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Abstract

The performance of out-of-order processors increases
with the instruction window size. In conventional proces-
sors, the effective instruction window cannot be larger than
the issue buffer. Determining which instructions from the
issue buffer can be launched to the execution units is a time-
critical operation which complexity increases with the issue
buffer size. We propose to relieve the issue stage by reorder-
ing instructions before they enter the issue buffer. This study
introduces the general principle of data-flow prescheduling.
Then we describe a possible implementation. Our prelim-
inary results show that data-flow prescheduling makes it
possible to enlarge the effective instruction window while
keeping the issue buffer small.

1. Introduction

Processor performance is strongly correlated with the
clock cycle. Shorter clock cycle has been allowed by both
improvements in silicon technology and careful processor
design.

As a consequence of this evolution, the IPC (average
number of instructions committed per clock cycle) of fu-
ture processors may decrease rather than increase [1]. This
IPC decay comes from the dispersion of instruction laten-
cies. In particular, load latencies in CPU cycles tend to in-
crease across technology generations, while ALU operation
latency remains one cycle.

A solution for overcoming the IPC decay is to enlarge
the processor instruction window [6, 15], both physically
(issue buffer, physical registers...) and logically, through
better branch prediction accuracy or branches removed by
predication. However, the instruction window should be en-
larged without impairing the clock cycle. In particular, the
issue bufferand issue logic are among the most serious ob-
stacles to enlarging the physical instruction window [11].

In this paper, we study the addition of apreschedule
stage before the issue stage to combine the benefit of a large
instruction window and a short clock cycle.

We introduce data-flow prescheduling. Instructions are
sent to the issue buffer in a predicted data-flow order instead
of the sequential order, allowing a smaller issue buffer. The
rationale of this proposal is to avoid using entries in the is-
sue buffer for instructions which operands are known to be
yet unavailable.

In our proposal, this reordering of instructions is accom-
plished through an array ofschedule lines. Each schedule
line corresponds to a different depth in the data-flow graph.
The depth of each instruction in the data-flow graph is de-
termined, and the instruction is inserted in the correspond-
ing schedule line. Lines are consumed by the issue buffer
sequentially.

Section 2 briefly describes issue buffers and discusses re-
lated works. Section 3 describes our processor model and
experimental set-up. Section 4 presents the general princi-
ple of prescheduling and introduces data-flow preschedul-
ing. Section 5 describes a possible implementation for data-
flow prescheduling. Section 6 analyses the efficiency of the
implementation proposed based on experimental results. Fi-
nally, Section 7 gives some directions for future research.

2. Background and related works

The issue buffer is the hardware structure materializing
the instruction window. Instructions wait in the issue buffer
until they are ready to be launched to the execution units.
Unlike thereorder buffer[14], instructions can be removed
from the issue buffer soon after issuing, to make room for
new instructions.

The two main phases of instruction issue are thewake-
up phase and theselectionphase [11]. The wake-up phase
determines which instructions have their data dependen-
cies resolved. The selection phase resolves resource con-
flicts and determines which instructions can effectively is-
sue. The delay of the wake-up and selection phases in-
creases with the issue buffer size [11], which makes a large
issue buffer hardly compatible with a short clock cycle.

In some processors like the Alpha 21264 [8], the issue
buffer is collapsable in order to maintain instructions in se-
quential order and facilitate the insertion of new instruc-



tions. Maintaining the sequential order allows the selection
logic to give priority to older instructions.

In currently available processors, separate issue buffers
are implemented for integer and floating-point instructions,
typically 2 to 4 times smaller than the reorder buffer (in
number of instructions). The integer issue buffer typically
does not exceed 20 entries in current processors (20-entry
integer queue in the Alpha 21264, 18-entry integer sched-
uler in the AMD Athlon, 20-entry reservation station in the
Intel P6 ...).

Both micro-architectural and circuit-level solutions have
been proposed for enabling the use of a large instruction
window. In [11, 12], it was proposed to distribute the issue
logic among multiple clusters of execution units. This so-
lution trades global communications for fast local commu-
nications. Thetrace processor[13] is an example of such
proposition. A characteristic of these propositions is that
the instruction window size is proportional to the number
of execution units.

