predictions of the various theoretical memory
models match the behavior observed in real memory
hierarchies, and where the shortcomings lie; second,
to analytically understand and empirically assess the
relative contributions of the various components of

a typical memory hierarchy (registers, data cache,
translation lookaside buffer) in the running time of
the operation. Our test problem to be that of trans-
posing in-place an N � N matrix of 32-bit single-
precision floating point numbers, where N = 2n.
Except in the final algorithm, we assume a row-major
layout of the matrix in memory, as performed in C for
static arrays.

The remainder of the paper is organized as fol-
lows. Section 2 reviews previous work on memory
models that will be needed to understand the algo-
rithms we study. Section 3 presents the algorithms,
along with the arguments for their optimality. Sec-
tion 4 presents the experimental data and its inter-
pretation. Section 5 presents conclusions and future
research directions.

2 Related Work

Models of computation are essential for abstracting
the complexity of real machines and enabling the de-
sign and analysis of algorithms. The widely-used
RAM model owes its longevity and usefulness to its
simplicity and robustness. While it is far removed
from the complexities of any physical computing de-
vice, it successfully predicts the relative performance
of algorithms based on an abstract notion of opera-
tion counts.

The RAM model assumes a flat memory address
space with unit-cost access to any memory location.
With the increasing use of caches in modern ma-
chines, this assumption grows less justifiable. On
modern computers, the running time of a program
is as much a function of operation count as of its
cache reference pattern. A result of this growing
divergence between model and reality is that oper-
ation count alone is not always a true predictor of the
running time of a program, and manifests itself in
anomalies such as a matrix multiplication algorithm
demonstratingO(n5) running time instead of the ex-
pected O(n3) behavior [4].

The RAM model has been criticized for its dis-
regard for the memory hierarchy. In particular, the
difference in speeds between primary and secondary
memory has become too large to ignore. The ac-
cess time to disk could be 10,000 times slower than
the main memory, so it is inappropriate to assign the

same access cost to these memory locations. Sev-
eral attempts have been made in the past ten years to
incorporate this feature into the basic RAM model.
Among several such models [1–4], the two-level (or
external-memory) model of Aggarwal and Vitter [3]
has found wide acceptance because of its relative
simplicity. One of the challenges of describing a
model is to achieve a a good balance between ab-
straction and reality, so as not to make the model
too cumbersome for theoretical analysis or over-
simplistic to the point of being unrealistic.

The I/O model assumes that most of the data re-
sides on disk and has to be transferred to main mem-
ory to do any processing. Because of the tremen-
dous difference in speeds, it ignores the cost of inter-
nal processing and counts only the number of I/Os.
Floyd [15] defined a formal model and proved tight
bounds on the number of I/Os required to transpose
a matrix using two internal memory pages. Hong
and Kung [24] extended this model and studied the
I/O complexity of FFT when the internal memory
size is bounded by M . Aggarwal and Vitter [3]
further refined the model by incorporating an addi-
tional parameter B, the number of (contiguous) el-
ements transferred in a single I/O operation. They
gave upper and lower bounds on the number of I/Os
for several fundamental problems including sorting,
selection, matrix transposition, and FFT. Following
their work, researchers have designed I/O-optimal
algorithms for fundamental problems in graph the-
ory [13] and computational geometry [21]. The
problem of sorting has been a focus of attention,
resulting in our better understanding about the I/O
complexity of sorting [8].

Researchers have also modeled multiple levels of
memory hierarchy. Aggarwal et al. [1] defined the
Hierarchical Memory Model(HMM) that assigns a
function f(x) to accessing location x in the memory,
where f is a monotonically increasing function. This
can be regarded as a continuous analog of the multi-
level hierarchy. Aggarwal et al. [2] added the capa-
bility of block transfer to the HMM, which enabled
them to obtain faster algorithms. Alpern et al. [4]
described the Uniform Memory Hierarchy(UMH)
model, where the access costs differ in discrete steps.
Other attempts were directed towards extracting bet-
ter performance by parallel memory hierarchies [14,

2

38, 39], where P blocks could be transferred simul-
taneously.

However, the previous papers failed to capture two
salient features of the cache-memory interaction: the
lack of full associativity in the mapping from mem-
ory blocks to cache sets, and the lack of explicit con-
trol over data transfer between levels o the memory
hierarchy. The ramifications of the previous results
in the context of cache performance of an algorithm
are therefore not clear. There have been attempts
to improve cache performance of problems like ma-
trix multiplication [28] and Bit reversal Permutation
[10, 19] (related to FFT), but there is no general anal-
ysis of these techiques. In fact, Carter and Gatlin [10]
conclude their recent paper saying

What is needed next is a study of “messy
details” not modeled by UMH (particu-
larly cache associativity) that are impor-
tant to the performance of the remaining
steps of the FFT algorithm.

In a companion paper [35], we propose a two-level
hierarchy to model the interaction between cache
and main memory, that resembles the two-level I/O
model but incorporates the two salient features of
caches listed above. Somewhat surprisingly, the
work in that paper shows that the constraint im-
posed by limited associativity can be tackled quite
elegantly through a simple emulation scheme, so that
we are able to extend the results of the I/O model to
the cache model very efficiently.

