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Abstract
Cache memories account for a significant fraction of

a chip’s overall energy dissipation. Recent research advo-
cates using “resizable” caches to exploit cache require-
ment variability in applications to reduce cache size and
eliminate energy dissipation in the cache’s unused sec-
tions with minimal impact on performance. Current pro-
posals for resizable caches fundamentally vary in two
design aspects: (1)cache organization, where one organi-
zation, referred to as selective-ways, varies the cache’s
set-associativity, while the other, referred to as selective-
sets, varies the number of cache sets, and (2)resizing
strategy, where one proposal statically sets the cache size
prior to an application’s execution, while the other allows
for dynamic resizing both within and across applications.

In this paper, we compare and contrast, for the first
time, the proposed design choices for resizable caches,
and evaluate the effectiveness of cache resizings in reduc-
ing the overall energy-delay in deep-submicron proces-
sors. In addition, we propose a hybrid selective-sets-and-
ways cache organization that always offers equal or better
resizing granularity than both of previously proposed
organizations. We also investigate the energy savings from
resizing d-cache and i-cache together to characterize the
interaction between d-cache and i-cache resizings.

1  Introduction
The ever-increasing level of on-chip integration in

CMOS technology has enabled phenomenal improve-
ments in microprocessor performance but has also caused
an increase in energy dissipation in a chip. High energy
dissipation diminishes the utility of portable systems and
reduces reliability, requires sophisticated cooling technol-
ogy, and increases cost in all segments of the computing
market including high-end servers [11]. In state-of-the-art
microprocessor designs, cache memories account for a
significant fraction of total power/energy dissipation. For
instance, 16% of total power in Alpha 21264 [3] and 21%
in Pentium Pro [6] is dissipated in on-chip caches.

Current circuit techniques to reduce energy dissipation
in caches typically trade off speed for lower energy dissi-
pation in less performance-critical cache structures.

Instead of solely relying on circuit techniques, recen
research also advocates using “resizable” caches to red
energy dissipation especially in high-performance cach
[1,13]. Resizable caches are based on the observation
cache utilization varieswithin and acrossapplication exe-
cution. These caches allow hardware/software to custo
ize the cache size to fit an application’s demands. B
eliminating energy dissipation in the cache’s unused se
tions, resizable caches significantly improve energy-ef
ciency withminimal impact on application performance.

Current proposals for cache resizing fundamenta
differ in cache organization, resizing framework, and ho
they exploit variability in applications’ cache utilization to
save energy. One proposal [1] advocates aselective-ways
cache organization which allows for varying the cache
set-associativity. Another proposal [13] advocatesselec-
tive-setscache organization which varies the number o
cache sets. These cache organizations differ in (1) t
offered range of cache sizes, (2) the offered resizing gra
ularity — i.e., the distance between two adjacent offere
sizes, (3) the allowable set-associativity at various res
ings, and (4) the hardware complexity. The effectivene
of either organizations to reduce size and energy depe
on the one hand on the application’s demand for a spec
size and set-associativity and on the other hand the cach
ability to meet the demands.

The two proposals also differ in the cache resizin
strategy of “when” to resize. The proposal for selective
ways [1] advocatesstatic resizingby setting the cache size
prior to an application’s execution, and exploits variatio
in cache utilization only across applications. The propos
for selective-sets [13] advocates adynamic resizingbased
on monitoring cache miss ratio and resizes the cache
react to varying demand for cache size both within an
across applications. The two resizing strategies differ
two respects: (1) the ability to resize the cache during
application’s execution, and (2) the design complexit
The effectiveness of dynamic resizing depends on both
resizing opportunity within applications and the ability o
the dynamic resizing mechanisms to seize the opportun

The previous studies on resizable caches focused o
single cache design of interest, and did not compare a



e
on
ve
o
the

ce
ed,
le

ve
s

er
h
es.
n
-
al
le

u-

g
ng
st
at
ro-

a-

i-
re

set
is

f a

ft-
contrast the design choices for resizable caches. In this
paper we identify the opportunity for cache resizing in a
spectrum of applications, exploit the various design
choices for both instruction and data resizable caches, and
evaluate their effectiveness in reducing theoverall energy
dissipation in processors. We use Wattch [3] and SPEC
benchmarks to simulate and model energy-delay for state-
of-the-art processors and their cache hierarchies. We
present results for optimal energy-delay, but show that the
impact on overall performance is less than 3% in most of
the experiments and less than 6% in all of the experiments.

The contributions of this paper are:
• Resizing organization:Selective-sets allows for main-

taining set-associativity while resizing and offers supe-
rior energy-delay over selective-ways for caches with
set-associativity of less than or equal to four. Selective-
ways offers a better range of sizes and benefits caches
with set-associativity of eight and higher. We propose a
hybrid selective-sets-and-waysorganization that
always equals or improves energy-delay over the best
of selective-sets or selective-ways alone.

