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Abstract

The objective of this paper is to improve the use of the
hardware resources of the trace cache mechanism, reducing
the implementation cost with no performance degradation.
We achieve that by eliminating the replication of traces be-
tween the instruction cache and the trace cache.

As we show, the trace cache mechanism is generating
a high degree of redundancy between the traces stored in
the trace cache and those built by the compiler, already
present in the instruction cache. Furthermore, code re-
ordering techniques like thesoftware trace cachearrange
the basic blocks in a program so that the fall-through path
is the most common, effectively increasing this trace redun-
dancy.

We proposeselective trace storageto avoid trace redun-
dancy between the trace cache and the instruction cache.
A simple modification of the fill unit allows the trace cache
to store only those traces containing taken branches, which
can not be obtained in a single cycle from the instruction
cache.

Our results show thatselective trace storageand thesoft-
ware trace cacheused on a 32 entry trace cache (2KB) per-
form as well as a 2048 entry trace cache (128KB) with-
out the enhancements. This shows that the cooperation be-
tween hardware and software is crucial to improve the per-
formance and reduce the requirements of hardware mecha-
nisms in the fetch engine.

1. Introduction

The capability of future wide issue superscalars to exe-
cute large numbers of instructions per cycle is going to put
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an extra pressure on their fetch mechanism. Multiple basic
block per cycle will be fetched, which adds two new factors
to fetch performance: instruction sequentiality and multiple
branch prediction.

These two problems can be solved using both software
and hardware approaches. On the hardware side we find
techniques like the branch address cache [18], the collaps-
ing buffer [2] or the trace cache [4, 9, 16]. On the software
side, we find instruction scheduling techniques [3, 7], and
code reordering approaches like thesoftware trace cache
(STC) [11, 13, 14].

It has been shown that both hardware and software ap-
proaches combine well to obtain improved results [13, 14]
with trace caches of half the original size. This combina-
tion allows a cost reduction in the fetch unit implementation
without any performance degradation.

Based on this fruitful collaboration of compile-time and
run-time techniques, we focus on a further reduction of this
hardware implementation cost. We analyze the instruction
stream from the trace cache point of view, and find signif-
icant redundancy in it. Some traces are already generated
at compile-time, and these traces are being stored in both
the instruction cache and the trace cache. The number of
compile-time generated traces increases when we improve
the code layout. Our results show that after reordering the
code with the STC, over 60% of the issued traces do not
contain any sequence break, and can be issued in a single
cycle from an aggressive sequential fetch unit without need
of a trace cache.

We propose a modification of the fill unit to implement
selective trace storage(STS), that is, avoid storage of traces
consisting of consecutive instructions. With STS and STC
on very small trace caches, we obtain better performance
than using large caches without those techniques.

We obtain better performance with a 2KB trace cache
using a combination of STS and STC than a 128KB trace
cache with none of our enhancements.
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1.1. The fetch unit

The importance of instruction fetch is obvious since it is
not possible to execute instructions faster than they can be
fetched. But its importance is not limited to that. As proces-
sors become more and more aggressive, larger instruction
windows will be included to detectInstruction Level Par-
allelism(ILP) among distant instructions in those program
segments with a high degree of data dependency. Main-
taining such a large instruction window requires a high per-
formance fetch mechanism. Fetch speed becomes special-
ly relevant at program startup and miss-speculation points
where the instruction window is emptied and must be filled
again.

Also, wider instruction issue, value prediction, instruc-
tion reuse, speculative memory disambiguation and other
aggressive speculative techniques allow the execution of
more instructions per cycle. To execute more than 5–6 in-
structions per cycle, fetching instructions from multiple ba-
sic blocks per cycle becomes necessary.

As shown in Figure 1, a natural extension of a present
superscalar fetch unit allows fetching of multiple consecu-
tive basic blocks per cycle. Increasing the branch predic-
tor throughput to obtain multiple branch predictions per cy-
cle allows the address and mask logic to obtain instruction-
s from multiple consecutive basic blocks. Also, fetching
multiple consecutive instruction cache lines, we can obtain
basic block sequences which cross the cache line boundary.

