
Abstract
Speculative multithreading has been recently proposed to
boost performance by means of exploiting thread-level
parallelism in applications difficult to parallelize. The
performance of these processors heavily depends on the
partitioning policy used to split the program into threads.
Previous work uses heuristics to spawn speculative threads
based on easily-detectable program constructs such as loops
or subroutines. In this work we propose a profile-based
mechanism to divide programs into threads by searching for
those parts of the code that have certain features that could
benefit from potential thread-level parallelism.

Our profile-based spawning scheme is evaluated on a
Clustered Speculative Multithreaded Processor and results
show large performance benefits. When the proposed
spawning scheme is compared with traditional heuristics, we
outperform them by almost 20%. When a realistic value
predictor and a 8-cycle thread initialization penalty is
considered, the performance difference between them is
maintained. The speed-up over a single thread execution is
higher than 5x for a 16-thread-unit processor and close to 2x
for a 4-thread-unit processor.

1. Introduction

Speculation is a well-known technique used to improve
processor performance. These mechanisms have been
widely used in order to reduce the penalties of both control
and data dependences. Also, diminishing returns of
instruction-level parallelism are boosting the use of
alternative techniques to increase performance. Combining
thread-level parallelism and instruction-level parallelism is
an approach that has been considered by several processor
vendors. These types of processors are usually referred to as
multithreaded processors. The task of dividing programs into
threads that will be executed in parallel is rather straight-
forward for regular or numeric applications, and the current
compiler technology can perform it efficiently. However,
this task becomes hard for irregular and non-numerical
programs; compilers usually fail to discover the potential

thread-level parallelism that could be effectively exploited in
this class of applications.

Speculative multithreading is a promising approach to
solving this problem. In these systems, threads that may be
control and data dependent on previous threads are
speculatively spawned and executed. Relaxing the
constraints to spawn a thread results in a significant increase
of opportunities to exploit thread-level parallelism
[2][15][16], even though, obviously, roll-back mechanisms
are needed in case of misspeculations.

The performance of speculative multithreaded
architectures is very sensitive to the policies that determine
which parts of the code are executed by speculative threads
and when they start execution. We refer to this criteria as the
thread-spawning policy. In several architectures such as
Multiscalar[5][21], the SPSM architecture[4] and the
Superthreaded[24], the compiler is responsible for dividing
the program into speculative threads. Alternatively, the
Dynamic Multithreaded Processor[1] and the Clustered
Speculative Multithreaded Processor[12][13] rely only on
hardware techniques; programs are partitioned at run-time.
The thread-spawning policies proposed so far for speculative
multithreaded architectures are very simple. They are based
on assigning speculative threads to common program
constructs such as loop iterations, loop continuations and
subroutine continuations.

A thread-spawning operation is identified by two
instructions: 1) the spawning instruction that creates a new
thread when it is reached, and 2) the spawned instruction
where the speculative thread starts its execution. These
instructions are referred to the spawning point and the
control quasi-independent point, respectively.

In this paper we propose a general framework for
identifying effective spawning and control quasi-
independent points in any sequential program. Thus, a
profile-based analysis is done in order to find the best
sections of the code to create speculative threads depending
on several requirements that they should match. This
approach tries to identify pairs of spawning and control
quasi-independent points in such a way that the execution of
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the control quasi-independent point is very likely once the
spawning point is reached. Most of the instructions below
the control quasi-independent point should be independent
of the instructions between the spawning point and the
control quasi-independent point. We show that this thread-
spawning policy is more effective than previous schemes,
which they are based on just exploiting common program
constructs.

The rest of the paper is organized as follows. Section 2
reviews the related work. The profile analysis is described
in Section 3. Section 4 shows the performance potential of
the profile-based spawning scheme and evaluates it under
realistic assumptions, and finally Section 5 summarizes the
main conclusions of the work.

2. Related Work

Several microarchitectural proposals for exploiting
speculative thread-level parallelism have been recently
proposed. The Expandable Split Window Paradigm [5] and
its follow-up work, the Multiscalar Processor [21] were the
pioneer works on this topic. In that architecture, the
compiler is responsible for dividing the code into tasks. The
policy used by the compiler is based on heuristics that try to
minimize the data dependences among active threads or
maximize the workload balance, among other compiler
criteria [25].