Very recently, Frigo et al. [18] have presented an
alternate strategy of algorithm design on these mod-
els which has the added advantage that explicit val-
ues of parameters related to different levels of the
memory hierarchy are not required. We will discuss
this model further in Section 3.4.

3 The Algorithms

We present several algorithms to transpose a square
matrix in-place, and analyze their time complexity in
different models. Since the computation performed
by each of these algorithms is identical, the essen-
tial difference among the algorithms is the way they
schedule their data exchanges. It is precisely the in-
teraction between the schedule and the memory hier-

archy that causes differences in the observed running
times of the algorithms.

3.1 Algorithm 1: RAM model

Given a matrix A = fai;jg; 0 6 i; j < N , the fol-
lowing simple C code transposes the matrixA essen-
tially based on the definition of transpose and does it
in-place.

for (i = 0; i < N; i++) {
for (j = i+1; j < N; j++) {

tmp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = tmp;

}
}

The analysis of this algorithm in the RAM model
is also straightforward. The statements in the inner-
most loop are executed N � (N � 1)=2 times, each
costing a constant number of operations, yielding a
complexity of O(N 2). This is considered optimal
since the input consists of N 2 elements. The ac-
tual costs of the individual operations are closely re-
lated to the underlying machine architecture that is
not considered important at the level of algorithm de-
sign. The goal is to study the growth rate of the run-
ning time with respect to the input size, so the RAM
model assigns unit cost uniformly to all the primitive
operations and ignores constant factors.

Things can change dramatically in the presence
of memory hierarchy that gives rise to widely vary-
ing costs to different ranges of the memory. Conse-
quently, the seemingly innocuous code would man-
ifest a wide ranging behavior dependent on various
parameters of the memory hierarchy. Not only do we
need to reanalyze the code, but potentially redesign
algorithms in the new environment with an eye to-
wards optimality.

3.2 Algorithm 2: I/O model

The I/O model of Aggarwal and Vitter [3] to capture
the interaction between the secondary memory and
the main memory and study the I/O complexity of
various problems. It has three parameters: the inter-
nal memory size M , and the block size B, and the
input size N . The input size N of a problem is usu-
ally much larger thanM and all the computations can

3

be carried out only on elements present in the inter-
nal memory. The internal computation is not charged
because of the very high cost of an I/O operation as
compared to the cost of internal processing. In a sin-
gle I/O, we can tranfer B elements (M > 2B). The
goal of designing I/O algorithms is to minimize the
number of I/O operations.

The problem of transposing a matrix residing
in the external memory was addressed as early as
Floyd[15], who designed an optimal algorithm for
the case where the main memory holds two pages.
This was adapted by Aggarwal and Vitter [3] in the
external memory model.

What happens if we use the simple program of
Section 3.1 to transpose in the I/O model? IfN > M

(number of elements in a row/column exceeds the in-
ternal memory size), the first block in each row will
be brought into the internal memory B times, cor-
responding to the B diagonal-symmetric elements
occupying different blocks. This happens for other
blocks also until the remaining matrix elements can
fit in the cache. This results in
(N 2) I/O operations.

To reduce the number of I/O operations, we have
to reschedule the operations so that they re-use el-
ements in a block. The matrix is partitioned into
(disjoint) B � B submatrices, where B divides N
(for simplicity). Recall that B is the block size. Let
Ar;s denote the sub-matrix composed of elements
fai;jg; rB 6 i < (r+1)B and sB 6 j < (s+1)B,
where 0 6 r; s 6 N

B
� 1. Notice that each sub-

matrix occupies B blocks in external memory where
the elements of each row of the sub-matrix occupy
B contiguous locations. However, the B blocks are
separated by N elements (see Figure 1).

For simplicity, let us assume that the transposed
matrix will be assigned to another matrix C = AT

(not in-place). Clearly,

Cs;r = (Ar;s)T :

If we assume that the internal memory is large
enough to hold a sub-matrix, i.e., M > B2, we
can accomplish the required task using the follow-
ing procedure where an n � n matrix is partitioned
into B �B sub-matrices.

Block-Transpose(n, B)

1. Transfer each sub-matrix Ar;s to the internal
memory using B I/O operations.

P

P

T

T

P

N

M

Figure 1: The row major layout of a matrix and tiles
of two nested tiles of sizes B and P .

2. Perform the transpose of Ar;s internally.

3. Transfer it to Cs;r using B I/O operations.

The total number of I/O operations is 2N
2

B2 � B =

O
�
N

2

B

�
, which is optimal. If we count the num-

ber of internal memory operations, it is also optimal,
namely O(N2). To perform the transpose in-place,
we will require M > 2B2 to simultaneously hold
Ar;s and As;r. The following is a straightforward
generalization that applies to T � T sub-matrices
where T > B—this is often referred to as tiling and
the submatrices Ar;s are known as tiles.

Lemma 3.1 For M > T 2, the number of I/O opera-
tions inBlock-Transpose(N, T) isO(N

2

B
).

The above scheme runs into problems if M < B2,
i.e., when main memory cannot hold a B � B sub-
matrix. We then resort to performing the transpose
using sorting on the destination indices (see Fig-
ure 2). This is done using an M

B
-way mergethat takes

O(B logB2

logM=B
) I/O operations. This “merge” is actu-

ally a very regular interspersing of elements rather
than a comparison-based merge (see Figure 2 for de-
tails of the merge). The following result from Aggar-
wal and Vitter [3] (by an adaptation of Floyd’s [15]
proof) shows that this is an optimal scheme.