In this case, the core fetch unit is limited to fetch con-
secutive basic blocks because the design does not allow it
to predict the branch target address and fetch it in the same
cycle. Instruction fetch proceeds from the same instruction
cache line as long as the branch is predicted not taken. If it
is predicted taken, the target address is predicted and fetch-
ing proceeds the next cycle from the predicted address.

The performance of this core fetch unit is determined by
three factors: instruction cache misses, branch mispredic-
tions, and the execution of non-consecutive basic blocks.

The trace cache mechanism allows fetching of non-
consecutive basic blocks coming from different instruction
cache lines. As shown in Figure 1, the fill unit captures the
dynamic instruction stream and stores the built instruction
sequences and the branch outcomes which lead to them in a
special purpose cache. If the same starting instruction and
branch outcomes are found again in the future, the whole in-
struction trace can be fetched from the trace cache without
additional processing.

1.2. Related work

The branch address cache [18] and the collapsing
buffer [2] mechanisms target the problem of fetching dis-
continuous basic blocks in a single cycle. Both include a

complex hardware mechanism to package instructions from
different instruction cache lines in the fetch stage, before
passing them to the decode stage. Such a complicated pro-
cess may affect the cycle time of the processor, or add an
extra pipeline stage.

The trace cache [4, 9, 16] comes after the previous two
mechanisms and moves the instruction packing process out
of the execution pipeline, storing the built traces in a special
purposetrace cache. This effectively avoids the cycle delay
problem, but requires extensive additional hardware in the
form of a special purpose cache memory.

The paperPutting the fill unit to work[5] considers the
fill unit as more than just an instruction packager. Authors
propose to use the off-line time to do extra optimization
work on the instructions in the trace, like explicitly marking
register move operations, collapsing of immediate values
and instruction scheduling to minimize latency through the
bypass network.

On the software side, trace scheduling techniques point
that basic blocks execute in an almost deterministic or-
der, and define algorithms to group them in basic block
traces [3] or closed execution zones (superblocks and hyper-
blocks) [7]. These techniques define a logical ordering of
basic blocks and reorder instructions in those logical group-
s crossing the basic block boundary to optimize instruction
scheduling for VLIW processors.

There are also other code reordering algorithms which
target an increase in the instruction cache hit rate [6, 10, 17].
In order to exploit more spatial locality, these techniques al-
so increase the code sequentiality, but they target a single
basic block fetch per cycle. The full potential of those tech-
niques has not been exploited.

The software trace cache(STC) [11, 12, 13, 14] is the
first code reordering targeting the more aggressive proces-
sors, and pointing that instruction fetch is better approached
using both software and hardware techniques. Targeting a
better usage of the core fetch unit, the STC builds instruc-
tion traces at compile-time, increasing code sequentiality
and reducing the instruction cache miss rate. Using STC,
we increase the performance of the core fetch unit, reducing
the need for the trace cache, and obtaining similar or better
performance with half to a fourth the trace cache instruction
storage.

The block-based trace cache [1] is an alternative trace
cache organization which also targets a cost reduction. It
avoids redundancy between the basic blocks composing the
different traces by storing them in a special purpose repli-
cated block cache, and then builds traces by storing pointers
to these basic blocks in a trace table. We examine this trace
cache organization more closely in [15], applying STS to it,
and proposing a modification to reduce unnecessary block
cache replication.
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Figure 1. Core fetch unit able to fetch instructions from multiple consecutive basic blocks in a single
cycle. Extension of the core fetch unit with a trace cache to allow fetching of non-consecutive basic
blocks.

1.3. Paper structure

This paper is structured as follows. Section 2 analyzes
the instruction stream from the trace cache point of view,
and quantifies the trace redundancy between the instruction
cache and the trace cache. In Section 3 we proposeselec-
tive trace storagein order to avoid this trace redundancy.
Section 4 presents performance improvements obtained by
STS for a number of trace cache and instruction cache sizes,
as well as for realistic and perfect branch prediction, using
both the original code and an optimized code layout. Final-
ly, in Section 5 we present our conclusions and guidelines
for future work.

2. Trace cache redundancy

The trace cache mechanism is generating a certain de-
gree of redundancy between the trace cache and the instruc-
tion cache. It is not just that both caches are storing the
same instructions: some instruction sequences are replicat-
ed in both caches.