In some other proposals such as the SPSM [4] and the
Superthreaded [24] architectures, the compiler is also
responsible for splitting the program into threads. But in
both cases, threads are assumed to be loop iterations instead
of the more complex analysis performed by the Multiscalar
compiler.

On the other hand, some other architectures try to exploit
thread-level parallelism speculating on threads dynamically
created by the processor without any compiler assistance.
The Speculative Multithreaded Processor [12] and the
Clustered Speculative Multithreaded Processor [13]
identify loops at run-time and simultaneously execute
iterations in different thread units.

In the same way, the Dynamic Multithreaded Processor
[1] relies only on hardware mechanisms to divide a
sequential program into threads. In this case, it speculates
on loop and subroutine continuations instead of loop
iterations. Moreover, the architectural design of the
processor allows for out-of-order thread creation which
requires communication among all hardware contexts.

Trace Processors [17] also exploit certain kinds of
speculative thread-level parallelism. The mechanism to
partition a sequential program into almost fixed-length
traces is specially suited to maximize the workload balance
among the different thread units with the help of the trace
cache [18].

A different proposal to divide the program into threads
was done by Codrescu et al. The MEM-slicing [2] scheme
is also based on profile analysis, but the spawning algorithm
starts new threads at memory instructions.

Several other recent techniques are also based on
identifying dynamic sequences of instructions that could
potentially have a high impact on performance and assigns
them to a speculative thread [3][11][26]. However, this
thread identification technique relies on simple heuristics
(e.g.; mispredicted branches and load misses are the most
critical instructions).

In addition, several works on speculative thread-level
parallelism on multiprocessor platforms have been
performed [8][9][10][23]. In all cases, programs are split by
the compiler using heuristics based on loop iterations or
subroutine continuations.

Some works comparing different spawning policies have
been performed for both an on-chip multiprocessor [2][16]
and a Clustered Speculative Multithreaded Processor [15].
The spawning policies considered were based on assigning
speculative threads to loop iterations, loop continuations
and subroutine continuations. The reported results of these
two works cannot be compared since the baseline
architectures were totally different and in the case of an on-
chip multiprocessor, the present interactions between fine
and coarse-grain parallelism were not considered.
Subroutine continuation shows the best thread spawning
potential for an on-chip single-issue in-order
multiprocessor, whereas for the Speculative Multithreaded
Processor spawning at loop iterations is the most effective
scheme.

The importance of value prediction in such architectures
has been pointed out elsewhere [14][15]. Predicting thread
input values allows the processor to execute speculative
threads as if they were independent. In some previous
proposals (e.g., the SPSM [4] or the Superthreaded [24]
architecture) no mechanisms for value prediction was
considered. This implies that for each inter-thread
dependent pairs of instructions the consumer must wait
until the producer has been executed. On the other hand, the
Dynamic Multithreaded [1] processor uses a very simple
value prediction scheme; the register values of the spawned
thread are predicted to be the same as those of the spawning
thread at spawn time. More effective prediction schemes
are proposed in the Trace Processors [17] and the Clustered
Speculative Multithreaded architecture [13].

3. Speculative Thread-Level Parallelism

A thread spawning operation is identified by two
instructions in the dynamic instruction stream that we refer
to as the spawning and the control quasi-independent
points. Each pair of points is referred to as a spawning pair.
The spawning point is the instruction that, when reached by
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the processor, it fires the creation of a new thread. The
control quasi-independent point is where the new spawned
thread starts. The spawning and the control quasi-
independent points can be conventional instructions in the
instruction set, denoted with special marks or special
instructions such as fork and spawn. Figure 1 shows how
speculative multithreaded processors work. Thread Unit n
executes the instruction stream in the same way as a
conventional superscalar processor until it reaches a
spawning point. At this point, the processor identifies a
future instruction (the control quasi-independent point)
which will very likely be executed in the near future. Then,
Thread Unit n+1 spawns a new thread speculatively starting
at the control quasi-independent point while Thread Unit n
continues executing instructions up to the control quasi-
independent point which also becomes the join point
between threads. That is, the join point of a thread is a
control quasi-independent point of an on-going speculative
thread.

It is obvious that the best instructions to be considered as
spawning and control quasi-independent points are those
where the speculative and the non-speculative thread were
control and data independent, in such a way that the
processor would be able to execute them concurrently.
Unfortunately, these kind of threads are not common in
some programs, especially in non-numerical codes, and
thus, their potential thread-level parallelism may be rather
low.

