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Abstract 

With the constant advances in technology that lead to 
the increasing of the transistor count and processor 
frequency, power dissipation is becoming one of the major 
issues in high-performance processors. These processors 
increase their clock frequency by lengthening the pipeline, 
which puts more pressure on the branch prediction engine 
since branches take longer to be resolved. Branch 
mispredictions are responsible for around 28% of the 
power dissipated by a typical processor due to the useless 
activities performed by instructions that are squashed. 

This work focuses on reducing the power dissipated by 
mis-speculated instructions. We propose Selective 
Throttling as an effective way of triggering different 
power-aware techniques (fetch throttling, decode 
throttling or disabling the selection logic). The particular 
set of techniques applied to each branch is dynamically 
chosen depending on the branch prediction confidence 
level. For branches with a low confidence on the 
prediction, the most aggressive throttling mechanism is 
used whereas high confidence branch predictions trigger 
the least aggressive techniques. Results show that 
combining fetch bandwidth reduction along with select 
logic disabling provides the best performance both in 
terms of energy reduction and energy-delay improvement 
(14% and 9% respectively for 14 stages, and 17% and 
12% respectively for 28 stages). 

1. Introduction 

Power dissipation and energy consumption have 
become an important concern in the design of high 
performance microprocessors. In such systems it may be 
necessary the use of very expensive cooling schemes, 
which may have a significant impact on the final cost. For 
mobile systems, battery life is a key design concern. 
Furthermore, since power translates directly into heat, an 
increase in power dissipation may cause chip malfunction 
due to some failures such as thermal runaway, junction 
fatigue and electro-migration diffusion [26].  

Current processor design trends lead to large pipelines 
in order to meet the cycle time requirements (e.g. 20 

stages in the Pentium 4 [12]). In these architectures, a 
branch takes longer to be resolved and the processor is 
filled with many speculative instructions. Due to 
mispredicted branches, part of the power dissipated by a 
typical processor (around 28% on average) is due to mis-
speculated instructions that waste energy performing 
useless activities.  

In this work, we focus on reducing the energy wasted 
by mis-speculated instructions by means of Selective 
Throttling. According to the confidence level assigned to 
each branch prediction, different processor blocks are 
dynamically throttled: fetch unit, decode unit or selection 
logic (from more to less aggressive). Aggressive throttling 
will be applied for those branches with high probability of 
being mispredicted (at the expense of reducing perfor-
mance if the branch hits). On the other hand, when the 
estimator is not sure about the correctness of the predic-
tion, less aggressive techniques, both in terms of power 
reduction and performance degradation, are applied. 

Among prior related work we can point out Pipeline 
Gating originally proposed by Manne et al. [21]. Since 
this scheme is an all-or-nothing mechanism, it is very 
sensitive to the goodness of the underlying confidence 
estimator in the sense that performance is highly penalized 
if a confidence estimation turns out to be wrong, and the 
fetch or decode stages had been completely stalled (see 
Section 5.2).  

In this paper we make the following contributions: 
• Throttling policies are selectively applied according 

to the branch confidence estimation. In addition, 
these policies have a certain degree of variation (i.e. 
complete fetch stall vs. stalling fetch every 4 cycles). 

• A new throttling technique is proposed which avoids 
the selection of instructions that are control 
dependent on a low confident branch.  

• The evaluation of the proposed scheme in terms of 
power and energy consumption, instead of using 
indirect and approximate metrics such as Extra Work 
[21] or Instruction Traffic [6]. 

The rest of the paper is organized as follows. Section 2 
presents the related work. Section 3 analyzes the power 
and energy consumption due to mis-speculated 
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instructions. The proposed Selective Throttling mechanism 
is described in Section 4. Section 5 analyzes performance 
and energy reductions of our proposal. Finally, Section 6 
summarizes the main conclusions of this work. 

2. Background and Related Work 

A very large body of research has been targeted at 
reducing the performance degradation caused by branch 
mispredictions. Many proposals try to improve branch 
prediction accuracy [29][22][10][2]. Others try to 
minimize performance degradation by fetching and/or 
executing multiple paths [15][19][28][3]. However, 
analyzing how mis-speculated instructions influence 
energy consumption has not received much attention. 