A circuit-level approach was proposed recently for tack-
ling the window size problem specifically [5] : the reorder
buffer and the issue buffer are merged, and parallel-prefix
circuits are used for the wake-up and selection phases.

The idea of prescheduling is not new. Adependence-
basedprescheduler was proposed in [11], that tries to form
chains of dependent instructions in a set of FIFOs. This is
further discussed in Section 4.1. An idea close to ours was
proposed in [3], but with a different implementation.

Note on the issue buffer size. In some processors, in-
structions may have to be re-issued. For example, on the
Alpha 21264 [7], when a load is predicted to hit in the data
cache but actually misses, two issue cycles are annulled and
the issue buffer state is restored. This requires that instruc-
tions remain valid in the issue buffer for a few cycle after
they have been issued. These instructions constitute an “in-
visible” part of the issue buffer, which size depends on the
issue width and on the number of pipeline stages between
the issue stage and the execution stage. All issue buffer
sizes reported in this study are for the “visible” part of the
issue buffer.

3. Processor model and experimental set-up

The processor simulated in this paper is an out-of-order
superscalar processor. The two processor configurations
simulated, “ideal” and “8-way”, are described on Tables 1
and 2 respectively.

The branch predictor simulated is a 3x16k-entry e-gskew
predictor [10]. The size of the reorder buffer, i.e., the num-
ber of physical registers, was fixed large enough so that it
does not interfere with our study. Branch misprediction re-
covery is performed as soon as a mispredicted branch is ex-
ecuted.

The cache latencies reported in Table 1 and 2 are “futur-
istic” values anticipating smaller feature sizes [1].

instruction cache perfect
branch predictor 3x16k-entry e-gskew

global history: 10 branches
fetch bandwidth unlimited
front-end stages 1 (fetch/decode)
reorder buffer 4096 instructions
issue buffer variable
issue width N

execution units N “universal” pipelined
back-end stages issue,X execute, retire
main latencies most int: X=1 cycle

(int) mul: X=7 , div: X=20
load: X=1+4 (addr, cache)

store: X=1+1 (addr, forward)
data cache perfect

memory dependency perfect
predictor

Table 1. “Ideal” configuration

fetch 8 instructions
front-end stages 10 (+)

issue width 8
execution units 8 “universal”
L1 data cache 8 Kbytes, direct mapped

64-byte lines
unlimited bandwidth

L2 data cache perfect
15-cycle latency

store set SSIT : 16k entries (tagged)
predictor LFST : 128 entries (tagged)

Table 2. “8-way” configuration : parameters not
specified are identical to the “ideal” configuration.

We assume the issue buffer is distinct from the reorder
buffer. It schedules all the instructions, except those that
are executed in the pipeline front-end, like unconditional
jumps. The issue buffer is collapsable. When instructions
are competing for the issue bandwidth, instructions that en-
tered the issue buffer first are given priority.

As we focus our attention on the “visible” part of the is-
sue buffer, we did not simulate the impact of pipeline stages
between the issue stage and the execution stage, which is a
distinct problem.

Load/store dependencies. When considering large in-
struction windows, we must pay attention to dependencies
between loads and stores. Previous studies have shown that
memory dependencies can be predicted with a high accu-
racy using past behavior. The memory dependency predic-
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Figure 1. The prescheduler sends instructions to the
issue buffer in the order defined by data dependencies.

tor used in this study for the “8-way” configuration is the
store setpredictor [4].

The Store Set Identifier Table(SSIT) is a 16k-entry
tagged table (4-way set-associative). When a load misses
in the SSIT, it is predicted to carry dependency with no in-
flight store. A load is predicted to be dependent on the store
encountered the more recently in its store set. The depen-
dency is enforced by the issue logic : the load will issue
after the store, so that it can catch the correct value. As
recommended in [4], dependencies are enforced between
stores belonging to the same store set in order to reduce the
number of memory order violations.

In our simulations, the number of memory order viola-
tions did not exceed 2% of the number of branch mispredic-
tions.

Benchmarks. All simulations are trace-driven simula-
tions using the IBS traces [16]. The eight traces reflect the
execution of sequential applications on a MIPS-based work-
station, including system activity.