An instruction sequence containing no taken branches
can be fetched from the instruction cache in a single cycle
without need of the trace cache. But, as shown in Figure 2,
such traces are also stored in the trace cache.

We will distinguish between two types of traces: blue
traces, which contain only consecutive instructions, and red
traces, which contain some form of sequence break (taken
branch or unconditional jump).

Red traces are built by the fill unit at run-time, and stored
in the trace cache, while blue traces are built by the compil-
er, and stored in the instruction cache. However, the fill unit
also captures these blue traces, and stores them in the trace
cache, effectively replicating them.

Code reorderings like thesoftware trace cache
(STC) [14] arrange the basic blocks in a program so
that the most likely execution path does not contain any
taken branch. It does so by moving basic blocks so that the
non-taken branch target is the most likely, and including
unused basic blocks after the main execution path has
been completed. This reduction in the number of sequence
breaks found during program execution increases the
proportion of blue traces.

Table 1 shows a breakdown of the dynamic trace stream
grouped by the number of sequence breaks they contain:
from zero to three or more breaks. The first vertical half
of the table shows the numbers for the original code layout,
and the second half corresponds to the STC reordered code.

There is a high proportion of blue traces (traces contain-
ing 0 breaks), even in the original code layout: over 70%
for FP codes and around 40% for integer applications. This
shows that there is a representative degree of redundancy
between the traces stored in the trace cache and what the
core fetch unit can provide in a single fetch unit access.

Reordering the basic blocks increases the blue trace pro-
portion to 51–88% for integer applications, effectively re-
ducing the average number of breaks found in a trace and
increasing the trace redundancy.

Reordering the code not only generates more blue (con-
secutive) traces, it reduces the number of breaks significant-
ly (as shown in Table 1). This reduces the number of cycles
required to build a red trace from the core fetch unit, reduc-
ing the need of a support mechanism like the trace cache,
or providing a better fail-safe mechanism in case of a trace
cache miss.

It is important to note that any other basic block reorder-
ing technique such as [6, 10, 17] would produce a simi-
lar effect to that observed in Table 1. A comparison be-
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Figure 2. Redundancy of traces between the instruction cache and the trace cache. Traces consisting
entirely of consecutive instructions (blue traces) can be fetched from the instruction cache in a single
cycle without a trace cache.

tween [10, 17] and the STC can be found in [11, 13].

3. Selective Trace Storage

A simple extension of the fill unit logic would allow it to
distinguish between red and blue traces. Only red (discon-
tinuous) traces would be stored in the trace cache. With this
simple modification we can avoid replacing the red traces
from the trace cache with a blue one that we could obtain
from the core fetch unit, allowing a smaller trace cache to
accommodate the same number of red traces.

This modification will not have an important impact on
the cycle time of the processor, as the logic complexity in
the fill buffer will increase moderately. If that was the case,
the fill buffer could be pipelined, increasing the time it takes
for a new trace to reach the trace cache, but previous results
in [8] show that there is little performance impact due to the
fill unit latency.

The same number of trace entries should store more red
traces than before, as the blue traces are not using up any
trace cache space. The global trace cache miss rate will
go up, as blue traces will always cause a trace cache miss,
but the chances of finding the desired red trace go up, and
blue traces will still be available from the instruction cache.
On the other hand, the same number of red traces can be
captured with less trace cache entries, reducing the trace
cache implementation cost.

4. Evaluation

Selective trace storage (STS) targets an increase in the
number of instructions provided by the fetch unit each time
it is accessed. For this reason, we evaluated the performance

of our fetch unit as a stand-alone block, avoiding interfer-
ence from the execution core of the processor. An increase
in the fetch bandwidth will be beneficial to any architecture.

4.1. Simulation setup

Table 2 describes all the simulation setups explored.
Each PHT entry in the Gshare branch predictor has three
separate two-bit counters, one for each of the three predic-
tions provided. Each branch is tagged with the counter ad-
dress to update. While it is possible to find better branch
predictors than the one we used for this paper, this one is rel-
atively small, and easily implementable, matching the cost
reduction effort of the paper.

An increase in the fetch bandwidth will be beneficial to
any architecture, but the final IPC performance depends on
many other architecture parameters.