Effective spawning pairs should satisfy some
requirements. First, the probability of reaching the control
quasi-independent point after visiting the spawning point
should be very high in order to conserve resources
(executing instructions that will never be reached). Second,
the distance1 between the spawning point and the control
quasi-independent point should not be too small or too large
to keep the thread size within a certain limit. Small threads
result in too much overhead and large threads may result in

work imbalance. Third, instructions after the control quasi-
independent point should have few dependences with
instructions above it or alternatively, the values that flow
through such dependences should be predictable.

Previous thread-spawning policies basically focused on
the first criterion:

• Loop iterations: considers the first instruction in
static order of a loop (the target of a backward
branch) as both the spawning and the control quasi-
independent point. Note that once an iteration is
started, a further iteration is very likely regardless of
the outcome of the branches inside the loop body.

• Loop continuation: considers the first instruction in
static order of a loop as the spawning point and the
instruction following the backward branch in static
order that closes the loop as the control quasi-
independent point. Note that after starting a loop, the
instruction at the control quasi-independent point is
very likely to be executed regardless of the control-
flow inside the loop.

• Subroutine continuation: considers a subroutine call
as the spawning point and the instruction following
the subroutine call in static order (e.g., the point
where the subroutine will return) as the control
quasi-independent point. Note again that after the
call, this latter instruction is very likely to be
executed regardless of the path followed inside the
call.

3.1. Profile-Based Thread-Spawning Scheme

We are interested in identifying speculative threads that
meet the three criteria discussed above. Threads are not
necessarily associated with a particular program construct
(e.g. loop iteration) and any instruction can be a spawning
point or a control quasi-independent point.

The technique proposed here to identify spawning pairs
is based on a profile-based analysis of the properties of any
potential section of code. For this purpose, a dynamic
control flow graph of the program is built. Each node of the
graph represents a basic block and edges represent possible
control flows among blocks. Edges are weighted with the
frequency that the corresponding control flow has been
followed during the profiling. Besides, to reduce the size of
the graph, we prune the least frequently executed basic
blocks. Thus, basic blocks are ordered by execution count
and they are chosen from highest to lowest count until 90%
of the total executed instructions are covered. However, in
order not to lose information about possible control flows,
whenever a node is pruned, any edge from a predecessor to
it is transformed to a series of edges from that predecessor
to their successors, and any edge from it to a successor is
transformed to a series of edges from every predecessor to

1 We refer to distance as the average number of instructions executed be-
tween the spawning point and the control quasi-independent point.

Dynamic instruction stream

TUn

TUn+1

Spawning point

Control Quasi-Independent point

Figure 1: Spawning and Control Quasi-Independent
Points.
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that successor. During this transformation, if an edge is
transformed into multiple edges, its original weight is
proportionally split across the new edges.

Once the reduced control flow graph is generated, the
probability to reach any basic block after executing any
other else is computed. We will refer to these probabilities
as reaching probabilities. These probabilities are stored in
a two-dimensional square matrix that has as many rows and
columns as nodes in the control flow graph. Each element
of the matrix represents the probability to execute the basic
block represented by the column after executing the basic
block represented by the row. This probability is computed
as the sum of the different frequencies for all the different
sequences of basic blocks that exist from the source node to
the destination node. In order to simplify the computation,
the only constraint taken into account for these sequences is
that the source and the destination nodes can only appear
once in the sequence of nodes as the first and the last nodes
respectively (obviously, when the reaching probability of
execute a basic block after executing itself is computed, that
basic block appears twice, the former as source node and the
later as destination node). Anyway, this constraint does not
restrict any other basic block from appearing more than
once in the sequence.

Once all these probabilities are computed, pairs of nodes
are evaluated to become spawning and control quasi-
independent points (in fact, the spawning and the control
quasi-independent point will be the first instructions of the
basic blocks selected). Thus, the previous constraint, in
addition to simplifying the computation of the reaching
probability matrix, it reduces the control logic of the
processor since otherwise, the identification of the starting
and ending points of each thread would become quite
cumbersome.

Then, a prune of those pairs of nodes that do not
accomplish the minimum requirements to be considered as
good candidates to spawning pairs must be done. Those
requirements were mentioned in the previous subsection.
The first property that must be satisfied by each of these
pairs is that their associated reaching probability should be
very high, i.e. higher than a given threshold; that is, the
probability to reach the control quasi-independent point
after the spawning point is higher than a given threshold.