With the L1 data cache simulated in the “8-way” con-
figuration, there is an average 5% cache miss ratio on our
benchmarks,nroff having the lowest (2 %) andverilog and
videoplay the highest (7-8 %)

With the branch predictor simulated, the average number
of instructions between consecutive branch mispredictions
lies between 100 (real gcc) and 350 (videoplay), and be-
tween 200 and 250 for other benchmarks.

4. Prescheduling

In today processors, instructions are pushed in the issue
buffer in sequential order, therefore instructions depending
on a long dependency chain occupy the issue buffer for a

long time. All the issue buffer entries are checked on ev-
ery cycle. This process is time consuming and the delay
increases with the number of entries in the issue buffer. The
general idea behind prescheduling is to allow only instruc-
tions which are likely to become fireable in the very next
cycles to enter the issue buffer. Information on data depen-
dencies and instruction latencies are known before the issue
stage and can be used for prescheduling.

The principle of prescheduling is depicted on Figure 1.
Instead of being sent to the issue buffer in sequential order,
instructions are reordered by a prescheduler so that they en-
ter the issue buffer in the data-flow order, i.e., the order of
execution assuming unlimited execution resources, taking
into account only data dependencies. The instructions wait
in apreschedule bufferuntil they can enter the issue buffer.

If the predicted data-flow order is close enough to an op-
timal issue order, then the issue buffer can be very small as
it is relieved from the task of buffering instructions not yet
fireable. In fact, the issue buffer size should be closer to the
issue width than to the effective instruction window size.

The job of the hardware prescheduler is somewhat simi-
lar to that of a compiler scheduling instructions within basic
blocks. However, a hardware prescheduler works on large
traces of several tens or hundreds of instructions discovered
at run time and which length is not knowna priori.

Deadlocks. To prevent deadlocks, the prescheduler must
ensure that if instruction B is dependent on instruction A, A
enters the issue buffer before B.

4.1. Dependence-based prescheduling

The dependence-based prescheduler presented in [11] is
an example of a prescheduling scheme. The preschedule
buffer consists of several FIFOs. The issue buffer is the set
of all FIFOs heads, hence the issue buffer size is equal to the
number of FIFOs. The prescheduling logic forms chains of
dependent instructions in FIFOs : an instruction is steered
to a FIFO such that it depends on the last instruction in the
FIFO. If it is not possible to append an instruction to an
existing chain, the instruction is steered to an empty FIFO.
When this is not possible, the steering logic stalls until one
FIFO gets empty.

We verified that, experimentally, a dependence-based
prescheduler withN FIFOs is roughly equivalent to an issue
buffer of2N instructions. A first limitation comes from the
complexity of the data-flow structure of programs. There
are many very short chains ending on a branch or a store,
some chains are merged because of dyadic instructions, sev-
eral chains are forked when the same register value is used
several times. There is another limitation : the optimal dis-
tribution in FIFOs would require to enqueue instructions out
of the program order and take into account instruction la-
tencies. Trying to find the optimal distribution on simple
examples convinced us that this is a hard problem, and that
it would be difficult to improve on the published heuristic.

To overcome these limitations, the data-flow presched-
uler proposed in this paper takes a different approach. First,
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use_line = schedule_line + execution_latency
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8 add r1 <− r1, 1

load r2 <− 0(r1)
add r2 <− r2, 1

sub r2 <− r1, r4

load r2 <− 0(r1)
add r2 <− r2, 1

add r1 <− r1, 1
sub r2 <− r1, r4

schedule_line =  max({source_use_line}, active_line)

Figure 2. Data-flow prescheduling example

it defines a global data-flow order instead of a partial one.
Second, it takes into account instruction latencies, in partic-
ular load latencies.

4.2. Data-flow prescheduling

Ideally, one would like to send instructions to the issue
buffer only when they become fireable. We try to approach
this ideal through real hardware. First we assume unlimited
execution resources.

The depth of each instruction in the data flow graph is
computed, taking into account data dependencies and in-
struction latencies (for simplicity, we assume all loads hit
in the L1 cache). The data-flow depth for an instruction
corresponds to its ideal issue cycle, assuming unlimited ex-
ecution resources. The reordering of instructions is done
through a preschedule buffer implemented as an array of
schedule lines. Each schedule line is associated with an
issue cycle. An instruction is inserted in the schedule line
corresponding to its ideal issue cycle. The issue buffer con-
sumes the lines sequentially. Hence, assuming unlimited
execution resources and perfect prescheduling, instructions
spend a single cycle in the issue buffer, and instructions in
the same line are issued simultaneously.