For this reason, results are presented in terms of Fetched
Instructions Per Access (FIPA) which measures the number
of correct-path instruction provided to the execution core
each time the fetch unit is accessed, and in terms of Fetched
Instructions Per Cycle (FIPC) which also accounts for the
number of cycles per fetch unit access. We assumed a 6
cycle delay for each instruction cache miss, and a 12 cycle
delay for each branch or target misprediction.

Remember that FIPA results do not account for the stal-
l cycles due to instruction cache misses. This means that
FIPA results do not depend on the instruction cache size.
Meanwhile, the trace cache miss rate determines the length
of the instruction traces provided, which does affect the FI-
PA.

The SPEC benchmarks were simulated to completion us-
ing theref input set, and a representative subset of the TPC-
D queries [11, 13] on a 100MB database was used forPost-



Original STC Reordered
Bench. 0 1 2 3+ 0 1 2 3+
tomcatv 75 23 1 0 77 23 0 0
swim 71 29 0 0 71 29 0 0
su2cor 67 29 4 0 71 25 2 2
hydro2d 58 28 14 0 69 27 3 1
mgrid 78 21 0 0 78 21 0 0
applu 69 27 4 0 70 24 6 0
turb3d 78 20 2 0 82 17 1 0
apsi 67 31 2 0 72 27 2 0
fpppp 95 4 1 0 93 6 1 0
wave5 69 28 3 0 71 27 2 0
FP avg 73 24 3 0 75 23 2 0
m88ksim 37 36 25 2 67 30 2 0
gcc 33 42 22 2 51 35 13 1
compress 44 33 20 3 46 39 10 5
li 35 35 26 3 49 39 11 1
ijpeg 61 21 18 0 65 21 10 4
perl 34 45 20 1 60 30 8 1
vortex 37 49 13 0 88 9 3 0
INT avg 40 37 21 1 61 29 8 1
postgres 38 40 21 1 66 23 10 1

Table 1. Distribution of traces classified by
the number of sequence breaks they contain.
Numbers shown for both the original code
layout and the STC reordered code. Traces
with 0 breaks are considered blue traces.

gres. We used thetrain input set to obtain the profile in-
formation for the SPEC benchmarks, and a different set of
TPC-D queries forpostgres.

We only present simulation results forgcc and li from
the SPEC benchmarks, andpostgres, a relational database
management system, running the TPC-D benchmark.

Floating point codes already obtain a very high fetch
bandwidth without trace cache, andijpegbehaves like a FP
code, having large basic blocks and lots of loops. It does
not require a trace cache for high fetch performance. On
the other hand,perl behaves very much likeli but is much
smaller, requiring even less trace cache storage. Also,vor-
tex andm88ksimbehave in a similar way topostgresbut
are much smaller. Finally, the instrumented version ofgo
crashed for unknown reasons.

To reduce the required simulation time, we obtained de-
tailed simulation results for 5% of the executed instruction-
s (detailed simulation of 25 million instructions every 500
million). We have verified (for shorter input sets) that this
sampling simulation obtains equivalent results to the ful-
l simulation.

Instruction
cache

32KB, 64 Byte lines, direct mapped
or 64KB, 64Byte lines, 2-way set
associative

Trace cache 32 to 2048 entries, 2-way set asso-
ciative

Branch predic-
tor

Gshare adapted to multiple predic-
tions per cycle, 12 bits of history,
4096 PHT entries, saturating 2-bit
countersor perfect branch predic-
tion

Branch target
buffer

512 entries, 2-way set associative
or perfect target prediction

Return address
stack

perfect

Table 2. Simulation setups explored

4.2. Realistic branch prediction

Figure 3 shows FIPA performance results for trace cache
sizes from 32 to 2048 entries (2KB to 128KB of instruction
storage) with and without STS using the realistic branch
predictor described above. Remember that FIPA perfor-
mance does not depend on the instruction cache size. Setup-
s tagged TC use the original code layout and setups tagged
STC use the optimized layout. Setups tagged with (+) use
STS.

Comparing vertical points in two plots we appreciate
the performance improvements obtained using STC (TC vs
STC) and STS (TC vs TC+ and STC vs STC+). As we
already knew from [14] there is a large performance im-
provement when we use STC. STS adds a little extra per-
formance, but not as large as STC.