• Resizing strategy:On average, static resizing captures
most of the opportunity for resizing and reducing pro-
cessor energy-delay in applications as compared to a
miss-ratio based dynamic resizing framework while
simplifying design. Dynamic resizing exhibits clear
advantages over static resizingonly in two scenarios:
(1) when cache misses directly lie on the execution’s
critical path — e.g., instruction cache misses or block-
ing data cache misses — and the application exhibits
varying working set sizes benefiting from resizing at
runtime, or (2) the application’s required cache size
lies in between two sizes offered by the organization;
unlike static resizing, dynamic resizing switches
between two sizes and “emulates” the required size.

• Resizing both d-cache and i-cache:Our results indi-
cate that resizing L1 d-cache and i-cache simulta-
neously has minimal impact on the application’s
footprint in L2 and therefore the cache resizing and
energy-delay savings from the two caches are “addi-
tive”. In a four-way out-of-order processor with 32K 2-
way static selective-sets d-cache and i-cache and a
512K L2 cache, we measure an overall processor
energy-delay savings of 20%.

The rest of the paper is organized as follows. Section 2
describes the design space of resizable caches, and in Sec-
tion 3, we present energy dissipation in state-of-the-art
cache memories and energy savings of resizable caches. In
Section 4, we describe the experimental methodology and
results. Section 5 presents an overview of the related work.
Finally, we conclude the paper in Section 6.

2  Resizable Caches
Resizable caches exploit the variability in cache siz

requirements in applications to save energy dissipati
with minimal performance impact. Resizable caches sa
energy by enabling/disabling portions of the cache. T
enable/disable cache sections, resizable caches exploit
cache subarrays, found in modern high-performan
implementations. To optimize for cache access spe
cache designers divide the array of blocks into multip
subarrays of SRAM cell rows [12]. Resizing electrically
isolates cache sections in multiple subarrays to sa
energy [1]. We will describe the details of energy saving
in Section 3.

The basic cache organizations we study in this pap
are derived from conventional RAM-tag caches, in whic
the tag and data arrays are organized as RAM structur
While CAM-tag caches (e.g., StrongARM [7]) have bee
shown to be more energy-efficient, they are typically lim
ited to low-performance designs. While resizing in gener
is also applicable to CAM-tag caches, a study of resizab
CAM-tag caches is beyond the scope of this paper.

Based on how they exploit the cache resizing opport
nity in applications, resizable caches primarily differ in
two respects: (1) cache resizing organization, dictatin
“which” cache dimensions are adjustable, and (2) resizi
strategy (or time), dictating “when” the caches readju
these dimensions. In the rest of this section, we look
resizing organization and strategy one by one and also p
pose a hybrid organization.

2.1  Cache Resizing Organization
There are two proposals for resizable cache organiz

tions, which we callselective-ways[1] and selective-sets
[13]. Selective-ways allows enabling/disabling each ind
vidual associative way. Figure 1 depicts the basic structu
of a selective-ways resizable cache. As in conventional
associative caches, at the higher level the data array
organized into cache ways. Each cache way consists o
number of subarrays. Away-maskallows enabling/dis-
abling all the subarrays in a given way. Hardware or so
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FIGURE 1: A selective-ways organization.
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ware can adjust the number of ways the cache uses by
setting the way-mask. The cache access logic uses the
way-mask to identify which cache ways to access.

Alternatively, selective-sets allows enabling/disabling
cache sets. Figure 2 depicts the anatomy of a selective-sets
cache organization. In a conventional cache, the number of
cache sets and the cache block size dictate the set ofindex
and tag bits used to look up a cache block. Therefore,
changing the number of cache sets changes both the
required index and tag bits. Selective-sets provides aset-
maskto allow varying the number of cache sets and the
used index bits. Because enabling/disabling occurs in mul-
tiples of subarrays (Section 3), the minimum number of
sets achievable is a single subarray per cache way.

There are fundamental differences between these orga-
nizations in their complexity and effectiveness. First, the
two organizations differ in applicability and the range of
cache sizes offered. Selective-ways changes cache size lin-
early in multiples of cache ways maintaining a constant
resizing granularity. However, in high-performance caches
(optimized for access time) which are often direct-mapped
or use limited set-associativity, selective-ways is either not
applicable or ineffective. Alternatively, selective-sets
offers a better spectrum of sizes with low set-associativity.
However selective-sets is limited when set-associativity is
high, and is not applicable to fully associative caches.

Moreover, cache sizes offered by selective-sets are
powers of two (due to the index-based set-mapping in con-
ventional caches) allowing for fine-grain resizing only at
smaller cache sizes. Therefore, selective-sets may be sub-
optimal when application working sets are large. More-
over, selective-ways changes set-associativity along with
size and may miss the significant opportunity for resizing
for memory reference streams with small working sets but
high conflict miss rates. Selective-sets maintains set-asso-
ciativity upon resizing increasing the opportunity for resiz-
ing for reference streams with high conflict miss rates.