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

1 2 5 6 9 10 13 14 3 4 7 8 11 12 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Merge Merge

Merge

Figure 2: Transposing a 4�4 tile using 2-way merge.

Theorem 3.1 The number of I/O operations re-
quired to transpose anN � N matrix stored in a
row-major ordering is

�

�
N2

B
� logminfM; 1 + N2=Bg

log(1 +M=B)

�
:

Remark 1 This is a slightly simplified version
where we have assumed that the matrix is square.
Observe that for M =
(B1+�) for any fixed � > 0,
this takes O(N 2=B) I/O operations. When B is
large, say M = kB for some constant k, transpose
takes �(N2=B � logkB) steps.

3.3 Algorithms 3 and 4: cache model

In the case of cache and main memory, the differ-
ence in access times is considerably smaller, namely
a factor of 5–100. We will let L denote the normal-
ized cache miss latency. The normalized cost func-
tion assigns a cost of 1 for accessing cache and L

otherwise. This way, we will account for the com-
putation in cache also. In the context of the cache,
we will continue to use M for cache size and B for
block size. The block-size B is much smaller (about
4–8 elements as opposed to 1000) and referred to as
the cache line. Therefore our cache model[35] has
four parameters, namely N;M;B and L, one more

than the I/O model. Although we have chosen M

for both the main memory size (in the context of
I/O model) and cache size (in the cache model), the
reader should think of M as the size of the faster
memory.

A significant distinction between the two models
is the degree of associativityavailable. In the I/O
model, we can transfer any block from the external
memory to any block in the internal memory. In con-
trast, the main-memory blocks are mapped into the
cache sets using a fixedmapping function. Typically
a number of low-end address bits are used to map
a main-memory location into the cache. This maps
contiguous main-memory locations to contiguous lo-
cations in cache (modulo M). We assume a direct-
mappedcache.

A further difference in the way the two models be-
have is the lack of explicit control on the cache lo-
cations. The cache is not visible to the programmer
(not even at the assembly level). When a program
starts running, an image(copy) of the the block con-
taining a memory reference is brought into the corre-
sponding cache set (unless it is already present), and
it continues to be there till it is evicted by another
block that is mapped to the same cache set. In other
words, a cache set contains the latest memory block
referenced that is mapped to this set.

These differences would frustrate any efforts to
naively map an I/O algorithm to the cache, given that
we neither have the control nor the flexibility of the
I/O model. Sen and Chatterjee[35] establish a useful
relationship between the I/O model and the cache-
model using a very simple emulation.

Theorem 3.2 ([35]) If an algorithmA in the I/O
model usesT block-transfers andI processing time,
then the algorithm can be executed in the cache
model inO(I + (L+B) � T) steps. The memory re-
quirement is an additionalM=B + 2 blocks beyond
the external-memory algorithm.

The idea behind the emulation is to use a memory-
resident array Buf of the same size as cache (M) that
mimics the role of the internal memory of the I/O
algorithm. Since Buf consists of contiguous loca-
tions, there are no interference misses between these
locations. With careful use of copying involving lo-
cations other than Buf, the theorem can be proved

5

using amortized analysis. The constant in the emula-
tion overhead is small (about 2).

The term O(B � T) is subsumed by O(I) if com-
putation is done on at least a constant fraction of the
elements in the block transferred by the I/O algo-
rithm. This is usually the case for efficient I/O al-
gorithms. We will call such I/O algorithms block-
efficient. The algorithms for sorting, FFT, matrix
transpose and matrix multiplication described in Ag-
garwal and Vitter [3] are block-efficient.

Corollary 3.3 A block-efficient I/O algorithm that
usesT block transfers andI processing can be ex-
ecuted in the cache model inO(I + L � T) steps.

If we implement Block-Transpose() directly,
there will be several problems caused mainly by the
limited associativity in cache. All the blocks in in a
B�B tileAr;s may be mapped to the same cache set.
As Gatlin and Carter[19] argue, this is not merely a
theoretical possibility but a very likely situation if N
is a multiple of the cache-size M . This would cause
thrashing between the contending blocks leading to

(B2) misses per tile instead of te desired B misses,
amounting to a total of N 2 misses.

This phenomenon can be avoided by using the em-
ulation. In conjunction with Corollary 3.3, the I/O-
efficient scheme for matrix transpose yields the fol-
lowing result for transposing in the cache model.

Theorem 3.4 AnN � N matrix can be transposed
in the cache model in

O

�
N2 + L �

�
N2

B
� logminfM; 1 +N2=Bg

log(1 +M=B)

��

steps. ForM =
(B1+�), where� > 0, this is opti-
mal.

Remark 2 In the context of matrix transpose, the
procedure implied by the Emulation Theorem is
analogous to the COBRA procedure of Gatlin and
Carter [19] for Bit Reversal permutation. Our de-
scription can be viewed as a formal derivation start-
ing from the I/O model.