Instead of comparing vertical performance points, we
compare horizontal points, which show the trace cache size
reduction that STS can obtain. In general terms, a STS-
enhanced trace cache obtains the same performance as a
non-enhanced one of double size. For example, a 512-entry
trace cache with STS (TC+.512) obtains the same perfor-
mance as a non-enhanced 1024-entry one (TC.1024) for all
benchmarks.

As we have shown in Table 1, STS is reducing the num-
ber of traces stored in the trace cache from 33% to 38% for
the selected benchmarks (blue traces are not stored in the
trace cache anymore). This is increasing the effective trace
cache size in an equivalent percentage.

The redundancy between the instruction cache and the
trace cache increases to 49%–66% for the STC optimized
layout, leading to increased benefits of the use of STS. Us-
ing both STC and STS we can improve on the FIPA per-
formance of a trace cache of double to four times the size
(STC+.64vsSTC.128 and STC.256).

It is important to note that all curves converge as we
increase the trace cache size, obtaining equivalent perfor-
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Figure 3. FIPA performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB) using
realistic branch prediction. The STS enhanced models are tagged with (+). Setups labeled STC use
the optimized code layout.

mance for an infinite number of lines. As programs fit more
and more comfortably in the cache, there is less benefit in
increasing the cache size, or using STS, which produces a
similar effect. We propose STS as a cost reduction tech-
nique, not a performance improvement, as it allows to reach
a given performance level using less storage space.

Fetched Instructions Per Cycle

Figure 4 shows FIPC performance results for trace cache
sizes from 32 to 2048 entries (2KB to 128KB of instruction
storage) with and without STS using the realistic branch
predictor. Separate graphs are provided for FIPC perfor-
mance on instruction caches of 32 and 64KB. Setups tagged
TC use the original code layout and setups tagged STC use
the optimized layout. Setups tagged with (+) use STS.

FIPC results account for the stall cycles caused by in-
struction cache misses and the wasted cycles due to branch
mispredictions, dividing the FIPA performance obtained.
The influence of these extra cycles hides most of the ben-
efits of using STS. Performance actually decreases forgcc
andpostgres(the two largest codes examined) when a very
large trace cache is used (1024 or 2048 lines), why?

STS does not store blue traces in the trace cache assum-
ing that they will be available from the instruction cache,
but this is not always the case. As blue traces are always
obtained from the instruction cache, the total number of ac-
cesses increases, leading to more instruction cache misses
and more stall cycles. The FIPA increase allows the fetch
unit to provide the same number of instructions in less fetch
unit accesses, but if we increase the number of cycles for
each access, it can result in a decreased FIPC performance.

We can avoid this effect using any technique which re-
duces the instruction cache miss rate, like code reorder-
ings and larger/more associative caches. This can be ob-
served comparing the curves for 32 and 64KB caches and
the curves for the original and the optimized code layouts

(TC vs STC).

Using a combination of STC and STS, we obtain better
FIPA performance with a 32-entry trace cache (2KB) than a
2048-entry one (128KB) without any of our enhancements.
Depending on the instruction cache miss penalty, and the
branch misprediction delay, this translates into equivalent
FIPC performance.

While the use of STS and a set-associative 64KB cache
reduced the instruction cache misses to almost zero, the
FIPC obtained is still much lower than the FIPA. This is due
to branch and target address mispredictions, which cause
the fetch unit to waste cycles fetching instructions from an
incorrect execution path. For this reason, we also examined
the effect of STS using perfect branch prediction.

4.3. Perfect branch prediction

Now, we examine the limits of STS under perfect branch
prediction. Figure 5 shows FIPA performance results for
trace cache sizes from 32 to 2048 entries (2KB to 128KB
of instruction storage) with and without STS, using perfect
branch and target prediction. FIPA performance does not
change from a 32KB to a 64KB instruction cache. Again,
setups tagged TC use the original code layout and setups
tagged STC use the optimized layout. Remember that FIPA
results do not depend on the instruction cache size.

The benefits of STS are more evident in the presence of
a perfect branch predictor. We obtain the same performance
with a trace cache of half to a fourth the size, both with the
original code layout and the STC optimized layout. The
benefits of STS are more clear for the optimized code lay-
outs and the smaller trace cache sizes.