As mentioned above, Pipeline Gating [21] prevents 
wrong-path instructions from entering the pipeline and 
wasting energy. This is accomplished by using a 
confidence estimator to assess the quality of branch 
predictions [14][16]. These confidence estimations are 
used to decide if the processor is likely to fetch and 
execute instructions that will not commit. The number M 
of unresolved low confidence branches is used to 
determine when and how long to gate. Thus, if M exceeds 
a threshold, the fetch or decode stage is stalled although 
previously fetched or decoded instructions continue 
traversing the pipeline. The authors evaluated their 
proposal for several confidence estimators with different 
hardware complexities. The best results, reported for an 
underlying gshare branch predictor [22], use the JRS 
confidence estimator [16] with an MDC-threshold of 12 
and a gating threshold of 2.  

In [6], Baniasadi and Moshovos propose a mechanism 
in order to reduce power dissipation, by enabling or 
disabling the fetch or decode stages according to certain 
heuristics. They introduce two control-flow heuristics that 
are orthogonal to confidence-based approaches: instead of 
fetching and decoding as many instructions as possible, 
they analyze instruction traffic identifying situations in 
which the additional parallelism that may be exposed does 
not improve performance. In such situations they propose 
to turn the fetch stage off during 3 cycles.  

In [13] an extensive evaluation of the tradeoffs between 
power and performance for different architectural 
paradigms can be found. Many works have focused on 
power consumption in cache memories [18][4][17] since it 
is a critical component that is devoted a large portion of 
the chip. Several architecture-level power models have 
been developed for use in architecture power-performance 
research such as Wattch [8] and SimplePower [27]. 

In [1], it is proposed to balance the clock rate 
dynamically to match the requirements of the instruction 
stream. In [7], it is minimized power consumption of 
functional units, exploiting the fact that the sizes of 
operands are often less than the size of the available 
functional units. In [5], Pipeline Balancing dynamically 

tunes the resources of a general purpose processor to the 
needs of the application by monitoring performance. In 
[11], energy consumption of the issue logic is reduced by 
dynamically re-sizing the instruction queue and disabling 
the wake-up of ready operands. In [25], critical path 
prediction is used to separate high-speed functional units 
dedicated to critical instructions from low-power 
functional units dedicated to non-critical ones. Recently, 
several branch predictor schemes have been evaluated 
considering power-performance tradeoff [24]. Note that 
these proposals do not tackle the problem of consumption 
due to mis-speculated instructions. 

3. Power and Energy Consumption of Mis-
speculated Instructions 

Conventional front-end designs rely on control flow 
speculation, which allows a processor to guess the target 
of a conditional branch without waiting for it to execute. 
While speculation greatly improves performance, it also 
increases power dissipation and energy consumption in 
case of a misprediction. As showed in previous works, the 
number of incorrectly fetched instructions can account for 
up to 80% of all instructions. Obviously, this extra traffic 
is greater in the front-end stages (fetch/decode), since 
fewer mis-speculated instructions reach the issue or 
execution stages.  

Table 1. Overall power breakdown and the fraction wasted 
by mis-speculated instructions. 

 

Overall Power
Breakdown

% of overall power
wasted by mis-
speculated instr.

Overall Power 56.4 Watts 27.9%
icache 10.0% 6.4%
bpred 3.8% 1.4%
regfile 1.6% 0.2%
rename 1.1% 0.5%
window 18.2% 5.6%
lsq 1.9% 0.2%
alu 8.7% 1.0%
dcache 10.6% 1.1%
dcache2 0.7% 0.0%
resultbus 9.5% 1.9%
clock 33.8% 9.5%  

To understand how these extra instructions affect 
power dissipation, we ran the eight benchmarks from the 
SPECint95 and SPECint2000 that exhibit the highest 
misprediction rate using the Wattch v1.02 power-
performance simulator [8] (see Section 5.1 for details 
about the simulation methodology). The branch predictor 
is an 8 KB gshare [22] whose history register is 
speculatively updated. 
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Table 1 shows the overall power breakdown1 for each 
block of the baseline microprocessor as well as the 
percentage of overall power wasted by all mis-speculated 
instructions for both conditional and unconditional 
branches. It can be seen that about 28% of the overall 
power is dissipated by incorrect instructions. This 
represents an upper bound of the power reduction we can 
achieve with the techniques proposed in this paper. As 
expected, the fetch stage (“icache”+“bpred”), which is 
responsible for 13.8% of the overall power, wastes 7.8% 
of the overall power processing incorrect instructions. 
Similarly, the decode stage (“rename” + a fraction of 
“regfile”2 + a fraction of “window”3) wastes some 
power processing incorrect instructions. Finally, it is 
interesting to note that other portions of the processor such 
as the “window” –the fraction corresponding to the issue 
logic, wake-up and selection logic–, LSQ, functional units, 
data caches and the result bus still waste up to 9.8% of the 
overall power processing mis-speculated instructions, 
which is a considerable amount of power.  