A key advantage of selective-ways is its design sim-
plicity. Selective-ways only requires an additional way-
mask with corresponding logic. In contrast, selective-sets

increases design complexity beyond the addition of a s
mask and its logic. Because resizing changes the num
of tag bits, with smaller caches requiring a larger numb
of tag bits, selective-sets must use a tag array as large
that required by the smallest size offered. Therefore, usi
selective-sets, a cache of a given size requires a larger
array which may be slower and dissipate more energy th
selective-ways of the same size and set-associativ
Moreover, selective-ways does not change the set-m
ping of cache blocks and as such obviates the need
flushing blocks in the enabled subarrays upon resizin
Selective-sets not only requires flushing modified bloc
of disabling arrays, but also all blocks (clean or modified
for which set-mappings change upon enabling subarray

2.1.1  A Hybrid Organization
In this paper, we also propose and evaluate a hyb

selective-sets-and-ways organization for resizable cach
The key motivation behind a hybrid organization is tha
each of the resizable cache organizations offers a spectr
of cache sizes neither of which is a superset of the oth
Selective-ways offers a spectrum of sizes that are mu
ples of a cache way size. Selective-sets offers a spectr
of sizes that are powers of two. A hybrid organizatio
exploits the resizing granularity advantages of both orga
zations offering a richer spectrum of sizes than either org
nization alone, thereby optimizing energy savings b
providing a size closest to the required demand for size
the application.

Table 1 illustrates cache size and set-associativit
offered by a hybrid selective-ways-and-sets cache. Fo
32K 4-way set associative cache and a subarray size of 1
a hybrid cache offers all of 32K, 24K, 16K, 12K, 8K, 6K,
4K, 3K, 2K, and 1K sizes. Whereas, a selective-way
cache would only offer 32K, 24K, 16K, and 8K sizes
(indicated by the first row) and a selective-sets cac
would provide 32K, 16K, 8K, and 4K (indicated by the 4
way column). The table also depicts our simple resizin
scheme. All the sizes between 32K and 3K simply go
steps between a 4-way and a 3-way configuration. F
sizes less than 3K, the only configurations offered a
those that further reduce set-associativity. This scheme f
lows the intuition that at higher cache sizes, capacity pla
a bigger role than set-associativity while at lower cach
sizes, set-associativity can significantly impact cache p
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FIGURE 2: A selective-sets organization.
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Table 1: Enhanced resizing granularity using hybrid.
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formance [5]. Downsizing from a 4-way 32K, our cache
opts for a larger 24K size with a lower set-associativity of
3 ways rather than selecting a 4-way 16K cache as selec-
tive-sets would. Such an approach increases the resizing
opportunity for applications with working set sizes closer
to 24K than 16K.

Table 1 also indicates that a hybrid cache offers redun-
dant sizes (shaded gray in the table). For instance, a 32K
4-way hybrid cache offers 16K with any of 4-way and 2-
way set-associativities. In such cases, the hybrid cache
offers the highest set-associativity to minimize miss ratio
and optimize the utilization of block frames.

2.2  Cache Resizing Strategy
Besides organization, a key design choice in resizing is

the strategy of “when” to resize. There are two proposals
for resizing strategy.Static resizing[1] allows cache resiz-
ing prior to application execution, exploiting cache size
variability across applications. Static resizing requires pro-
filing an application’s execution with different (static)
cache sizes to determine the cache size with minimal
energy dissipation and performance degradation. In static
resizing, the application provides a cache size which the
operating system loads into a programmable size mask
(i.e., the way- or set-mask) prior to application’s execution
or upon a context switch.

Dynamic resizing[13] reacts to application demand for
resizing to customize cache size and optimize energy sav-
ings during an application execution. Dynamic resizing
uses extra hardware to monitor an application’s execution
and dynamically estimate performance and energy dissipa-
tion. When opportunity for resizing arises, dynamic resiz-
ing uses the cache size masks to resize the cache. In this
paper, we evaluate a simple miss-ratio based dynamic
resizing framework proposed in [13]. Hardware monitors
the cache in fixed-length intervals measured in number of
cache accesses. A miss counter counts the number of
misses in each interval. At the end of each interval, hard-
ware determines the need for cache resizing depending on
whether the miss counter is higher or lower than a preset
value, referred to as themiss-bound. To avoid thrashing,
the framework prevents the cache from downsizing
beyond a preset size, thesize-bound. As in static resizing,
the parameters are extracted offline through profiling.

Much like cache organization, there are fundamental
differences in resizing strategy. Static resizing’s key
advantage is that it minimizes design complexity by fixing
the size during an application’s execution. When the appli-
cation exhibits a fixed working set size, static resizing
obviates the need for hardware monitoring and may
achieve optimal energy reduction. Also, when cache miss
latency is not exposed to the performance, regardless of

the existence of working set size variation, the perfo
mance impact of misses created by static resizing’s fix
size choice can be small and acceptable. Therefore, st
resizing can downsize aggressively and save energy.