The second requirement that the spawning pairs must
satisfy is that a minimum average number of instructions
between the spawning point and the control quasi-
independent point should exist in order to reduce the
relative overhead of thread creation. Consequently, while
the reaching probability is being computed, additional
calculation regarding the average number of instructions
between the source node and the destination node is
performed. The average is calculated as the sum of the
number of instructions executed by each sequence of basic
blocks multiplied by their frequency. Thus, good candidates

to be considered as spawning pairs are those pair of basic
blocks whose reaching probability is higher than a threshold
and the average number of instructions between them is
larger than a minimum size.

It is possible that for a given spawning point, there are
several good candidates for its associated control quasi-
independent point (i.e. for a given row of the probability
matrix, there are more than one element that exceeds the
minimum probability and the minimum size). Figure 2
shows the total number of pairs of basic blocks obtained for
the SpecInt95 benchmarks, which is on average 6218, but
only 499 have different spawning points. The minimum
distance between the spawning point and the control quasi-
independent point considered is 32 instructions and the
minimum probability is 0.95.

When the processor reaches the spawning point it will
start a speculative thread at only one control quasi-
independent point. Thus, the alternative quasi control-
independent points associated to each spawning point must
be ordered according to the expected benefit. Three
alternative criteria have been considered to produce such an
ordering: a) maximizing the distance between the spawning
and the control quasi-independent point - this is an
estimation of the size of the corresponding speculative
thread if we assume that the spawning thread and the
spawned thread have the same instruction throughput -; b)
the number of instructions of the spawned thread that are
independent of previous instructions - again assuming a size
of the thread equal to the distance between the spawning
and the control quasi-independent point -; and c)
maximizing the number of instructions of the spawned
thread that are either independent of or dependent on a
predictable value generated outside the thread. We initially
consider the first criterion and we later present results for
the other two.

Finally, all return point pairs (pairs of subroutine calls
and the return point) are added to the list of spawning and
control quasi-independent points if they satisfy the
minimum size constraint, since some of them may not have
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Figure 2: Number of pairs of basic blocks selected and
number of selected pairs that have different
spawning points.
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been selected by the previous algorithm. In particular, if a
subroutine is called from multiple locations, it will have
multiple predecessors and multiple successors in the
control-flow graph. If all the calls are executed a similar
number of times, the reaching probability of any pair call
and return point will be low since the graph will have
multiple paths with similar weights.

4. Performance Evaluation

In this section we evaluate the performance of the proposed
thread-spawning policy and compare it with previous
proposals. For this evaluation we assume a particular
speculative multithreaded processor, namely the Clustered
Speculative Multithreaded Processor [12][13], but most of
the results can be extrapolated to other architectures. We
just focus on irregular applications (SpecInt95) for which
compilers typically fail to exploit thread-level parallelism.

4.1. Experimental Framework

A Clustered Speculative Multithreaded Processor is made
up of several thread units, each one being similar to a
superscalar processor core. Communications among
clusters occur for both memory and register values and a
fully-interconnected topology is considered. Further details
of the processor can be obtained elsewhere [12][13].

Performance statistics were obtained through trace-
driven simulation of the whole SpecInt95 benchmark suite.
The programs were compiled with the Compaq compiler for
an AlphaStation 600 5/266 with full optimization (-O4) and
instrumented by means of the Atom tool[22]. For the
statistics, we have executed each to completion using
training input data.

The baseline speculative multithreaded processor has a
parameterized number of thread units (from 4 to 16) and
each thread unit has the following features:

• Fetch: up to 4 instructions per cycle or up to the first
taken branch, whichever is shorter.

• Issue bandwidth: 4 instructions per cycle

• Physical Registers: 64.

• Functional Units (latency in brackets): 2 simple
integer (1), 2 load/store units (1 for address
calculation plus the latency of accessing the cache),
1 integer multiplication (4), 2 simple FP (4), 1 FP
multiplication (6), and 1 FP division (17).

• Reorder buffer: 64 entries.

• Local branch predictors: 10-bit gshare. Local
predictors are not initialized when a new thread is
spawned at a thread unit; instead, it will use the
previous contents of such tables.