Most architectures have a hierarchy of cache-
memory levels. Here, we only discuss the effect of
the Translation Lookahead Buffer(TLB), which is

a cache used for storing virtual to physical address
translations. While this is also a cache, it has some
special characteristics: it is a small number of en-
tries, the span of each entry is large, and it is highly
associative (often fully associative). Let BT and k

represent the block size and the number of TLB en-
tries respectively. In most machines, BT >> k.
Since the blocks of the tile Ar;s are separated by
more than BT , we will encounter B TLB misses per
tile, namely the same as the number of cache misses.
If TLB misses are more expensive, then this compo-
nent would dominate.

From Remark 1, it follows that the best we can
do with respect to TLB misses is
(N

BT
� log

k
BT),

which requires log
k
BT passes through the N � N

matrix. Consequently this will increase the number
of cache misses by a factor of logk BT and the trade-
off can be evaluated only on the basis of the actual
values of the cache miss and the TLB miss penalties.

Optimizing multiple levels of cache appears to be
a hard problem theoretically. Carter and Gatlin[10,
19] address a restricted problem in the context of
Bit Reversal Permutation, namely, how to minimize
number of TLB misses given that we want to keep
the cache misses optimal (one round trip to cache
per matrix element). If we assume that

p
C 6 BT ,

then we can use a tile size of
p
C (Lemma 3.1) and

we can bound the number of TLB misses to
p
C perp

C �
p
C tile or

p
C � N2

C
total TLB misses which

is less than N=B misses for
p
C > B.

In practical terms, the theoretical discussions
above motivate two algorithms. It is clear that we
need to copy matrix blocks to and from contiguous
storage in order to avoid catastrophic conflict miss
effects. The flip side of copying is that it increases
the number of instructions and memory references.
Unlike the case in matrix multiplication [29], we can-
not amortize the copying cost over multiple uses of
a block. We therefore implemented two versions of
Block-Transpose, with different amounts of copy-
ing. Figure 3 illustrates these variants. The first vari-
ant, which we call half copying, increases the num-
ber of data movement steps from 2 to 3, while reduc-
ing the number of conflict misses. The second vari-
ant, which we call full copying, increases the number
of data movement steps to 4, but completely elimi-
nates conflict misses. Both these variants use auxil-

6

1

2

3

Transpose
Copy

BufTranspose

1

2

3
4

Copy

Buf1

Buf2

Transpose

Copy

Transpose

Figure 3: Implementing Block-Transpose with half copying (left) and full copying (right).

iary storage that occupies �(B2) space.

3.4 Algorithm 5: Cache-oblivious

Frigo et al. [18] present an alternate strategy of al-
gorithm design which has the added advantage that
explicit values of parameters related to different lev-
els of the memory hierarchy are not required. They
call such algorithms “cache-oblivious” because they
contain no variables dependent on hardware parame-
ters that need to be tuned to achieve optimality, they
are asymptotically optimal in terms of work and data
movement in a “tall ideal cache” model (which rea-
sonably models a fully associative data cache, but
not, for example, a TLB). The basic idea is to use
a divide-and-conquer strategy to divide the problem
into successively smaller subproblems. Intuitively,
the subproblems will fit in cache once they are small
enough. Frigo et al. give the following algorithm
for transposing a rectangular m�n matrix A into an
n�m matrix B.1

If n > m, we partition

A = (A1A2); B =

�
B1

B2

�
:

Then, we recursively execute TRANS-
POSE(A1; B1) and TRANSPOSE(A2 ; B2).
If m > n, we divide matrix A horizon-
tally and matrix B vertically and likewise
perform two transpositions recursively.

1The algorithm is easily specialized for the in-place square
case.

They prove the following optimality result for
their algorithm.

Theorem 3.5 ([18]) The cache-oblivious matrix-
transpose algorithm involvesO(mn) work and in-
cursO(1+mn=L) cache misses for anm�nmatrix
and a cache line size ofL elements, which is asymp-
totically optimal.

3.5 Algorithm 6: Non-linear array layout

The final algorithm we use is similar to the cache-
oblivious algorithm in control structure, but uses a
different layout of the matrix. This is based on
the observation that canonical array layouts (such as
row-major) do not always interact well with cache
memories, because the layout function favors one
axis of the index space over the other: neighbors in
the unfavored direction become distant in memory.
This dilationeffect can reduce program performance
in several ways. First, it may reduce or even nullify
the effectiveness of multi-word cache lines. Such
low spatial locality can usually be corrected by ap-
propriate loop transformations (such as interchange,
reversal, or skewing) when such transformations are
legal [6]. but this does not help in the matrix transpo-
sition example. Second, for large matrix sizes, it may
even reduce the effectiveness of translation lookaside
buffers (TLBs), because the dilation effect extends to
virtual memory pages [5, 37]. Finally, it may cause
cache misses due to self-interference even when a
tiled loop repeatedly accesses a small tile in the array
index space, because the canonical layout depends

7

on the matrix size rather than the tile size. Such in-
terference misses are a complicated and non-smooth
function of the array size, the tile size, and the cache
parameters [17]. These considerations lead us to in-
vestigate other, nonlinear, array layout functions.

The nonlinear layout function we use has been
variously described as being based either on
quadtrees [16] or on space-filling curves [22, 32, 34].
This layout is known in parallel computing as the
Morton orderingand has been used for load balanc-
ing purposes [7, 25, 26, 33, 36, 40]. It has also been
applied for bandwidth reduction in information the-
ory [9], for graphics applications [20, 30], and for
database applications [27]. Figure 4 illustrates this
layout. Our interest, however, is in exploiting the
benefits of such orderings for multi-level memory hi-
erarchies.