However, when there is working set variation within a
application and the latency of additional misses direct
affects performance, static resizing often fails to seize t
opportunity and is suboptimal. In such a case, dynam
resizing may help optimize the energy savings and capit
ize on its ability to capture the variation in working se
size. Moreover, when the cache size required by an app
cation lies between two sizes offered by the organizatio
dynamic resizing switches between the two sizes and em
lates the required sizes with minimal impact on perfo
mance. Dynamic resizing, however, increases complex
and may require sophisticated hardware mechanisms
monitor and react to an application’s change in behavio

Dynamic resizing’s effectiveness in reducing energ
depends on the accuracy and timeliness of the mechanis
to react to an application behavior. In general, online es
mation of opportunity for resizing is difficult when miss
latency can be hidden and performance isnot sensitive to
simple cache performance metrics such as miss ratio. In
curate resizing may incur a large performance degradat
due to large increases in the miss ratio. Dynamic resizi
also incurs an increase in the miss ratio from flushin
some of the cache blocks in the disabled/enabled sub
rays upon resizing (Section 2.1). Furthermore, disabl
subarrays may have included part of an application’s p
mary working set, resulting in an increase in the miss rat
to bring the blocks back into the new enabled subarrays

3  Energy Savings in Resizable Caches
In today’s CMOS technology, the dominant source o

power/energy is the switching energy dissipated in char
ing and discharging capacitive loads on bitlines. A
increasingly important source of power/energy dissipatio
is the subthreshold leakage energy in future CMOS c
cuits [2] that aggressively scale down the transistor thres
old voltage to reduce switching energy while maintainin
high switching speeds. In this paper, we primarily focus o

FIGURE 3: Modern cache implementation and
energy saving technique.
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cache resizing as a technique to reduce switching energy
dissipation. Because leakage energy dissipation is propor-
tional to cache size [9], the results in this paper are also
directly applicable to reducing leakage energy dissipation.
However, a detailed analysis of the impact of cache resiz-
ing on leakage is beyond the scope of this paper.

Figure 3 depicts the structure of a modern cache imple-
mentation and the anatomy of a cache subarray. To opti-
mize for access speed, cache designers divide the tag and
data arrays into multiple subarrays of SRAM cell rows,
each containing one or more cache blocks [12]. Modern
high-performance cache designs prechargeall the subar-
rays prior to a cache access, to overlap the precharging
time with the address decode and wordline assertion.
Unfortunately, in deep-submicron designs, precharged bit-
lines of all subarrays discharge through the pass transis-
tors, even though only a small number of subarrays (equal
to the cache’s set-associativity) are actually accessed,
leading to low energy efficiency. Prechargingonly the
accessed subarrays to save energy requires either predict-
ing the subarray to be accessed [8] or delaying the pre-
charging until the address is available [4,7]. The latter,
however, increases access time by as much as 30% as per
CACTI simulations [12]. In this paper, we assume that all
subarrays are precharged prior to access as modeled by
Wattch [3]. A detailed study of techniques to trade off
access time for energy is beyond the scope of this paper.

Instead, resizable caches select the appropriate cache
size, disable the unused subarrays (Figure 3), and reduce
switching energy by precharging only the enabled subar-
rays. Resizable caches are also able to eliminate unneces-

sary clock propagation to the disabled subarray
achieving additional energy saving. Cache downsizing a
(dynamic resizing’s) block flushing between sense inte
vals increase activity in L2 and its energy consumptio
However the increase is insignificant because energy
L2 access, that is less critical than L1 access, can be m
aged to be small using the techniques like delayed p
charge. Additionally for selective-sets, L1 energ
increases due to the extra resizing tag bits. This is a
insignificant because the number of resizing tag bits
small (usually between 1 and 4) compared to the numb
of bit lines in a cache block (e.g., 256). In the result se
tion, we report the energy consumption for the entire pr
cessor, so that we take all these factors into account.

4  Results
In this section, we present the results in the compa

sons of resizable cache’s resizing organizations and stra
gies. We use Wattch 1.0 [3], which is an architecture-lev
power analysis tool built on top of SimpleScalar 3.0. Wa
tch reports both the execution time and the power/ener
consumption of simulated processors. Table 2 shows o
base system configuration parameters. We assume a 0.µ
technology and 1K subarray for L1 caches. Our base s
tem has a power rating of 40.1W from Wattch.

We run SPEC benchmarks using reference inputs. W
useammp, vortex,andvpr from SPEC2000 and nine appli-
cations from SPEC95. Forgcc, ijpeg, m88ksim, su2cor,
and tomcatv,we simulate the entire runs; for the othe
applications we skip one billion instructions and run th
next two billion instructions to reduce simulation turn
around time. On average, with our base configuration,
cache accounts for 18.5% of total energy consumption f
all these applications and i-cache accounts for 17.5
Note that, unlike our average numbers here, reports on
power breakdown of commodity processors typically d
not take into account activity factors of structures in th
processors. Because there exist many structures that h
smaller activity factors than caches, such as floating-po
execution units, our average energy for overall cac
structure appears larger than the numbers from su
reports (e.g. 16% in Alpha 21264 [3].) With no activity

Issue/decode width 4 intrs per cycle

ROB / LSQ 64 entries / 32 entries

Branch predictor combination

writeback buffer / mshr 8 entries / 8 entries

Base L1 i-caches 32K 2-way; 1 cycle

Base L1 d-cache 32K 2-way; 1 cycle

L2 unified cache 512K 4-way; 12 cycles

Memory access latency (80 + 5 per 8 bytes) cycles

Table 2: Base system configuration.