The principle of data-flow prescheduling is illustrated on
an example in Figure 2. Theactive line is the line which is
currently feeding the issue buffer. The schedule line num-
ber for an instruction is always higher than the current ac-
tive line number. The schedule line is determined with the
following sequential prescheduling algorithm :

scheduleline = max({sourceuseline}, activeline)
useline = scheduleline + executionlatency

For each instruction, we define theuse lineas the line where
its result is available as a source operand for dependent in-
structions.

Real hardware implementations will require further
trade-offs as shown in the next section.

5. A possible implementation for data-flow
prescheduling

5.1. The preschedule buffer

The preschedule buffer is an array of schedule lines.
Each line is associated with a line counter indicating how
many instructions are currently stored in the line. We define
the line width as the maximum line counter value, that is,
the maximum number of instructions that we allow in the
same line. The line counter is incremented each time an in-
struction is written into the line. If the line counter value is
already equal to the line width, this is aline overflow.

In each cycle, as slots are freed in the issue buffer, in-
structions are taken from the current active line to fill these
slots. Once all the instructions in the current active line have
been consumed, the active line number is incremented. We
assume the active line number is incremented at most once
per cycle, and only after the current active line is totally
consumed.

Note that the active line number keeps increasing mono-
tonically. However in practice, the number of physical lines,
which we define as thepreschedule window, is limited.
The active line, schedule line and use line numbers manip-
ulated are virtual line numbers which we map onto physical
lines circularly. When the current active line is consumed,
the physical line is recycled and its line counter is reset.

In this study, we have chosen the following policies for
preschedule window overflows and line overflows :

Preschedule window overflow. If the schedule line for an
instruction is greater than or equal to the sum of the active
line and the preschedule window, prescheduling is blocked,
waiting for the active line to proceed and physical lines to
be recycled.

Line overflow. Similarly, if the targeted schedule line is
full, prescheduling is blocked waiting for the active line to
proceed. The schedule line of the blocked instruction is sim-
ply recomputed with the new active line number, as many
times as necessary, until the instruction can be written in the
preschedule buffer.

Note on the preschedule buffer implementation. In this
study, it is implicitly assumed that the preschedule buffer
is implemented with a direct-mapped two-dimensional ar-
ray : one dimension is the line number, and the other di-
mension is the line counter value. We did not focus on op-
timizing the size of the preschedule buffer, as the access to
the preschedule buffer can be pipelined without impairing
the performance excessively. It should be noted that this is
not the only possible implementation. In particular, it may
be interesting to introduce some associativity by using line
numbers and/or line counter values as tags.
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5.2. Schedule line computation

This section describes the hardware supports used for
implementing the prescheduling algorithm introduced in
Section 4.2.

5.2.1 Registers dependencies

The register use line numbers are stored in aRegister Use
Line Table(RULT ) similar to a register rename table. Each
RULT entry is associated with a logical register. For each
instruction, we must

1. read the RULT entries corresponding to its source reg-
ister operands,

2. compute the schedule line as the maximum of the cur-
rent active line number and the two source registers use
line numbers,

3. add the instruction execution latency to the schedule
line number to determine the destination register use
line.

5.2.2 Load/store dependencies.

We slightly modified the store set predictor for being able
to preschedule a load on a line after all the stores in its store
set. When a store set ID (SSID) is obtained from the SSIT
for a load or a store, this SSID is used to index theLast
Fetched Store Table(LFST) [4]. Each LFST entry holds
theinumof the more recent store in that store set. Theinum
is used to enforce load-store and store-store dependencies.

We modified the LFST entry by adding a field indicating
the store set maximum use linenumber (SSMUL). After
prescheduling a store, we compare the schedule line number
of the store with the SSMUL obtained from the LFST (in
case there was a hit). Then we take the maximum of the two
line numbers, and we write the result in the LFST entry.

We assume the instruction set architecture does not allow
indexed addressing, so that loads have a single register de-
pendency (e.g., MIPS, Alpha). When prescheduling a load,
the first use line number is a register use line read from the
RULT, and the second use line number is the SSMUL read
from the LFST, so that the load is scheduled on a line after
all the stores in its store set.