Morton ordering has the following operational in-
terpretation. Divide the original matrix into four
quadrants, and lay out these submatrices in memory
in the order NW, NE, SW, SE. A kR� kC submatrix
with kR > tR and kC > tC is laid out recursively
using the Morton ordering; a tR � tC tile is laid out
using the LF -ordering.

To formally define this layout function, we require
tR and tC to simultaneously satisfy

m

tR
=

n

tC
= 2d (1)

for some positive integer d. We define

LT (ti; tj ; tR; tC) = tR � tC �M (ti ; tj)

where M (i; j) is the integer whose binary represen-
tation is the bitwise interleaving of the binary repre-
sentations of i and j. Then,

LMO(i; j;m;n; tR; tC) = tR � tC �M (ti ; tj)

+ LCM (fi; fj ; tR; tC):(2)

See Chatterjee et al. [11, 12] for further details and
implementation issues for this layout.

Like the cache-oblivious algorithm, this algorithm
also uses recursion to divide the problem into smaller
subproblems until it reaches an architecture-specific
tile size, where it performs the exchanges. The code
is shown in Figure 5. There are two differences be-
tween this algorithm and the cache-oblivious one.

static void tr1(int src, int num)

{
if (num==1) {

/* base case: single tile
exchange with loop nest */

}
else {

int nn1 = num/4;
tr1(src ,nn1);
tr2(src+ nn1,src+2*nn1,nn1);
tr1(src+3*nn1,nn1);

}
}

static void tr2(int src, int dst, int num)

{
if (num==1) {

/* base case: single tile
exchange with loop nest */

}
else {

int nn1 = num/4;
tr2(src ,dst ,nn1);
tr2(src+ nn1,dst+2*nn1,nn1);
tr2(src+2*nn1,dst+ nn1,nn1);
tr2(src+3*nn1,dst+3*nn1,nn1);

}
}

int
main(int argc, char *argv[])

{
tr1(0, nblks*nblks);

}

Figure 5: Code skeleton for transpose algorithm with
non-linear layout.

First, the layout function of the matrix is Morton-
ordered rather than row-major. This makes every tile
contiguous in memory and cache space, and elim-
inates self-interference misses when tiles are trans-
posed. Second, the recursion is terminated at an
architecture-specific tile size rather than down to sin-
gle elements as in a cache-oblivious scheme.

4 Experimental Results

All our experiments were run on a 300 MHz
UltraSPARC-II system. The L1 data cache is direct-
mapped, with 32-byte blocks and a capacity of 16
KB. The L2 data cache is direct-mapped, with 64
byte blocks and a capacity of 2 MB. The system has
512 MB of RAM. The VM page size is 8 KB, and
the data TLB is fully associative with 64 entries. The
system runs SunOS 5.6, and we used SUN’s Work-
shop Compilers 4.2. In addition to timing runs, we
also performed cache simulations using the FAST-
CACHE and CPROF tools [23, 31].

Figure 6 shows the running times of the various
algorithms for a number of different problem sizes

8

IV
��������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

III

III

tR

tC

tR

tC

n

m

I II III IV
0 16 32 48 64

2 3 6 7

8 9

10 11

12 13

14 15

0 1 4 5 16 17

18 19

20 21

22 23

24

26

25

27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

58 59

60 61

62 63

56 57

Figure 4: The Morton layout function, with tR � tC tiles. Each tile is internally organized in column-major
manner.

Running time (seconds), block size = 25

log2N Alg.1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6

10 0.21 0.10 0.06 0.06 0.08 0.03
11 0.86 0.49 0.39 0.35 0.45 0.14
12 3.37 1.63 1.05 1.14 2.16 0.54
13 13.56 6.38 4.55 4.99 6.69 2.13

Running time (seconds), block size = 26

log2N Alg.1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6

10 0.13 0.08 0.06 0.05 0.08 0.03
11 0.85 0.42 0.34 0.28 0.45 0.13
12 3.38 1.58 0.89 0.97 1.97 0.52
13 13.51 5.99 3.58 3.91 7.00 2.09

Running time (seconds), block size = 27

log2N Alg.1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6

10 0.14 0.12 0.05 0.05 0.09 0.03
11 0.87 0.42 0.36 0.24 0.47 0.20
12 3.36 1.46 0.85 0.88 2.03 0.59
13 13.46 5.74 3.12 3.35 6.86 2.35

Figure 6: Running times of the six algorithms, for various matrix sizes and block sizes. Alg. 1 is the naive
algorithm. Alg. 2 is the “merge” algorithm of the I/O model. Alg. 3 is the “half-copying” algorithm. Alg.
4 is the “full-copying” algorithm. Alg. 5 is the cache-oblivious algorithm. Alg. 6 is the algorithm with
Morton layout of the matrix. Algorithms 1 and 5 do not depend on the block size parameter.

9

and tile sizes. From these numbers, Algorithms 6
and 3 emerge the fastest, with Algorithm 4 coming
in a close third. Algorithms 2 and 5 are in the next
group. with Algorithm 1 bringing up the rear. There
is a 5x improvement between Algorithms 1 and 6,
and a 4x improvement between Algorithms 1 and 3.