2-way 4-way 8-way 16-way 2-way 4-way 8-way 16-way
FIGURE 4: Resizable cache organizations and energy-delay reductions.
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factor taken into consideration, our experiments also show
that overall cache structure in the base system configura-
tion accounts for only 18% of total processor power.

We use the energy-delay product of a processor to
present the results because it is a well-established metric
used in low-power research and ensures that both energy
reduction and accompanying performance degradation are
taken into account. For each design point, the relative
energy-delay is obtained by normalizing its energy-delay
with respect to that of the non-resizable cache with the
same size and set-associativity. We always present the
lowest energy-delay product achieved for each application
regardless to the performance degradation. Nevertheless,
all the lowest energy-delay products presented in this sec-
tion are achieved within 6% of performance degradation
and most of them, over 90% of the results presented, are
achieved within 3% of degradation. Other configuration
parameters are specified as they are varied in each section.

4.1  Cache Resizing Organization
In this section, we compare two resizing organizations,

selective-ways and selective-sets. Based on our discussion
in Section 2, we expect selective-sets to achieve the best
relative energy-delay for high-performance low set asso-
ciative caches by maintaining set-associativity for the
applications with high conflict miss rate and by providing
smaller minimum sizes for the applications with small size
requirement. However, applications requiring finer granu-
larity around the maximum size and having low conflict
miss rate can benefit from selective-ways. Moreover, for
highly associative caches, selective-ways provides larger

spectrum of cache sizes in entire range and therefore
expected to achieve better energy-delay.

Figure 4 shows the reductions in processor’s relati
energy-delays of static selective-ways and selective-s
averaged for all the applications. Set-associativities
base caches range from 2-way to 16-way to include all t
meaningful comparisons between two organizations
32K size with 1K subarray. For d-caches, selective-wa
reduces the energy-delays by 5% for 2-way, 8% for 4-wa
11% for 8-way and 15% for 16-way set associative cach
and selective-sets reduces by 9%, 11%, 9% and 6% in
same order. For i-caches, the numbers are 6%, 10%, 1
and 17% for selective-ways and 11%, 12%, 11% and 8
for selective-sets. The results indicate for both d-cache a
i-cache that selective-sets achieves more reduction th
selective-ways at low associativity but for 8-way or highe
set associative caches, selective-ways is more effective

Note that selective-sets achieves the best reduction
4-way set associative cache, not at 2-way, although 2-w
offers the best spectrum of cache sizes to this organizati
It is well known that lower set associative caches produ
more misses than higher set associative caches and the
increases as the cache size decreases. Therefore, dow
ing in higher set associative caches creates smaller num
of misses, resulting in less performance impact and mo
aggressive downsizing. As far as the organization provid
enough resizing granularity, higher set associative cac
can downsize and save energy better, but selective-s
beyond 4-way does not offer enough granularity.

Also note that selective-sets on 2-way associati
cache does not save as much energy as selective-way

FIGURE 5: Selective-ways vs. selective-sets for 4-way set associative caches.
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16-way cache does, although these two configurations
have the best size spectrum on their own organizations. It
is mainly due to different resizing granularity of two orga-
nizations. While selective-ways on 32K 16-way cache
offers fine resizing granularity of 2K in entire range, selec-
tive-sets on 2-way offers fine grain resizing only at small
sizes; no cache size is offered between 32K and 16K.
Therefore, applications requiring cache sizes between 32K
and 16K work more successfully with selective-ways. For
instances,compressand swim for d-cache andgcc, tom-
catv andvortex for i-cache belong to this type.

To investigate the resizing characteristics of each
application on each organization, we present the reduction
in cache sizes achieved by static selective-ways and selec-
tive-sets for 32K 4-way d- and i-caches in Figure 5. We
include the average values at the end of each graph. To
show the impact to the overall processor energy, we also
present the reduction in processor’s relative energy-delays.
We use 4-way set associative cache because it provides a
reasonable resizing granularity for both organizations.
Specifically, selective-sets provides smaller minimum size
(4K), while selective-ways offers better granularity
between 32K and 16K. Note that although two applica-
tions have the same average cache size, their energy-
delays would be different due to the difference in cache’s
energy contribution and resizing’s performance impact.

In d-caches, for ten applications out of twelve, selec-
tive-sets shows better energy-delay reduction than selec-
tive-ways. Six applications,apsi, gcc, ijpeg, su2cor, vortex
and vpr, mainly benefit from selective-sets’ ability to
maintain set-associativity and prevent conflicts. Three
applications,ammp, applu and m88ksim, require small
cache sizes and take advantage of the smaller minimum
size offered by selective-sets. Forcompress, selective-
ways shows better energy-delay reduction than selective-
sets, because the application requires granularity at large
cache sizes offered by selective-ways but not by selective-
sets. Forswim, downsizing creates large amount of misses
and large performance degradation, resulting in no down-
sizing for both organizations.Tomcatvreduces the cache
size equally for both, but incurs larger performance impact
with selective-ways due to more conflict misses.