In order to precisely determine the potential of the 
proposed techniques, we ran the following experiments:  

• Oracle fetch: only fetches correct-path instructions. 
In case of misprediction the processor does not fetch 
the mis-speculated path. 

• Oracle decode: uses realistic fetch but only decodes 
correct-path instructions. 

• Oracle select: uses realistic fetch and decode but only 
selects for issuing correct-path instructions. 
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Figure 1. Oracle fetch, decode and select savings. 
                                                           

1 Using the Wattch’s clock-gating style cc3, which scales power 
linearly with unit usage. Inactive units still dissipate 10% of its 
maximum power. 
2 According to Wattch power model, the “regfile” activity 
counter is updated at decode stage to read a ready operand, and 
also at commit to write the result. 
3 The “window” activity counter is updated at decode stage to 
write ready operands into RUU (physical registers), at issue to 
read operands from physical registers and at writeback to write 
the result into the corresponding physical register. 

Figure 1 shows the average speedup as well as power 
and energy savings and energy-delay improvement for the 
eight selected benchmarks. The oracle fetch experiment 
provides similar results to those shown in Table 1 except 
that now only conditional branches are considered. 
However, since confidence estimation is assigned to 
conditional branches, the oracle fetch experiment provides 
a precise upper bound about how much power is dissipated 
by mis-speculated instructions. Overall savings for power, 
energy and energy-delay are 21%, 24% and 28% 
respectively. Note also that the oracle fetch experiment 
obtains a speedup of 5%. This is mainly due to the I-cache 
pollution and to the fact that wrong-path instructions waste 
resources and may delay the execution of correct ones. 

Because of how Wattch provides the dissipated power, 
it is not easy to determine the overall power fraction 
corresponding to mis-speculated instructions for each 
pipeline stage, since some Wattch’s blocks belong to 
several stages. Experiments shown in Figure 1 allow 
obtaining the power wasted by wrong-path instructions on 
a per-stage basis. In particular, the difference between the 
power savings of the oracle fetch and oracle decode 
experiments represents an upper bound of the power 
wasted in the fetch stage (7.3%). Analogously, the 
difference between the power savings of the oracle decode 
and oracle select experiments constitutes an upper bound 
of the power wasted in the decode stage (5.0%). Energy 
consumption can be similarly calculated for the front-end 
stages (10.8% and 5.0% respectively). 

Finally, this analysis demonstrates that, contrary to 
what it was suggested in previous work [21], a 
considerable amount of power and energy can be saved if 
we were able to gate at decode or issue stages whenever a 
wrong-path is being processed: up to 13.7% (power 
savings with oracle decode) and 8.7% (power savings with 
oracle select) respectively. 

4. Selective Throttling 

Selective Throttling is a mechanism that reduces 
dynamic power dissipation and energy consumption while 
attempting to minimize performance degradation. This is 
accomplished by limiting the number of mis-speculated 
instructions fetched, decoded and issued, and therefore 
decreasing the useless activity of the processor.  

As previous proposals, Selective Throttling relies on 
branch confidence estimation to initiate a particular 
heuristic. We propose to use different policies depending 
on the confidence estimation, with the goal of obtaining an 
optimal tradeoff between power and performance.  

4.1. Power-Aware Heuristics 

The aim of the power-aware heuristics is to provide 
different throttling levels with different impact on 
performance whenever a heuristic is erroneously applied. 
We have evaluated the following ones: 
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• Fetch throttling: reduces the fetch bandwidth to a 

half, to a quarter or it stalls the fetch unit. 
• Decode throttling: reduces the decode bandwidth to a 

half, to a quarter or it stalls the decode unit. 
• Selection throttling: avoids the selection of those 

instructions control-dependent on a low confidence 
branch. 

Limiting the fetch and decode bandwidth is achieved by 
alternating full activity cycles with stalled cycles. For 
instance, in an 8-way processor, reducing the fetch 
bandwidth to a half implies that eight instructions are 
fetched in a given cycle and zero instructions are fetched 
in the next one.  