In order to understand the behavior of the various
algorithms, we need to look at their memory system
behavior. Figure 7 summarizes this information for
the six algorithms. (For brevity, we include data for
a single tile size only.) The following points emerge
from this data.

1. The number of data references varies greatly
among the algorithms. Algorithms 1, 5, and 6
perform the absolute minimum number of data
references necessary. The extra number of data
references in Algorithms 2, 3, and 4 are as pre-
dicted by the analysis.

2. Algorithms 3,4, and 5, by virtue of working
on sub-matrices, reduce TLB misses somewhat.
Algorithm 2 was specifically designed to reduce
TLB misses, and the reduction is dramatically
clear. (Note, however, that this gain comes at
the expense of many more data references.) The
TLB misses of Algorithm 6 are even smaller,
reflecting the fact that VM pages now hold sub-
matrices rather than rows or columns of the
original matrix. Correlating this with running
times reveals that TLB misses are quite signifi-
cant on this platform.

3. The data cache misses of Algorithm 4 are fewer
in number than those of Algorithm 3, but this
gain is offset by the extra memory references
of Algorithm 4. The relative importance of the
two factors depends on the cache miss penalty.
Back-of-the-envelope calculations reveal that
Algorithm 4 would outperform Algorithm 3 if
the cache miss latency was greater than 5–10
cycles. With the growing disparity between pro-
cessor and memory speeds, this may soon be the
regime of operation. A similar comment holds
for Algorithm 2 as TLB miss penalties increase.

4. The cache-oblivious algorithm has a low data
reference count, but high cache and TLB
misses. Some of this stems from carrying the

recursion down to single elements. We have
experimented with a version of this algorithm
where we terminate the recursion at the same
block size as the other algorithms (thus making
it “cache-aware”). This improves its running
time to the extent that it beats Algorithm 2. The
remainder of the mismatch between theory and
practice may be a result of the fully-associative
model used in the analysis of this algorithm.

We conclude this section by discussing two low-
level system effects that were essential to obtain-
ing these results. The first is register tiling. In the
tiled implementation of Block-Transpose, writing
the loop as follows:

for (i = 0; i < BLK_SIZE_ELTS; i++) {
for (j = 0; j < BLK_SIZE_ELTS; j++) {

buf1[j][i] = A[u+i][v+j];
}

results in catastrophic conflict misses between A
and buf1, as also noted by Gatlin and Carter [19].
To avoid this effect, we need to avoid interleaving the
accesses to the two arrays, and instead use registers
to buffer an entire cache line worth of data, thus.

for (i = 0; i < BLK_SIZE_ELTS; i++) {
for (j = 0; j < BLK_SIZE_ELTS;

j += HW_BLK_SIZE_ELTS) {
t0 = A[u+i][v+j+0];
t1 = A[u+i][v+j+1];
t2 = A[u+i][v+j+2];
t3 = A[u+i][v+j+3];
t4 = A[u+i][v+j+4];
t5 = A[u+i][v+j+5];
t6 = A[u+i][v+j+6];
t7 = A[u+i][v+j+7];
buf1[j+0][i] = t0;
buf1[j+1][i] = t1;
buf1[j+2][i] = t2;
buf1[j+3][i] = t3;
buf1[j+4][i] = t4;
buf1[j+5][i] = t5;
buf1[j+6][i] = t6;
buf1[j+7][i] = t7;

}
}

One would hope that the compiler would not undo
this intended blocking of reads and writes, but such
is not the case at high optimization levels. The Sun
compiler with the -fast optimization option ig-
nores the desired buffering and proceeds to interleave
the reads and writes. We therefore had to turn the op-
timization level down to -xO2 for Algorithms 2, 3,
and 4, to observe the desired behavior in terms of
cache misses and running times.

The other low-level effect involved the gap in
memory between the starting addresses of arrays A
and buf1. Figure 8 shows the variation in the three
different kinds of misses as this gap varies, for Al-
gorithm 4 at different problem sizes and a block size
of 64. The variation in misses is a result of conlflict

10

N = 210; B = 26

Alg. Data refs L1 misses TLB misses

1 2,097,032 589,795 258,679
2 6,293,417 575,517 2,126
3 3,164,040 722,120 16,556
4 4,196,232 275,550 16,475
5 2,097,008 131,226 8,096
6 2,096,642 150,716 535

N = 211; B = 26

Alg. Data refs L1 misses TLB misses

1 8,386,434 2,362,002 2,096,165
2 25,168,901 2,294,658 12,781
3 12,617,602 2,944,721 134,019
4 16,779,138 1,170,003 133,501
5 8,386,434 923,295 134,951
6 8,387,043 607,907 2,091

N = 212; B = 26

Alg. Data refs L1 misses TLB misses

1 33,548,161 9,453,724 8,391,854
2 100,671,883 9,169,771 69,124
3 50,399,119 11,841,230 544,012
4 67,110,785 4,804,808 542,814
5 33,548,161 7,101,600 516,749
6 33,552,371 2,442,151 8,323

N = 213; B = 26

Alg. Data refs L1 misses TLB misses

1 134,203,282 37,826,712 33,572,154
2 402,685,862 36,641,659 276,762
3 201,459,602 47,480,885 2,175,318
4 268,437,378 19,493,808 2,172,819
5 134,203,282 56,158,873 2,009,964
6 134,221,843 9,790,139 33,267

Figure 7: Number of data references, number of L1 data misses, and number of data TLB misses for the
various algorithms, for a number of different problem sizes and a block size of 26.