Although a store is forced to be dependent on previous
stores in its store set, the SSMUL is not used for preschedul-
ing stores because stores are dyadic instructions and this
would require an extra input in the schedule line computa-
tion.

5.2.3 The preschedule pipeline stage

Data-flow prescheduling requires to add a few extra pipeline
stages. In particular, apreschedulestage is necessary for
computing the schedule line numbers. This preschedule

+x

+x

a

b
c

max(a,b,c) + x

+x

Figure 3. Prescheduling operator computing
max(a, b, c) + x

stage is critical for performance, as prescheduling is basi-
cally a sequential task. Nevertheless, we show how it can
be parallelized.

The basic operation involved in data-flow prescheduling
computesmax(a, b, c) + x, with x being a small constant
value depending on the instruction opcode. Figure 3 shows
a possible implementation. For shortening the delay, the+x
operation can be performed in parallel with comparisons, as
shown on Figure 3.

First, we show that the prescheduling logic may operate
on small virtual line numbers, typically 12-bit wide. There-
fore, the operator depicted on Figure 3 should have a propa-
gation time shorter than a full 64-bit ALU. Second, we show
that dependentmax(a, b, c) + x operations can be chained
without increasing the circuit depth.

Maximum virtual line number. In Section 5.1, we did
not consider the limitation of virtual line numbers. In prac-
tice however, virtual line numbers are coded with a limited
number of bits.

When computing the use line of the result of an in-
struction, if the maximum virtual line number is exceeded,
prescheduling is blocked until the processor instruction
window gets completely drained. Then, the active line num-
ber and all RULT and LFST entries are reset to 0, and
prescheduling resumes from the blocked instruction.

This method ensures that the content of the RULT is al-
ways coherent, which is important for avoiding deadlocks.
We found that virtual line numbers can be coded with 12
bits with no significant performance loss. For example, with
12 bits, if 4 instructions are issued per cycle, a control-flow
break is necessary every 16k instructions, which is an or-
der of magnitude larger than the average distance between
branch mispredictions.

Though this solution is simple, other solutions are pos-
sible for keeping the RULT content coherent. For example,
we could invalidate a RULT entry when the last instruction
which wrote in it leaves the preschedule buffer (this would
require to change the definition of themaxoperation in the
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Figure 5. Example of parallel prescheduling. Loads
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source r3 of the add and source r7 of the store.

schedule line computation).

Parallel prescheduling. The preschedule stage is princi-
pally constituted of Nmax(a, b, c) + x operators, N being
the pipeline width.

Previous pipeline stages participate in the preschedule
task, performing intra-group dependencies analysis and de-
termining instruction latencies in order to set the inputs of
all max(a, b, c) + x operators. However this preliminary
work is not the core of the problem (the analysis of intra-
group dependencies is necessary also for register renam-
ing).

The main issue is to perform in the same cycle several
chainedmax(a, b, c) + x operations. We present here a
possible solution to break dependency chains and allow the
implementation of data-flow prescheduling.

Figure 4 shows the circuit for computing the schedule

line and use line numbers{sn} and{un} of a group of in-
structions, based on the operationmax(a, b, c) + x. One
entry,a, is the active line number. The two other entriesin
andi′n are the source operand use cycles. The settings for
thein andi′n sources and the command for the output mul-
tiplexor depend on intra-group dependencies determined in
previous pipeline stages.

If instructionn does not depend on previous instructions
in the group, thenin and i′n are taken from the RULT or
the LFST, and the incrementxn is equal to the instruction
latencyln. The schedule line numbersn, in this case, is
read at the outputon of themaxoperator.

Now let use suppose that instructionn depends on a pre-
vious instruction in the group. If instructionn is monadic
and depends on instructionm, then thenth operator is con-
figured as follows :in = im, i′n = i′m, xn = xm + ln, and
sn = um.

The difficulty comes from dyadic instructions dependent
on previous instructions in the group. We propose to treat
dyadic instructions like monadic instructions by neglecting
one source operand, that is, predicting which of the two
source use line numbers is not the maximum of the three
input use line numbers.

The not-the-maxpredictor we simulated is a 2-bit satu-
rating counter stored along with the instruction. The most
significant bit of the counter indicates which source operand
to neglect.