The aim of the novel selection throttling heuristic is to 
reduce the power dissipated when mis-speculated 
instructions are executed. In order to do that, the selection 
of instructions control-dependent of a low confidence 
branch is disabled. An incorrect instruction will not use 
buses to send its operands to the functional units, which, in 
turn, will not be unnecessarily wasted. The corresponding 
results will not be forwarded to incorrect dependent 
instructions (avoiding useless activity of the issue logic, 
especially waking-up mis-speculated instructions) that 
would store them at the reservation station entries (recall 
that, as shown in the oracle select experiment of Section 3, 
this useless work represents 8.7% of the total power 
dissipation).  

On the other hand, this novel heuristic has a minor 
impact on performance when it is incorrectly applied (i.e. 
activated for correctly predicted branches), mainly when 
compared with more aggressive techniques such as fetch 
throttling or decode throttling. 

Note also that there are no pipeline deadlocks when this 
heuristic is incorrectly applied: although control-
dependent instructions cannot be selected, those data 
dependent on instructions prior to the branch are indeed 
awakened, and after the branch resolution, ready 
instructions can be quickly issued. Finally, the selection 
throttling heuristic is fairly straightforward to implement, 
requiring a bit in each instruction window entry to disable 
selection. Figure 2 shows how the no-select bit is used to 
avoid raising the request signal used by the selection logic.  

 
· · ·

request 
signal 

• 

• 

• 

rdyL opd tagL opd tagR rdyR no-select instN-1 

• 

• 

• 

• 

rdyL opd tagL opd tagR rdyR no-select inst0 

OR OR · ·
= 

= = 

= 

tag1 tagIW 

 
Figure 2. Wake-up logic [23] and the generation of the 

request signal used by the selection logic. 

4.2. Confidence-Based Categorization of Branches  

The power-performance efficiency of Selective 
Throttling strongly depends on the confidence estimator's 
accuracy. If the confidence estimator labels a prediction as 
low confidence and the prediction turns out to be correct, 
the heuristic triggered by Selective Throttling incurs in a 
serious penalization: power dissipation is not reduced 
whereas performance is degraded, which leads to a higher 
energy consumption. On the other hand, if a prediction is 
labeled as high confidence and the branch turns out to be 
mispredicted, performance is not additionally degraded but 
energy is again wasted. 

Thus, in order to obtain an optimal power-performance 
tradeoff, instead of using the conventional two states 
(high/low) provided by the confidence estimator, we 
propose to categorize each branch prediction into the 
following four states: a) very-high confidence branches 
(VHC); b) high confidence branches (HC); c) low 
confidence branches (LC); and d) very-low confidence 
branches (VLC). 

This categorization is carried out by using the value of 
the confidence counter stored in each entry of the 
confidence estimator, although each confidence estimator 
may require a particular implementation. Therefore, this 
categorization allows a fine grain decision concerning the 
heuristic applied depending on the likelihood of a 
prediction to be incorrect. Finally, to improve the Selective 
Throttling mechanism, after initiating a power-aware 
heuristic, if a later branch is labeled as VLC or LC before 
the first branch is resolved, a more restrictive heuristic can 
be initiated but not a less restrictive one. 

4.3. Evaluated Confidence Estimators 

According to the metrics introduced by Grunwald et al 
[14], a good confidence estimator should have high SPEC 
and PVN

4 metrics. This led us to use the confidence 
estimator proposed for the Branch Prediction Reversal 
Unit (BPRU) scheme [2], that makes use of predicted data 
values to assess the confidence of branch predictions. 

In order to obtain a better power-performance tradeoff, 
it is necessary to label more branches as VLC or LC, and 
thus, initiating more power-aware heuristics. For this 
reason, the original BPRU behavior has been modified. 
Since BPRU uses a tagged table, whenever a branch 
misses in that table, the saturating counter of the 
underlying branch predictor is used to provide the 
estimation. If a branch is predicted as either weakly taken 
or weakly not-taken, the branch is considered as LC. As 
expected, this change increments the SPEC metric at the 
expense of reducing the PVN metric. Simulations for an 8 

                                                           
4 SPEC is defined as the fraction of incorrect predictions labeled 
as low confidence, whereas PVN is defined as the fraction of low 
confidence branches that are finally mispredicted. 
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KB gshare predictor along with an 8 KB BPRU obtain an 
average SPEC = 60% and a PVN = 45% for the eight 
selected benchmarks. Finally, whenever a branch hits in 
the BPRU table it is labeled as follows: since each entry 
has a 3-bit up/down saturating counter, values 0-1 of the 
counter assign VHC to the branch, values 2-3 assign HC, 
values 4-5 assign LC and finally, values 6-7 assign VLC to 
the branch. 