For i-caches,ammp, compress, ijpeg, m88ksim,and
swim require small cache sizes throughout execution a
take advantage of the small minimum size available
selective-sets.Apsi, su2corandvpr require set-associativ-
ity rather than cache size to keep the performance. The
fore, selective-sets exhibits better energy-delay reducti
for them. Forapplu, selective-sets chooses the same cac
sizes as selective-ways, but selective-ways dissipates
energy because lower set associative caches read fe
subarrays on each access (as many as set-associativ
Gcc and tomcatvhave no cache downsizing because the
working sets are larger than 32K and downsizing incu
large performance degradation.

4.1.1  Hybrid Organization
In this section, we investigate and evaluate hybr

organization. Figure 6 presents the average reduction
energy-delays for all three organizations including hybr
organization. The figure presents the set-associativit
from 2-way to 16-way. The results show that hybrid orga
nization achieves equal or better energy-delay reducti
than both selective-ways and selective-sets in any set-as
ciativities. On average, hybrid’s energy-delay reduction
for d-cache are 9% for 2-way, 12% for 4-way, 13% for 8
way and 15% for 16-way, and for i-cache, the numbers a
11%, 13%, 14% and 17%.

As we forecasted, there are two situations for whic
hybrid organization saves better than both the selectiv
ways and selective-sets. We do not show the result of ea
individual application, but for instances, for the applica
tions like compress, ijpeg, gcc, su2cor in 4-way d-cache
andapsi, su2cor, ammp, swim, apsi in 4-way i-cache, its
better granularity plays a role and reduces energy-dela
better. Hybrid offers better resizing granularity than eithe
of selective-ways or selective-sets and therefore provid
cache sizes closer to the actual cache size demand of
applications. The cache sizes utilized by these applicatio
in the hybrid organization are supported by neither sele
tive-ways nor selective-sets. Second, hybrid resizing offe
small sizes less than the minimum sizes of selective-sets
selective-ways. For example,ammp, applu, andm88ksim,
for 4-way d-cache,ammp, compress, ijpeg, m88ksim, and
swim for 4-way i-cache exploit the smaller sizes.

2-way 4-way 8-way 16-way 2-way 4-way 8-way 16-way
FIGURE 6: Effectiveness of hybrid organizations.
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4.2  Cache Resizing Strategy
In this section, we investigate static and dynamic resiz-

ing strategies based on two different processor configura-
tions. Dynamic resizing presented here is a miss-ratio
based strategy proposed in [13], implementation detail of
which is described in Section 2.2. As we described,
dynamic resizing is, in general, beneficial for applications
with large variation in cache size requirement. Also,
dynamic resizing has an advantage of emulating the cache
sizes not offered by the organization.

Especially when miss latency is exposed to critical
path of execution, suboptimal size chosen by static resiz-
ing that creates large number of misses during the execu-
tion incurs large performance degradation. Therefore, in
this case, static resizing does not encourage cache down-
sizing. Instead, more accurate detection of working set
variation, or using dynamic resizing, is required to achieve
better energy savings without degrading performance.

However, when miss latency is hidden or has relatively
less impact on performance, the cache resizing is more
aggressive and downsizing is encouraged. Although static
resizing incurs more misses from the program phases
requiring larger cache sizes, these misses might not
degrade performance significantly, therefore even static
resizing downsizes aggressively, without hurting the per-
formance. It, in turn, leaves smaller opportunity for
dynamic resizing, and the effectiveness of dynamic resiz-
ing over static resizing is not as significant as when miss
latency is highly exposed. Moreover, due to the misses
possibly overlapped, miss ratio is not a good indicator of

performance, and our miss-ratio based strategy is le
effective to capture the cache size requirement.

To highlight the effect of miss latency exposure to th
cache resizing, we compare cache resizings on two typ
of processor configuration: in-order issue engine wi
blocking d-cache and out-of-order issue engine with no
blocking d-cache. The former exposes d-cache m
latency to performance. Here, i-cache misses are relativ
less critical to performance. However, the latter can high
exploit the instruction parallelism existing in application
to hide d-cache miss latency. Unlike d-cache, i-cache m
latency impacts the performance more directly in this co
figuration, being highly exposed to performance.

4.2.1  Resizing Data Caches
Figure 7 shows the reductions of energy-delay an

average cache size by static and dynamic selective-sets
2-way set associative d-cache on both types of proces
configuration. We present only selective-sets because b
organizations show similar results in this comparison. O
average, with in-order issue processor, static resizi
reduces 5% of total energy-delay, while dynamic resizin
reduces 9%. Meanwhile, static resizing reduces 9% w
out-of-order issue processor, and dynamic achieves 11
In d-cache, cache resizing with out-of-order issue proce
sor is more aggressive and achieves larger reductions.