0

50000

100000

150000

200000

250000

300000

0 2 4 6 8 10 12 14 16 18 20

M
is

se
s

Memory gap (elements)

Algorithm 4, N = 1024, B = 64

Compulsory misses
Capacity misses
Conflict misses

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 2 4 6 8 10 12 14 16 18 20

M
is

se
s

Memory gap (elements)

Algorithm 4, N = 2048, B = 64

Compulsory misses
Capacity misses
Conflict misses

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 2 4 6 8 10 12 14 16 18 20

M
is

se
s

Memory gap (elements)

Algorithm 4, N = 4096, B = 64

Compulsory misses
Capacity misses
Conflict misses

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 2 4 6 8 10 12 14 16 18 20

M
is

se
s

Memory gap (elements)

Algorithm 4, N = 8192, B = 64

Compulsory misses
Capacity misses
Conflict misses

Figure 8: Misses as a function of the gap in memory between the array being transposed and the buffer used
to copy blocks.

11

misses between the two arrays, which are almost al-
ways catastrophic, as an a posteriorianalysis reveals.
The effect is periodic with a period of eight elements
(this being the number of floating-point values in a
cache line), with the minima being observed at dif-
ferent values of the gap at different problem sizes.
More importantly, almost all (seven out of eight)
choices of gaps are bad, so that choosing a random
gap size will not solve the problem. The results pre-
sented above were taken with the memory gap set
to a value that minimizes misses. This phenomenon
affects Algorithms 2, 3, and 4.

5 Conclusions

We have investigated six different algorithms for the
problem of matrix transposition. While these algo-
rithms perform the same algebraic operation, they
schedule the operations in very different ways, plac-
ing different loads on the various components of the
memory system. We have tried to correlate the pre-
dicted performance of the algorithms with their ob-
served behavior, and have tried to explain the differ-
ences.

We note that the asymptotic analysis of the al-
gorithms matches their cache miss behaviors better
than their running times, even for problem sizes that
should be “large” by any reasonable measure. It is
clear that tighter analysis of running times is needed
if one is to make any meaningful predictions about
running times, as there is a fine balance to be struck
between the total number of data references and the
number of misses. As a corollary, the notion of op-
timality in the various memory models does not nec-
essarily model reality.

The relative performance of the algorithms de-
pends critically upon the cache miss penalty. Some
of the algorithms that were not the front-runners in
the test environment may yet be relevant if the miss
penalty increases by virture of the ever-growing gap
between processor and memory speeds.

Finally, alternative data layouts for matrices, such
as the Morton layout, have superior properties in a
hierarchical memory setting, and should be seriously
considered for many dense matrix computations.

References

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A
model for hierarchical memory. In Proceedings of ACM
Symposium on Theory of Computing, pages 305–314,
1987.

[2] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical mem-
ory with block transfer. In Proceedings of IEEE Founda-
tions of Computer Science, pages 204–216, 1987.

[3] A. Aggarwal and J. Vitter. The input/output complexity of
sorting and related problems. Commun. ACM, 31(5):1118–
1127, 1988.

[4] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform
memory hierarchy model of computation. Algorithmica,
12(2):72–109, 1994.

[5] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Stein-
berg, and K. Yelick. Empirical evaluation of the CRAY-
T3D: A compiler perspective. In Proceedings of the 22nd
Annual International Symposium on Computer Architec-
ture, pages 320–331, Santa Margherita Ligure, Italy, June
1995.

[6] U. Banerjee. Loop Transformations for Restructuring
Compilers: The Foundations. Kluwer Academic Publish-
ers, Norwell, MA, 1993. ISBN 0-7923-9318-X.

[7] I. Banicescu and S. F. Hummel. Balancing pro-
cessor loads and exploiting data locality in N-body
simulations. In Proceedings of Supercomputing’95
(CD-ROM), San Diego, CA, Dec. 1995. Available from
http://www.supercomp.org/sc95/proceedings/594 BHUM/SC95.HTM.

[8] R. Barve, E. Grove, and J. Vitter. Simple random-
ized mergesort on parallel disks. Parallel Computing,
23(4):109–118, 1997. A preliminary version appeared in
SPAA 96.

[9] T. Bially. Space-filling curves: Their generation and their
application to bandwidth reduction. IEEE Transactions on
Information Theory, IT-15(6):658–664, Nov. 1969.

[10] L. Carter and K. Gatlin. Towards an optimal bit-reversal
permutation program. In Proceeding of IEEE Foundations
of Computer Science, 1998.

[11] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and
M. Thottethodi. Nonlinear array layouts for hierarchical
memory systems. In Proceedings of the 1999 ACM Inter-
national Conference on Supercomputing, pages 444–453,
Rhodes, Greece, June 1999.

[12] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thot-
tethodi. Recursive array layouts and fast parallel ma-
trix multiplication. In Proceedings of Eleventh Annual
ACM Symposium on Parallel Algorithms and Architec-
tures, pages 222–231, Saint-Malo, France, June 1999.

[13] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Ven-
groff, and J. Vitter. External memory graph algorithms.
In Proceedings of the ACM-SIAM Symposium of Discrete
Algorithms, pages 139–149, 1995.