We have also evaluated Pipeline Gating [21] using an 8 
KB JRS confidence estimator with an MDC-threshold of 
12. It obtains an average SPEC = 90% and a PVN = 24%, 
which is consistent with results reported in [14].  

5. Experimental Results 
5.1. Simulation Methodology 

To evaluate the power-performance efficiency of 
Selective Throttling, we used the eight benchmarks from 
the SPECint95 and SPECint2000 suites that exhibit the 
highest branch misprediction rates. All benchmarks were 
compiled with maximum optimizations (-O4 -fast) 
by the Compaq Alpha compiler and were run using a 
modified version of the Wattch v1.02 power-performance 
simulator [8]. Due to the large number of dynamic 
instructions in some benchmarks, we reduced the input 
data set while keeping a complete execution. Table 2 
shows the characteristics for each particular benchmark. 

Table 2. Benchmark characteristics. 

input set
simulated
instruc. 
(Mill.)

dyn.cond.
branches 
(Mill.)

gshare
8 KB

miss-rate

compress 40000 e 2231 170 13 10.2%
gcc genrecog.i 145 19 9.2%
go 9 9 146 15 19.7%
bzip2 input.source 1 500 43 8.0%
crafty test (modified) 437 38 7.7%
gzip input.source 1 500 52 8.8%
parser test (modified) 500 64 6.8%
twolf test 258 21 11.2%

benchmarks

S
pe

c9
5

S
pe

c2
00

0

 

Table 3 shows the configuration of the simulated 
architecture. The pipeline has been lengthened to 14 stages 
(from fetch to commit), following the pipeline scheme of 
the IBM Power 4 processor [20], as an example of a 
current microprocessor with a deep pipeline. These extra 
stages have been implemented in both Wattch’s power 
model and sim-outorder’s timing model. All results 
presented in this work use Wattch’s clock-gating style 
“cc3”, which scales power linearly with port or unit 
usage, whereas inactive units still dissipate 10% of its 
maximum power. 

The following metrics are used to evaluate the results: 

• Performance: in terms of instructions committed per 
cycle (IPC). 

Table 3. Configuration of the simulated processor. 

Fetch engine
Up to 8 instr/cycle, 2 taken branches,
2 cycles of misprediction penalty.

BTB 1024 entries, 2-way

Execution engine
Issues up to 8 instr/cycle, 128-entries
reorder buffer, 64-entries load/store queue.

Functional Units
8 integer alu, 2 integer mult, 2 memports,
8 FP alu, 1 FP mult.

L1 Instr-cache 64 KB, 2-way, 32 bytes/line, 1 cycle hit lat.

L1 Data-cache 64 KB, 2-way, 32 bytes/line, 1 cycle hit lat.

L2 unified cache
512 KB, 4-way, 32 bytes/line, 6 cycles hit 
latency, 18 cycles miss latency.

Memory 8 bytes/line, virtual memory 4 KB pages.

TLB 128 entries, fully associative.

Technology 0.18µm, Vdd = 2.0 V, 1200 Mhz.  

• Average Instantaneous Power (Watts): the total 
power dissipated in a per-cycle basis.  

• Energy (Joules): is equal to the product of the power 
dissipated and total execution time. It is more 
appropriate in low-end embedded and portable 
systems in which battery life is the primary index [9]. 

• Energy-Delay product (Joules*sec): is equal to the 
product of energy and total execution time. It is more 
appropriate in high performance systems since the 
extra delay factor ensures a greater emphasis on 
performance [9]. 

5.2. Power-Performance Efficiency of Selective 
Throttling 

In order to measure the power-performance efficiency 
of Selective Throttling, we carried out three set of 
experiments evaluating the effect of each power-aware 
heuristic. The first set of experiments exercises the fetch 
throttling heuristic independently of the other heuristics.  