With in-order issue engine and blocking d-cache
dynamic resizing exhibits larger reductions in cache siz
and energy-delays than static resizing, for eight applic
tions. For these applications, the gap of average cac
sizes between dynamic and static resizings is 16% on av

FIGURE 7: D-cache resizing in two processor configurations.
(a) In-order issue engine with blocking d-cache (b) Out-of-order issue engine with nonblocking d-cache

am
m

p
ap

pl
u

ap
si

co
m

pr
es

s
gc

c
ijp

eg
m

88
ks

im
su

2c
or

sw
im

to
m

ca
tv

vo
rte

x
vp

r

R
ed

uc
tio

n 
(%

) 
in

0

20

60

100

80

40

av
er

ag
e 

ca
ch

e 
si

ze
R

ed
uc

tio
n 

(%
) 

in

AVG
.

am
m

p
ap

pl
u

ap
si

co
m

pr
es

s
gc

c
ijp

eg
m

88
ks

im
su

2c
or

sw
im

to
m

ca
tv

vo
rte

x
vp

r
AVG

.

0

5

10

20

30

25

15

Static resizing
Dynamic resizing

en
er

gy
-d

el
ay

 o
f p

ro
ce

ss
or



in
of

ic
n
e

h
is

d
s.
e

e to
rs
t a
e

ze
e.
d
ic

ve
e,

n,
r
ng
es
age with maximum of 38% inijpeg. Also, the gap between
energy-delays is 6% on average and as large as 8% invor-
tex. In this processor type, high exposure of d-cache miss
latency to performance requires accuracy in capturing
working set size variation. Forapsi, vortexandvpr in in-
order issue processor, static resizing achieves comparable
cache size reduction to dynamic resizing — less than 15%
gap between two but, interestingly, its energy-delay reduc-
tions are much less than half of dynamic resizing’s results.
It is because static resizing incurs relatively high perfor-
mance impact that is close to 6%. It increases “delay”
parts of the energy products relatively large, ending up
with no significant reductions in energy-delay.

In contrast to the former processor type, the results
with out-of-order issue engine and nonblocking d-cache
show that dynamic resizing does not achieve significantly
better savings. Aggressive superscalar engine with non-
blocking d-cache exploits the parallelism between instruc-
tions and takes a lot of d-cache misses off of the critical
path of application execution. As we mentioned, in such a
case, aggressive downsizing is encouraged and static resiz-
ing possibly performs as good as dynamic resizing. We see
even for the applications requiring variable cache sizes
such asapsi, gcc and vortex, static resizing achieves as
good reductions as dynamic resizing.

According to the dynamic resizing behavior, we group
applications into three types. The simplest is those that
have a constant size during the execution. For these appli-
cations, static and dynamic resizings show almost the
same reductions.Ammp, applu, m88ksim,and tomcatv
exhibit constant sizes. The next type of applications exhib-

its variation in working set size, indicated by changes
cache resizing behavior over many intervals. Examples
working-set variation in d-caches arecompress, gcc,vor-
tex, andvpr. Su2coris an example of periodic variation in
working set size as execution phases repeat. Dynam
resizing takes advantage of working-set size variatio
within these applications, especially with in-order issu
engine and blocking d-cache.

The third type is unavailable-size emulation, whic
occurs when the cache size required by the application
not offered. This type includesapsi, compress, ijpeg, and
swim in in-order issue engine with blocking d-cache, an
compresshas the property of both second and third type
For the third type of applications, the resizable cach
chooses cache sizes above and below the required siz
achieve emulation. Unavailable-size emulation occu
because there is too much performance degradation a
smaller size but little degradation at a larger size. Unlik
static resizing, dynamic resizing may be able to amorti
the degradation by spending a while at the larger siz
Additional sizes might be captured by using a hybri
selective-sets/selective-ways organization, but dynam
resizing’s granularity is not limited by the organizations.

4.2.2  Resizing Instruction Caches
Figure 8 shows the reductions for 2-way set associati

i-cache. With in-order issue engine and blocking d-cach
static resizing exhibits 16% of energy-delay reductio
while dynamic resizing reduces 18%. With out-of-orde
issue engine and nonblocking d-cache, static resizi
reduces 11% of total energy-delay and dynamic reduc

FIGURE 8: I-cache resizing in two processor configurations.
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(a) In-order issue engine with blocking d-cache (b) Out-of-order issue engine with nonblocking d-cache
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by 15%. For i-cache, cache resizing with in-order issue
processor achieves larger reductions.

In i-cache, in contrast to d-cache, dynamic resizing’s
ability to capture the working set size variation plays more
important role with out-of-order issue engine and non-
blocking d-cache, because i-cache miss latency is more
exposed to performance when the processor exploits more
parallelism on d-cache accesses. We see in out-of-order
issue engine with nonblocking d-cache, dynamic resizing
exhibits larger reductions in cache sizes and energy-delays
than static resizing for seven applications. For these seven
applications, the gap of average cache sizes between
dynamic and static resizings is 31% on average and as
large as 38% ofijpeg. Static resizing in in-order processor
performs comparable to dynamic resizing, because i-cache
misses in in-order processor exhibit less performance
impact. Therefore static resizing can be aggressive and
leaves smaller opportunity for dynamic resizing. Like d-
cache resizing, i-cache resizing has three different types.
The first type that exhibits a constant cache size through-
out execution includesammp, compress, m88ksim, su2cor
andswim. For the second type,applu, apsiandijpeg indi-
cate periodic variation in i-cache working set size. The
third type of behavior, unavailable size emulation, occurs
in gcc, tomcatv, vortex andvpr.