• 32 KB non-blocking, 2-way set-associative, local,
first-level data cache with an 32-byte block size and
up to 4 outstanding misses. The L1 latencies are 3
cycles for a hit and 8 cycles for a miss.

Initially, we assume a perfect register value prediction
(i.e., input register values are available when the
speculative thread is started) and no thread creation
overhead. Later, the impact of a realistic register value
predictor is analyzed as well the impact of considering a
realistic thread creation penalty.

Dependent values through memory locations are not
predicted. The cost for forwarding data values from the
producer thread unit to the consumer has been set to be 3
cycles. Memory dependence violations are detected by
means of a cache coherence protocol based on the
Speculative Versioning Cache [7].

In figures 3 to 12, spawning pairs are obtained from the
profile-based analysis discussed in the previous section
being the minimum reaching probability 0.95 and the
minimum distance 32 instructions.

4.2. Performance Figures

Figure 3 shows the speed-up obtained by a Clustered
Speculative Multithreaded Processor with 16 thread units
over a single-threaded execution. We are using our profile-
based spawning policy and assume a perfect value predictor
for inter-thread register dependences. The average speed-up
is 7.2 (harmonic mean) and it is quite important for all
benchmarks. This shows the effectiveness of the proposed
scheme for exploiting thread-level parallelism in irregular
applications. For some programs such as ijpeg, which is
the most regular program in the set, the speed-up reaches
11.9.

Figure 4 shows the average number of active threads for
each program. As it can be expected the average number of
active threads is closely related to the speed-up. On
average, the average number of active threads is 7.5 and for
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Figure 3: Speed-up over a single-threaded execution
using the profile-based spawning scheme
with 16 Thread Units and perfect value
prediction.
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the program with the highest speed-up, ijpeg, it is 9.0. The
additional speed-up achieved to that produced by thread-
level parallelism is due to value prediction. Even though the
effectiveness of our profile-based spawning policy is quite
high, there are still about half of the processor resources that
are wasted on average. This may be due to the application´s
features but also to some limitations in the spawning policy.
We show below how some of these limitations can be
overridden.

Since threads must commit in program order, thread
units become available in the same order and thus,
workload balancing may be a critical issue for performance.
Threads that are being executed for long periods of time
alone, or in parallel with very few other threads while the
other thread units have finished the execution and are
waiting for the completion of such threads to commit their
respective threads, are undesirable. Thus, we extend the
spawning scheme with a dynamic mechanism that monitors
how much time a thread is executing alone. If it is above a
certain threshold, the corresponding spawning pair is
removed so that this thread is not created in the future1. This
removal of spawning pairs can be done either the first time
the above situation is observed or after the above situation
has been repeated for a number of times. Figure 5a shows
the performance when spawning pairs are never removed,
when they are removed after executing 50 cycles alone, or
when they are removed after executing 200 cycles alone. It
can be observed that in general, the most aggressive
spawning removal policy results in significant
improvement, except for compress, whose performance
dramatically drops when a small number of cycles is
considered. This is due to the small number of selected
spawning pairs in this program (only 30), when left to an
aggressive removal mechanism leaves the program with too
few spawning pairs. On average, the speed-up achieved for
200 cycles is higher than 8 over a single-threaded execution
and represents a 10% improvement compared with the non
spawning removal scheme.

An alternative way to temper the removal mechanism is
to hold off cancelling a spawning pair until the speculative
thread that is executing alone a minimum of occurrences.
Figure 5b shows the performance for a cancelling policy
with 50 cycle alone scheme when the number of
occurrences is 8 and 16. On average, delaying the removal
decision results in an improvement, but it is basically due to
the huge improvement achieved by compress. In fact, the
rest of the programs suffer a small performance loss.
Although not shown in the graphs, we have also evaluated
the delayed removal policy for the 200 cycle alone scheme
and we have observed a small performance drop for all
programs. We have also evaluated a policy that removes a
spawning pair whenever the corresponding thread is
executing with just a few threads instead of just one. This
resulted in a small improvement on average, although most
of the benefit came from three programs (compress,
m88ksim and gcc).