To check the prediction, we verify that the schedule line
is greater than or equal to the neglected source use line : we
compare thesn value with the source use linejn we neglect
in the computation ofsn. If the prediction is correct, the
2-bit counter is strengthened, else it is weakened.

Upon a misprediction, the group is split : the mispre-
dicted dyadic instruction and following instructions will be
prescheduled in the next cycle. An example is given on Fig-
ure 5.

From our experimentations, we found an average of one
not-the-maxmisprediction every 30 instructions. When
fetching 8 instructions per cycle,not-the-maxmispredic-
tions decrease the fetch rate by 5-10%.

5.3. Deadlocks

Keeping the RULT coherent and stalling upon a
preschedule window overflow ensures that if an instruc-
tion B is register-dependent on an instruction A, then B
cannot enter in the issue buffer before A. So the data-flow
prescheduler described previously cannot experience dead-
locks because of register dependencies.

Load-store dependencies cannot generate deadlocks. A
load is always scheduled on a line after the store it is pre-
dicted to depend on. Note that if the prescheduler failed to
detect a load-store dependency, the load cannot be blocked
in the issue buffer by the store.

Nevertheless, artificial dependencies between stores in
the same store set can cause deadlocks, because they are
not taken into account in the schedule line computation of
a store. However, such deadlocks are very rare. Most of
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our simulations experienced no deadlock at all. Only a few
simulations experienced deadlocks, but never with less than
1 million instructions per deadlock.

Deadlocks can be detected and solved easily : when no
instructions have been issued for a certain number of cycles,
we release all stores in the issue buffer by clearing their arti-
ficial dependencies. These dependencies are not necessary
for a correct execution, they were introduced only for re-
ducing the number of memory order traps.

6. Experimental evaluation

6.1. Line size trade-off

The line size is an important parameter of the data-flow
prescheduler. If the line is chosen too small, prescheduling
will stall too often, limiting the effective instruction win-
dow. On the other hand, if the line is chosen too large, many
wrong-path instructions will enter the issue buffer before
correct-path instructions and may delay the correct path.

The effective instruction window grows proportional to
the square of the line size. As the line size is increased,
prescheduling stalls less frequently, and more instructions
can enter the prescheduler. So there is a direct relation be-
tween the line size and the effective instruction window.

We simulated an “ideal” configuration, replacing the e-
gskew branch predictor with a perfect branch predictor. In
these conditions, the instruction fetch rate is limited only by
line overflows. In this experiment and all subsequent ones,
the preschedule window is fixed to 128 physical lines so that
it is not a performance bottleneck.

Figure 6 shows the IPC with and without a prescheduler.
For the configuration with a prescheduler, we keep the issue
buffer size fixed to 32, and we vary the line size. For the
configuration with no prescheduler, we vary the issue buffer
size. The issue width is kept equal to the issue buffer size.

This experiment shows the relation between the line size
and the effective instruction window size. For example, a
prescheduler with a line size of 16 instructions gives the
same IPC as an an issue buffer of 128 instructions (for the
instruction latencies simulated, and with unlimited execu-
tion resources).

We observed that the average number of instructions
waiting in the preschedule buffer is roughly proportional
to the square of the line size, which is coherent with the
square-root law observed in [9].

It should be noted that, on Figure 6, the issue width
is larger than the line size. However, when execution re-
sources are limited, a data-flow prescheduler is not exactly
equivalent to a large issue buffer, because the data-flow or-
der differs from the optimal issue order. In case of a re-
source conflict, a large issue buffer should give priority to
older instructions. A data-flow prescheduler does not have
this degree of freedom. In particular, it is possible for
wrong-path instructions to delay the execution of correct-

path instructions if the line size is larger than the issue
width.

Sampling method. Our simulator is trace driven, it is not
able to simulate instructions on the wrong path. However,
we have simulated the impact of wrong-path instructions
from the observation that, from the point of view of the data
flow structure, it is very hard to distinguish the wrong path
from the correct path (otherwise, this would provide a way
to detect mispredicted branches). This observation led us to
a sampling method, using correct-path instructions to simu-
late the wrong path. A similar technique was used in [2].