Using a perfect branch predictor, the convergence of al-
l setups for increasing trace cache sizes is more clear. The
baseline configuration increases performance faster than the
STS+STC setup does, and they eventually reach the same
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Figure 4. FIPC performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB) and instruc-
tion cache sizes of 32 and 64KB using realistic branch prediction. The STS enhanced models are
tagged with (+). Setups labeled STC use the optimized code layout.

performance for infinite trace cache size. The benefits of
using STS and STC decrease as the trace cache size increas-
es. Remember that we propose the use of STS and STC as a
way of reaching peak performance with the minimum cost,
not as a way to increase peak performance.

Figure 5 also shows an unexpected result: STS alone
provides better FIPA performance than the use of STC for
the larger caches (TC.1024+vs STC.1024), which did not
happen with the realistic branch predictor. The following
paragraphs explain this effect, based on the different length
of red and blue traces.

Trace length

Perfect branch prediction increases the effective length of
the provided traces, because no instructions in a trace be-
long to a wrong execution path. This is exposing a differ-
ence in the length of red and blue traces.

Table 3 shows the average trace length for the studied
benchmarks. Blue and Red trace length are calculated sep-
arately for both the original and the STC reordered code
layouts.

As expected, red traces are much longer than blue traces.
STS does not store the blue (shorter) traces in the trace
cache, which increases the number of instructions provid-
ed on a trace cache hit (if there is a hit, it is to a red/long
trace). At the same time, storing only red traces increases
the chances of a hit when the desired trace is a red one. This

Trace Length
Bench. All orig STC

traces Blue Red Blue Red
gcc 12.60 10.42 13.68 11.38 13.87
li 12.03 7.52 14.44 9.51 14.42
postgres 11.89 9.84 13.80 10.83 14.47

Table 3. Average dynamic trace length. Sepa-
rate results for blue trace length and red trace
length are provided for the original code lay-
out and the STC optimized one.

trace cache FIPA increase represents a larger fraction of the
global FIPA for the largest trace cache setups, leading to the
observed performance increases.

Meanwhile, the STC increases the FIPA of the core fetch
unit only, leaving the trace cache crowded with both red
and blue (shorter) traces. With perfect branch prediction,
the core fetch unit FIPA increase is not as large as the trace
cache FIPA increase produced by STS.

This effect is not visible with realistic branch prediction
because branch mispredictions prevent the trace cache from
providing whole correct traces. That is, not all instructions
in the provided trace belong to the correct execution path,
which reduces the effective trace length to nearly the blue
trace length.
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Figure 5. FIPA performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB) using
perfect branch prediction. The STS enhanced models are tagged with (+). Setups tagged STC use
the optimized code layout.

Fetched Instructions Per Cycle

Figure 6 shows FIPC performance results for trace cache
sizes from 32 to 2048 entries (2KB to 128KB of instruc-
tion storage) with and without STS, using perfect branch
and target prediction. Setups tagged TC use the original
code layout and setups tagged STC use the optimized lay-
out. Separate graphs are provided for performance on in-
struction caches of 32 and 64KB.

Again, the impact of the increased instruction cache miss
rate decreases FIPC performance on the largest trace cache
configurations and the 32KB instruction cache (TC.2048+
vs TC.2048, and STC.2048+vs STC.2048). This effect is
not visible on the 64KB instruction cache due to the lower
miss rate of the larger/more associative cache.

Having eliminated the interference of the branch predic-
tor, we observe that the use of STS produces FIPC improve-
ments, matching the FIPA performance obtained. Using
a combination of STC and STS we can obtain equivalen-
t performance to a non-enhanced trace cache eight to six-
teen times larger (STC.32+vsTC.512 on gcc and postgres,
STC.128+vsTC.2048 on li).

Once more, all setups offer similar performance for the
largest trace cache sizes. STS and STC allow us to obtain
near-optimum performance with fewer hardware cost, and
provide less performance improvement as the trace cache
grows.