Figure 2 shows that the number of candidate spawning
pairs is much higher than the final number of selected pairs.
Remember that only one spawning pair for a given
spawning point is considered according to the criteria
introduced in section 3.1. Also, whenever a thread reaches
a spawning point and finds another more speculative thread
already started in that control quasi-independent point, it
does not spawn a new thread. An alternative policy may be
considered. That says whenever a spawning point is

1 We have also evaluated a policy that considers again a removed thread
after a certain period of time but we observed very small improvements.
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Figure 4: Average number of active threads
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reached, if a thread cannot be spawned at the most
convenient control quasi-independent point, the next
control quasi-independent point is tried according the
previously mentioned criteria. Likewise, whenever a
spawning pair is removed we may consider the next most
convenient pair with the same spawning point. We refer to
this policy as the reassign spawning policy since it re-
assigns a spawning point to a different control quasi-
independent point. The result of these modifications are
shown in Figure 6, together with the previous policy that
just considers a single spawning pair per spawning point. It
can be observed that the results are a bit worse for the
reassign policy. One reason for this performance
degradation is the fact that whenever a control quasi-
independent point cannot be chosen, the next control quasi-
independent point is usually too close and this results in
generating very small threads as well introducing more
spawning pairs, and does not necessarily imply better
performance.

Figure 7a shows the average thread size performing
spawning pair removal and with no reassign.We refer to
thread size as the number of instructions executed in a
thread unit starting when a speculative thread is assigned to
this thread unit until it reaches a control quasi-independent
point of an on-going thread, that is, a join point. It can be
observed that the thread size for most of the benchmarks is
smaller than 32, which was the minimum size we
considered when selecting a spawning pair. This is due to
the overlapped execution of speculative threads. Figure 7b
shows the performance when a minimum size for the
threads is enforced, in such a way that the spawning pairs
whose associated threads are smaller than a minimum size
are removed. It can be observed that the speed-up achieved
is 10% over the conventional removal policy (a 50-cycle
threshold is considered for all the benchmarks, except for
compress, which is set to 200 cycles).

4.2.1. Comparison with traditional heuristics

In a previous study [15], a comparison among basic thread
spawning heuristics for a Clustered Speculative

Multithreaded Processor was done. Although the best
individual results were reported for the loop-iteration
spawning scheme, it was pointed out that the best spawning
policy may be a combination of all of them.

In Figure 8, the spawning policy proposed here and a
combination of loop-iteration, subroutine-continuation and
loop-continuation spawning schemes are compared.
Results are reported as speed-ups achieved by the profile-
based spawning scheme over the traditional heuristics. It
can be observed that on average the improvement is close to
20%, being quite high for vortex and more than 10% for
the rest of the benchmarks (except for perl, which suffers
a slight slow-down (8%)). This fact is due to the work
imbalance present in this benchmark based on our profile-
based spawning policy.
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Figure 7: a) Average thread size b) Speed-up achieved
when a minimum thread size is considered to
spawn new speculative threads.
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Figure 8: Speed-up of the profile-based spawning
policy over the traditional heuristics.
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4.3. Critical Issues on the Clustered Speculative
Multithreaded Processors

Next, the impact of a realistic value predictor, the thread
creation overhead and a the number of thread units is
studied.

4.3.1. Value Prediction

The importance of value prediction for speculative
multithreaded architectures has been previously shown
[15]. In this subsubsection, we present performance figures
that show the impact of different value predictors on the
performance of a Clustered Speculative Multithreaded
processor with the propose profile-based spawning policy.
A study regarding how value predictors work in speculative
multithreaded architectures has been presented in [14]. The
size of the value predictor has been fixed to 16KB for the
two value predictors analyzed: the stride [6][19] and the
context-based (FCM) [20] value predictors.

Figure 9a shows the prediction accuracy of the different
value predictors for both spawning policies, the profile-
based and the heuristic-based schemes. It can be observed
that there are no significant differences in prediction
accuracy for the different spawning policies and value
predictors. On average, the hit ratio is around 70% (note
that only thread input values are predicted). Prediction
tables are indexed by hashing 3 values, the program counter
of both the spawning point and the control quasi-

independent point and the identifier of the register being
predicted.

Figure 9b shows the speed-ups achieved by both
spawning policies compared with the single-threaded
execution, when a stride predictor is considered. Results for
the FCM value predictor are very similar and are not present
in the figure. It can be observed that the speed-ups reported
are still quite high: the traditional heuristics obtain a speed-
up close to 5.5, and the profile-based higher than 6, even
though the gap between them has been reduced to only
13%. Moreover, note that the loss in performance when a
realistic value predictor is considered is in both cases higher
than 25% (30% for the traditional heuristics and 34% of
slow-down for our proposed profile-based scheme).