12

[14] T. H. Cormen, T. Sundquist, and L. F. Wisniewski. Asymp-
totically tight bounds for performing BMMC permutations
on parallel disk systems. SIAM Journal of Computing,
28(1):105–136, 1999.

[15] R. Floyd. Permuting information in idealized two-level
storage. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 105–109.
Plenum Press, New York, NY, 1972.

[16] J. D. Frens and D. S. Wise. Auto-blocking matrix-
multiplication or tracking BLAS3 performance with
source code. In Proceedings of the Sixth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pages 206–216, Las Vegas, NV, June 1997.

[17] C. Fricker, O. Temam, and W. Jalby. Influence of cross-
interference on blocked loops: A case study with matrix-
vector multiply. ACM Trans. Prog. Lang. Syst., 17(4):561–
575, July 1995.

[18] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachan-
dran. Cache-oblivious algorithms. In Proceedingsof IEEE
Foundations of Computer Science, 1999. To appear.

[19] K. S. Gatlin and L. Carter. Memory hierarchy considera-
tions for fast transpose and bit-reversals. In Proceedings
of HPCS 5, Orlando, FL, Jan. 1999. IEEE.

[20] M. F. Goodchild and A. W. Grandfield. Optimizing raster
storage: an examination of four alternatives. In Proceed-
ings of Auto-Carto 6, volume 1, pages 400–407, Ottawa,
Oct. 1983.

[21] M. Goodrich, J. Tsay, D. Vengroff, and J. Vitter. External
memory computational geometry. In Proceeding of IEEE
Foundations of Computer Science, pages 714–723, 1993.

[22] D. Hilbert. Über stetige Abbildung einer Linie auf
ein Flächenstück. Mathematische Annalen, 38:459–460,
1891.

[23] M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A.
Wood. Wisconsin architectural research tool set. Computer
Architecture News, 21(4):8–10, August 1993.

[24] J. Hong and H. Kung. I/O complexity: The red blue pebble
game. In Proceedings of ACM Symposium on Theory of
Computing, 1981.

[25] Y. C. Hu, S. L. Johnsson, and S.-H. Teng. High Perfor-
mance Fortran for highly irregular problems. In Proceed-
ings of the Sixth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 13–24, Las
Vegas, NV, June 1997.

[26] S. F. Hummel, I. Banicescu, C.-T. Wang, and J. Wein.
Load balancing and data locality via fractiling: An ex-
perimental study. In Language, Compilers and Run-Time
Systems for Scalable Computers. Kluwer Academic Pub-
lishers, 1995.

[27] H. V. Jagadish. Linear clustering of objects with multiple
attributes. In H. Garcia-Molina and H. V. Jagadish, edi-
tors, Proceedingsof the 1990 ACM SIGMOD International
Conference on Management of Data, pages 332–342, At-
lantic City, NJ, May 1990. ACM, ACM Press. Published
as SIGMOD RECORD 19(2), June 1990.

[28] M. Lam, E. Rothberg, and M. Wolf. The cache perfor-
mance and optimizations of blocked algorithms. In Pro-
ceedings of the Fourth International Conference on Archi-
tectural Support for Programming Languagesand Operat-
ing Systems, pages 63–71, 1991.

[29] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms. In
Proceedingsof the Fourth International Conferenceon Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pages 63–74, Apr. 1991.

[30] R. Laurini. Graphical data bases built on Peano space-
filling curves. In C. E. Vandoni, editor, Proceedings of the
EUROGRAPHICS’85 Conference, pages 327–338, Ams-
terdam, 1985. North-Holland.

[31] A. R. Lebeck and D. A. Wood. Cache profiling and the
SPEC benchmarks: A case study. IEEE COMPUTER,
27(10):15–26, October 1994.

[32] G. Peano. Sur une courbe qui remplit toute une aire plaine.
Mathematische Annalen, 36:157–160, 1890.

[33] J. R. Pilkington and S. B. Baden. Dynamic partition-
ing of non-uniform structured workloads with spacefilling
curves. IEEE Transactions on Parallel and Distributed
Systems, 7(3):288–300, Mar. 1996.

[34] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
ISBN 0-387-94265-3.

[35] S. Sen and S. Chatterjee. Towards a theory of cache-
efficient algorithms. Submitted for publication, July 1999.

[36] J. P. Singh, T. Joe, J. L. Hennessy, and A. Gupta. An em-
pirical comparison of the Kendall Square Research KSR-1
and the Stanford DASH multiprocessors. In Proceedings
of Supercomputing’93, pages 214–225, Portland, OR, Nov.
1993.

[37] M. R. Swanson, L. Stoller, and J. Carter. Increasing TLB
reach using superpages backed by shadow memory. In
Proceedings of the 25th Annual International Symposium
on Computer Architecture, pages 204–213, June 1998.

[38] J. Vitter and M. Nodine. Large scale sorting in uniform
memory hierarchies. Journal of Parallel and Distributed
Computing, 17:107–114, 1993.

[39] J. Vitter and E. Shriver. Algorithms for parallel memory I:
Two-level memories. Algorithmica, 12(2):110–147, 1994.

[40] M. S. Warren and J. K. Salmon. A parallel hashedOct-Tree
N-body algorithm. In Proceedings of Supercomputing’93,
pages 12–21, Portland, OR, Nov. 1993.

13