The whole instruction trace is injected in the simulator,
as usual, so that its internal structures (branch predictor,
cache, store sets, ...) are kept “warm”. However, we col-
lect statistics only for one slice every 100 on average. We
define a slice as a piece of instruction trace delimited by
two consecutive branch mispredictions. For simulating the
wrong path, we inject in the simulator the correct-path in-
structions which follow the slice currently sampled. The
time counter starts counting when the first instruction in the
slice is fetched, and the counting stops when the mispre-
dicted branch ending the slice is executed. The “sample”
IPC is the total number of instructions in all slices divided
by the time cumulated on all samples.

To verify the validity of the method, we have simulated
a large issue buffer giving priority to older instructions, so
that instructions on the wrong path have no effect. We also
ran simulations without sampling so as to obtain the “or-
acle” IPC, that is, the IPC obtained when the instruction
fetching stalls after each mispredicted branch. The differ-
ence between the “sample” IPC and the “oracle” IPC mea-
sured on the IBS benchmarks are within±2% for 5 of the 8
IBS benchmarks, the three others being−2.2% (gs),+2.7%
(sdet) and−3.8% (nroff). It should be noted that our sam-
pler uses a random number generator which is always ini-
tialized with the same seed. Hence the sequence of slices
that are sampled is fixed for a given benchmark, which
makes comparisons safer. In the remaining, the “sample”
IPC is used as the performance metric.

Impact of wrong path instructions. Figure 7 shows the
“sample” and “oracle” IPC measured on an “ideal” config-
uration as a function of the line size, for an issue width of 4
and 8. To gain place, we show only the harmonic mean on
all benchmarks.

The issue buffer size was fixed to 32, so that it is not a
performance bottleneck. The difference between the “or-
acle” and “sample” IPC values quantifies the performance
loss associated with potentially issuing wrong-path instruc-
tions before correct-path instructions.

We observe that when the line size is equal to the issue
width, the instructions on the wrong path have no impact on
performance, which is coherent.

As the line size increases, so does the effective instruc-
tion window, and this increases the “sample” IPC. However,
after a certain line size, wrong-path instructions begin to
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Figure 7. Data-flow prescheduling on an “ideal”
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the “sample” and “oracle” IPC as a function of the
line size, for an issue width of 4 and 8.

consume too much issue bandwidth, and the “sample” IPC
falls.

With the instruction latencies simulated, the optimal line
size is approximately 50 % larger than the issue width. For
example, for an issue width of 8, we should take a line size
of 12. In this case, on our simulations, wrong-path instruc-
tions generate a 5% performance loss on average.

6.2. Data-flow prescheduling effectiveness

In this section, we compare three “8-way” configura-
tions with the same issue buffer size: one uses a data-flow
prescheduler, another uses a dependence-based presched-
uler (the issue buffer size is the number of FIFOs), and the
last has no prescheduler.

For the data-flow prescheduler, the line size is set to 12
instructions (following the conclusion of Section 6.1) and
we take into account specific implementation constraints :
virtual line numbers are coded on 12 bits, the preschedule
stage usesnot-the-maxpredictions, and the pipeline front-
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Figure 8. IPC on a “8-way” configuration with a8-
entry issue bufferwith a data-flow prescheduler (12-
instruction lines), a dependence-based prescheduler
(8 FIFOs), and with no prescheduler.
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Figure 9. IPC on a “8-way” configuration with a16-
entry issue bufferwith a data-flow prescheduler (12-
instruction lines), a dependence-based prescheduler
(16 FIFOs), and with no prescheduler.
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Figure 11. Harmonic mean of the IPC when the L1
cache is removed and predicted load latencies corre-
spond to a L2 cache access.

end features 13 stages instead of 10 for the other two con-
figurations (i.e., assuming data-flow prescheduling requires
3 extra pipeline stages).

Figures 8 and 9 show the IPC for issue buffer sizes 8 and
16 respectively.

First, we observe that the data-flow prescheduler, on av-
erage, outperforms the dependence-based prescheduler for
these issue buffer sizes. With a 8-entry issue buffer, a
data-flow prescheduler is on average 20% more performant
than a dependence-based prescheduler and 54% more per-
formant than with no prescheduler. With a 16-entry issue
buffer, a data-flow prescheduler is still 7% more performant
than a dependence-based prescheduler and 33% more per-
formant than with no prescheduler.