For a realistic value predictor, alternative criteria to
choose among the different control quasi-independent
points for a given spawning point may be considered.
Instead of choosing the point that results in the largest sized
thread, we have evaluated a scheme that selects the point
that maximizes the number of independent instructions
between the spawning and the spawned thread. We have
also considered a third scheme that selects the control
quasi-independent point that maximizes the number of
instructions either predictable or independent. We refer to
these two new policies as independent and predictable
spawning policies. For this study we have considered the

Figure 9: a) Value prediction accuracy and b) Speed-ups
for the stride value predictor.
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Figure 10:a) Value prediction accuracy and b) Speed-up
achieved by the independent and predictable
spawning policies.
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stride predictor since it provides the best value prediction
accuracy.

Figure 10a shows the prediction accuracy achieved by
the value predictors when these new policies are applied.
The first two bars correspond to the independent policy and
the last two bars to the predictable policy. As expected, the
policy oriented to predict values achieves the best value
prediction hit ratio. It correctly predicts 75% of the values.

Nevertheless, a better value predictor accuracy does not
imply a better overall performance. In Figure 10b it can be
observed that for a stride predictor, the speed-ups achieved
by these two new spawning policies are 35% lower than the
obtained by the original one, which maximizes the distance
between the spawning and the control quasi-independent
point. This is due to the smaller sized threads created by
these two spawning schemes. For perfect value prediction
(not shown in the figures), the slow-down of the new
spawning policies is somewhat lower (21% on average).

4.3.2. Overhead Considerations

Starting a new thread requires several operations that may
take some non-negligible time. These operations include
the prediction of the live-in values1 for a thread. We refer to
the penalty associated with all these operations as
initialization overhead. In this section, we evaluate the
impact of the initialization overhead for a penalty of 8
cycles, since it is known that the number of live-in values is
relatively small. Penalty overhead is only suffered by the
new spawned thread. Figure 11 shows the slow-down due
to this overhead when a stride value predictor is considered.
The slow-down is 12% on average for both cases and it
ranges from 16% to 8% for all the benchmarks.

4.3.3. 4 Thread Units

Finally, in order to evaluate the scalability of the
architecture with our spawning policy, the performance of

the profile-based spawning policy is evaluated for a 4-
thread-unit configuration. Figure 12 shows the average
speed-ups achieved by both spawning policies for a perfect
register value predictor, a stride predictor without overhead
penalty and a stride predictor with an initialization overhead
of 8 cycles. It can be observed that the speed-up obtained is
quite high, 2.75 for perfect value prediction, slightly higher
than 2 for a stride predictor without initialization overhead
and about 1.9 for a stride predictor with a 8-cycle thread
initialization overhead. Note that the degradation in
performance between perfect and realistic value predictors
is about the same for 4 and 16 thread units.

The bottomline of this study is that a speculative
multithreaded processor with a relatively low number of
thread units, a simple value predictor and reasonable thread
initialization overhead can achieve a significant speed-up
for irregular applications such as the SpecInt95. The
performance of the scheme scales reasonable well for 16
thread units, where the average speed-up is higher than 5 for
a stride predictor and a 8-cycle thread initialization
overhead.

5. Conclusions

In this work a new approach to spawn speculative threads in
a sequential program has been presented. This technique is
based on a profile-based analysis to detect which are the
best instructions to spawn new threads and where the
spawned thread has to start.

We have shown that the potential benefits of this
spawning policy are quite high, reporting speed-ups close to
7x. Avoiding the creation of threads that will be executed
alone and enforcing a minimum size can increase these
speed-ups up to 9.4. The performance achieved by the
profile-based spawning policy outperforms the best
combination of traditional heuristics such as loop-iteration,
loop-continuation and the subroutine-continuation
spawning schemes by almost 20%.

When realistic assumptions are considered, the
performance obtained is diminished but the results are still
quite promising. With a realistic 16-KB stride predictor and
an 8-cycle thread creation penalty, the speed-up achieved

1 Live-in values are those register values that will be read in a speculative
thread before they were written and they are produced by a previous
thread[14].
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by the profile-based scheme is still higher than 5, which is
almost 15% better than the obtained by the traditional
heuristics.
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