Figure 3 shows the speedup, power and energy savings 
as well as energy-delay (E-D) improvement using different 
throttling levels, from less to more aggressive, for the 
selected benchmarks. The underlying branch predictor is 
an 8 KB gshare [22] and the confidence estimator is an 8 
KB BPRU. For comparison purposes, we have also 
evaluated Pipeline Gating using an 8 KB JRS confidence 
estimator with an MDC-threshold of 12 and a gating 
threshold of 2. 

Experiments A1, A2 and A3 reduce the fetch 
bandwidth to a half after a LC branch, and after a VLC 
branch the fetch bandwidth is reduced to a half, a fourth or 
stalled respectively. Such throttling policies have a 
negligible impact on performance, with an average 
slowdown less than 1%. However, these limitations in the 
bandwidth of the fetch stage reduce the power dissipation 
resulting in average energy savings of 5.2%, 6.6% and 
9.2% respectively. E-D improvements are consistent with 
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energy savings. Experiments A4 and A5 are more 
aggressive, and therefore degrade more performance (3%). 
But they obtain greater energy savings (11.2%) than 
previous experiments because the flow of incorrect 
instructions is drastically reduced, pointing out the 
benefits of more aggressive throttling policies. However, 
E-D product metric is penalized in experiment A4, and 
especially in experiment A6, which stops the fetch unit 
completely for both LC and VLC branches (as Pipeline 
Gating without using the gating threshold). In this case, 
the average slowdown is 12%, resulting in a null E-D 
improvement. Therefore, those reductions of the fetch 
bandwidth are not appropriate for high performance 
systems, where the E-D product is the more interesting 
metric.  

Finally, Pipeline Gating (experiment A7) also has a 
significant impact on performance, with an average 
slowdown of 8% (up to 15% for go). This negative impact 
is also reported in [6] and more recently in [24]. In 
addition, it obtains a higher average E-D improvement 
(3.5%) than experiment A6, showing how the use of the 
gating threshold may palliate the effect of the aggressive 

gating policy of stalling the fetch unit. Nevertheless, if we 
only consider energy savings, both experiments A6 and 
A7 obtain 12.3% and 11.0% respectively, showing such 
gating policies as appropriate for low-end systems in 
which battery life is the primary index [9]. 

Summarizing, the best tradeoff between power and 
performance is obtained by stopping the fetch unit when a 
VLC branch is encountered, and reducing four times the 
fetch bandwidth when a branch is labeled as LC (11.7% of 
energy savings and 8.6% of E-D improvement). 

The second set of experiments evaluates the effect of 
the decode throttling heuristic independently and in 
combination with the fetch throttling heuristic. In order to 
limit the number of experiments, and since in the previous 
analysis the best tradeoff is obtained by experiment A5, 
we have assumed that every VLC branch stops the fetch 
unit. Therefore, this analysis exercises the decode 
throttling heuristic only when a LC branch is encountered. 
Figure 4 shows the results using different throttling levels 
for the selected benchmarks using an 8 KB gshare and an 
8 KB BPRU. Again, results of Pipeline Gating are 
presented for comparison purposes. 

comp. gcc go bzip2 crafty gzip parser twolf Average

S
pe

ed
up

0.7

0.8

0.9

1.0

comp. gcc go bzip2 crafty gzip parser twolf Average

Po
w

er
 s

av
in

gs
 (

%
)

0
5

10
15
20
25
30
35

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

rg
y 

sa
vi

ng
s 

(%
)

0

5

10

15

20

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

r-
D

el
 im

pr
ov

.(
%

)

-5

0

5

10

A4) LC: fetch/4, VLC: fetch/4

A5) LC: fetch/4, VLC: fetch=0

A6) LC: fetch=0, VLC: fetch=0

A7) Pipeline Gating (JRS)A1) LC: fetch/2, VLC: fetch/2

A2) LC: fetch/2, VLC: fetch/4

A3) LC: fetch/2, VLC: fetch=0

Figure 3. Evaluation of the fetch throttling heuristic. 
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Experiments B1, B2 and B3 only change the decode 
bandwidth while leaving the fetch bandwidth unaltered at 
full speed when a LC branch is found. The speedup plot 
shows a significant impact on performance while the 
decode bandwidth is reduced, obtaining an average 
slowdown of 12% in experiment B3. 

As expected, the reduction of the number of 
instructions traversing the decode and next stages reduces 
power dissipation resulting in experiment B2 having a 
greater average energy saving (8.2%) than B1 (7.1%). But 
this trend is not followed by experiment B3, which 
consumes more energy than B2. This negative behavior is 
more evident looking at the E-D improvement, being 
experiment B1 much better than B3 (−5.0%). This reveals 
that throttling the decode stage must be done carefully, 
since aggressive policies result in significant impact on the 
E-D product metric. 