Analysis. Figure 10 shows the harmonic mean of the IPC
on all benchmarks as we vary the issue buffer size. With a
data-flow prescheduler, it is beneficial for the issue buffer
to be larger than the line size : the IPC with an issue buffer
of 16 is higher than with an issue buffer of 8. The main

reason is that the data-flow order is not the optimal issue
order because of the limited issue width. An issue buffer
larger than the line size gives more opportunities to the issue
logic for correcting the preschedule order and get closer to
an optimal issue order.

We can observe that increasing the issue buffer size from
16 to 32 brings on average a slight performance gain with a
data-flow prescheduler. Actually, looking at benchmarks in-
dividually, it is correlated with the frequency of data cache
misses. Benchmarks with a high data cache miss rate (e.g.,
verilog, videoplay) benefit from an issue buffer of 32,
whereas benchmarks with few cache misses (e.g.,nroff) do
not. This is because cache misses degrade the accuracy of
the predicted data-flow order.

From these curves, it appears that an effective instruction
window of 128 instructions is sufficient (actually,real gcc
requires a window of only 64 instructions because the dis-
tance between branch mispredictions is twice smaller than
for other benchmarks). Without a prescheduler, we would
need a very large issue buffer to implement such a large
window. With a dependence-based prescheduler, the diffi-
culty is “halved” : 16 FIFOs emulate an effective window
of about 32 instructions.

On the other hand, according to Figure 6, a data-flow
prescheduler emulates a window of about 64 instructions
with a line size of 12. In practice, a part of this potential
is consumed by the impact of wrong path instructions, by
the extra pipeline stages, and by cache misses degrading the
accuracy of the predicted data-flow order.

To better demonstrate the potential of data-flow
prescheduling and give hints for future works, we have per-
formed a simple experiment which results are shown on
Figure 11. In this experiment, we remove the L1 data cache
so that all loads access directly to the L2 cache, and the
prescheduler predicts that the load latency corresponds to
a L2 cache access. We can observe that this emphasizes
the importance of a large issue buffer : a larger instruction
window is needed to saturate the execution units. We can
also observe that we get the full potential of the data-flow
prescheduler with an issue buffer of 16. This is because the
data-flow order is now very accurate, as there are no longer
L1 cache misses. More interesting, theno-prescheduler
curve now crosses thedata-flow-preschedulercurve at an
issue buffer size of 64, despite the impact of wrong-path in-
structions and extra pipeline stages. By predicting longer
load latencies, we decrease the frequency of line overflows
and we allow more instructions to enter in the presched-
uler. In other words, predicting longer latencies enlarges
the effective instruction window. Now, with the same 12-
instruction line size, we are emulating an effective window
larger than 64 instructions.

7. Conclusion and future works

The issue buffer is one of the critical pipeline stages in
modern out-of-order processors. The traversal time of the
issue stage increases with the issue buffer size. This may
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prevent the implementation of large issue buffers.
Data-flow prescheduling allows to reorder instructions

dynamically. The goal is to push instructions in the issue
buffer in the data-flow order rather than in sequential or-
der. This allows to reach the same IPC using a smaller issue
buffer.

The implementation proposed in this study is only a
point in the design space. In particular, we did not explore
the possibility of introducing associativity in the presched-
ule buffer. Associativity might be useful for “smoothing”
the precheduler behavior. This concerns both the utilization
of the preschedule buffer space and the definition of line
overflows.

Prescheduling (or other techniques tackling the same
problem) should be viewed as a way to tolerate long instruc-
tion latencies. The main situation requiring a large instruc-
tion window is when there is not enough instruction paral-
lelism to saturate the execution units. This is often the case
on code sections experiencing frequent data cache misses.

The data-flow prescheduler we simulated predicts that all
load latencies correspond to a L1 data cache hit. However,
for applications with frequent cache misses, we would like
the prescheduler to predict longer load latencies.

As part of future work, it would be interesting to study
how the memory hierarchy design could take advantage of
the latency tolerance afforded by a prescheduler. In particu-
lar, hit-miss prediction techniques [17, 7] should be consid-
ered as part of the problem.

Future work should also focus on the problem of bypass
latencies. In this study, we assumed a centralized instruc-
tion window feeding a compact pool of execution units.
However, clustered architectures are appearing, with re-
stricted bypass networks. Data-flow prescheduling might
also be interesting for those architectures.
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