Note that the same average cache size can result in dif-
ferent energy-delay reductions for two processor types
because they have different breakdowns of the energy con-
tribution. On average, energy contribution of i-cache in in-
order issue processor is 21.5%, 4% larger than out-of-
order issue processor.

4.3  Resizing Both Data and Instruction Caches
We have studied different aspects of resizable caches

separately on d-cache and i-cache so far. In this section,
we investigate the interaction between d-cache and i-cache
resizings and the results of resizing them simultaneously.

In Figure 9, we present the reductions in average cache
size and processor energy-delay achieved by resizing d-

cache alone, i-cache alone and resizing both caches at
same time. As an example, we use static selective-s
with our base system configuration. In this figure, avera
cache size is normalized to the summation of base case
cache and i-cache sizes. On average, simultaneous resi
reduces 20% of overall processor energy-delay. By stac
ing up the reductions from d-cache and i-cache resizin
in one bar next to the result from simultaneous resizin
we easily see the additivity property; when we resize bo
caches together, the overall reductions in cache size a
energy-delay are close to the summation of the reductio
achieved by resizing each cache alone. Resizing both
the same time exhibits larger performance degradation,
to 10% but mostly less than 5%.

Moreover, there exist several applications exhibitin
larger reduction from resizing both together than the su
of the reductions from resizing each individually. Down
sizing one cache has an effect of shifting the bottleneck
overall performance close to itself, due to the addition
misses in the cache. Therefore, the other cache can
downsized more aggressively resulting in less perfo
mance degradation with same downsizing than the case
downsizing itself alone.

Additivity property implies d-cache and i-cache resiz
ings are decoupled from each other and we can study th
separately expecting the additive energy savings when
apply resizing techniques for both at the same time.

5  Related Work
A number of previous studies have focused on arch

tectural/microarchitectural techniques to reduce the ene
dissipation in cache memories. Among them, recen
there have been three proposals for cache resiz
[1,10,13] two of which focus on reducing energy dissipa
tion. Ranganathan, et al. [10], propose a statically resizi
selective-ways d-cache and use it to partition the cac
and use the unused part as auxiliary storage for instruct
reuse information to increase performance. Albonesi [
proposes a statically resizing a selective-ways cache, a

FIGURE 9: Decoupled resizings on d-cache and i-cache.
(a) Cache size reduction (b) Energy-delay reduction
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evaluates the cache’s effectiveness in reducing switching
energy. Yang, et al. [13], propose a dynamically resizing
selective-sets i-cache, and evaluate its effectiveness to
reduce leakage energy dissipation. In this paper, we draw
key resizing architectural design aspects from Albonesi’s
and Yang, et al.’s proposals, to evaluate effectiveness of
and opportunity for cache resizing to reduce energy dissi-
pation. We also consider overall energy dissipation includ-
ing both switching and leakage energy, and propose a
hybrid cache organization and that exploits advantages of
both selective-ways and selective-sets.

6  Conclusions
Using a cycle-accurate performance and energy simu-

lation tool, we studied and compared the merits of the
resizable cache’s two design aspects: cache resizing orga-
nization and resizing strategy. For organization, our results
showed that selective-sets offers better energy-delay over
selective-ways for caches with set-associativity of less
than or equal to four, by maintaining set-associativity upon
resizing. Meanwhile, selective-ways benefits caches with
set-associativity of eight and higher. We proposed a hybrid
selective-sets-and-ways organization that always equals or
improves energy-delay over the best of selective-sets or
selective-ways alone.

For cache resizing strategy, we showed that on aver-
age, static resizing captures most of the opportunity for
resizing and reducing processor energy-delay in applica-
tions as compared to a miss-ratio based dynamic resizing
framework with minimal design complexity incurred.
Dynamic resizing exhibits clear advantages over static
resizing only in two scenarios: (1) when cache misses
directly lie on the execution’s critical path and the applica-
tion exhibits varying working set sizes benefiting from
resizing at runtime, or (2) the application’s required cache
size lies in between two offered sizes by the cache organi-
zation; unlike static resizing, dynamic resizing switches
between the two sizes and emulates the required size.

Our results also indicated that resizing L1 d-cache and
i-cache simultaneously has minimal impact on L2’s foot-
prints and therefore the cache resizing and energy-delay
savings from the two caches are uncorrelated and additive.
In a four-way out-of-order processor with 32K 2-way
static selective-sets d-cache and i-cache and a 512K L2
caches, we measured an overall processor energy-delay
savings of 20% on average.
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