5. Conclusions

We have shown that the compiler already generates a
number of consecutive (blue) instruction traces, and that
this number can be substantially increased using code re-
ordering techniques like thesoftware trace cache(STC).
These blue traces are being stored in both the instruction
cache and the trace cache, creating an unnecessary degree
of redundancy.

We proposeselective trace storage, a simple modifica-
tion of the trace cache fill unit which avoids storage of these
blue (redundant) traces. By not repeating at run-time the
work that was done at compile-time, we obtain substantial
hardware cost reductions.

Using STS we can obtain similar or better performance
with half to a fourth the storage space, a cost reduction
which adds to what was already obtained using code re-
ordering techniques like STC. Using a combination of STC
and STS we obtain better performance with a very small 32-
entry trace cache than a 2048-entry one without any of the
improvements using a realistic branch predictor.

Our results also show that the use of STS increases the
pressure on the instruction cache, which makes using code
reordering techniques more necessary, in order to keep the
miss rate as low as possible.

As a final conclusion, we have shown that a tight coop-
eration between hardware and software techniques imply a
substantial increase in performance and a considerable cost
reduction of hardware devices.

References

[1] B. Black, B. Rychlik, and J. P. Shen. The block-based trace
cache.Proceedings of the 26th Annual Intl. Symposium on
Computer Architecture, May 1999.

[2] T. Conte, K. Menezes, P. Mills, and B. Patell. Optimization
of instruction fetch mechanism for high issue rates.Pro-
ceedings of the 22th Annual Intl. Symposium on Computer
Architecture, pages 333–344, June 1995.

[3] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction.IEEE Transactions on Computer-
s, 30(7):478–490, July 1981.

[4] D. H. Friendly, S. J. Patel, and Y. N. Patt. Alternative fetch
and issue techniques from the trace cache mechanism.Pro-
ceedings of the 30th Anual ACM/IEEE Intl. Symposium on
Microarchitecture, Dec. 1997.



32 64 128 256 512 1024 2048

gcc

5

6

7

8

F
IP

C

TC
TC+
STC
STC+

4.32
4.42

4.59

4.91

5.56

6.56

7.61

4.47 4.47

4.84

5.10

5.75

6.44

6.99

5.39
5.49

5.65

5.96

6.52

7.33

8.16

5.48
5.63

5.88

6.26

6.77

7.28

7.64

32 64 128 256 512 1024 2048

li

9

10

F
IP

C

TC
TC+
STC
STC+

8.30

8.72

9.18

9.54

9.91

10.07
10.17

8.58

9.12

9.55

9.86

10.13

10.33 10.35

8.79

9.02

9.34

9.65

10.05
10.13

10.19

9.14

9.47

9.82

10.03

10.18 10.21 10.21

32 64 128 256 512 1024 2048

postgres

4

6

8

10

F
IP

C

TC
TC+
STC
STC+

4.16 4.24
4.57

5.54

6.69

7.47

8.62

4.23
4.41

4.84

5.80

6.82
7.23

8.21

9.13
9.31

9.48

9.90

10.35
10.69

10.90

9.57
9.96

10.19
10.42

10.63 10.76 10.81

32 64 128 256 512 1024 2048

gcc

7

8

9

10

F
IP

C

TC
TC+
STC
STC+

6.93
7.09

7.28

7.61

8.13

8.82

9.50

7.04
7.22

7.49

7.92

8.52

9.12

9.67

7.99
8.11

8.27

8.53

8.91

9.39

9.89

8.14
8.31

8.57

8.94

9.33

9.74

10.00

32 64 128 256 512 1024 2048

li

9

10

F
IP

C

TC
TC+
STC
STC+

8.48

8.92

9.36

9.71

9.95

10.08
10.18

8.77

9.33

9.76

10.03

10.23

10.39 10.41

9.11

9.40

9.72

9.98

10.20 10.24 10.25

9.43

9.89

10.13

10.30
10.38 10.39 10.40

32 64 128 256 512 1024 2048

postgres

8

9

10

11

F
IP

C

TC
TC+
STC
STC+

7.38

7.63

8.10

8.91

9.83

10.57

11.15

7.67

7.95

8.56

9.38

10.35

10.75

11.06

9.72
9.93

10.19

10.66

10.91
11.13 11.21

10.11

10.57

10.90

11.14 11.21 11.28 11.30
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