Regarding the particular effect of the decode throttling 
heuristic over the best experiment of the previous analysis 
(A5), experiments B7 and B8 represent an incremental 

change since a LC branch also reduces the decode 
bandwidth four times or stops it, respectively. The 
additional reduction of the traffic of incorrect instructions 
allows experiment B7 obtaining a slightly higher average 
energy savings (11.9%) than A5 (11.7%), but lower 
average E-D improvements (7.8%) than A5 (8.6%). 
Therefore, for low-end systems decode throttling provides 
additional benefits, but not for high performance systems. 

The third set of experiments evaluates the effect of the 
selection throttling heuristic in combination with both 
fetch throttling and decode throttling heuristics. In order to 
properly determine its effect, Figure 5 plots again, the best 
experiments from the previous analysis (without the 
selection throttling heuristic) along with the same 
experiment using the selection throttling heuristic. 
Therefore, experiment C1 is the same as experiment A5, 
experiment C3 is the same as B5 and experiment C5 is the 
same as B7. Finally, experiments C2, C4 and C6 include 
the use of the selection throttling heuristic. Again, we plot 
the results of Pipeline Gating for comparison purposes. 

Figure 4. Evaluation of the decode throttling heuristic independently and in combination with the fetch 
throttling heuristic. In all experiments, the fetch unit is stalled when a VLC branch is found. 
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It can be seen that the inclusion of the selection 
throttling heuristic scarcely degrades performance. For 
instance, experiment C1 has an average slowdown of 3% 
whereas C2 (with selection throttling) drops it to 5%. The 
rest of experiments follows this trend. Thus, this heuristic 
introduces an additional slowdown of about 2%. On the 
other hand, power dissipation is reduced due to the lower 
issue and execution activities, resulting in higher energy 
savings due to the selection throttling heuristic. 
Experiment C2 increments the average energy savings of 
C1 from 11.7% to 13.5%. Similar results are obtained 
when comparing C3 with C4, and C5 with C6. The trend is 
about 2% of additional average energy savings provided 
by the use of selection throttling, which reveals that this 
heuristic obtains an additional balance in power-
performance efficiency for low-end systems. Regarding E-
D improvement, it can be seen that selection throttling 
does not provide additional benefits, although using it does 
not degrade the power-performance balance for high 
performance systems, as it is the case of Pipeline Gating.  

Summarizing, after evaluating the effect of the three 
power-aware heuristics, the best approach is obtained by 
experiment C2, which stops the fetch unit after a VLC 
branch is encountered, reduces the fetch bandwidth four 
times for a LC branch as well as avoids the selection of 
those instructions depending on the LC branch. This 
experiment obtains an average energy saving of 13.5% (up 
to 19.2% for go) whereas Pipeline Gating obtains 11.0%. 
Furthermore, the average E-D improvement is 8.5% (up to 
12% for go), which is significantly better than that 
obtained by Pipeline Gating (just 3.5%).  

Therefore, results show that for the power of 
mispredicted branches to be reduced, aggressive 
techniques must be applied for non-confident predictions 
and conservative but smart heuristics must be applied to 
weak confident predictions. 

The selection throttling heuristic is important when 
considering energy savings while at the same time it does 
not harm the E-D metric. This reveals the fine grain 
balance in power-performance efficiency provided by this 
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Figure 5. Evaluation of the selection throttling heuristic. 
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heuristic: in case of erroneously labeling a branch as LC, 
control-dependent instructions can be decoded and some 
of them even awakened, allowing a fast recovery. 

5.3. Sensitivity Study 

This section studies the power-performance efficiency 
of Selective Throttling when some architectural parameters 
of the processor are varied. We present the average 
speedup, power and energy savings as well as E-D 
improvement obtained by the best experiment C2, which 
stops the fetch unit after a VLC branch, reduces the fetch 
bandwidth four times for a LC branch and avoids the 
selection of instructions depending on the LC branch. 

5.3.1. Pipeline Depth 

As stated previously, current processor design trends 
lead to longer pipelines in order to meet the cycle time 
requirements. The first group of experiments evaluate the 
effect of pipeline depth on the power-performance 
efficiency of the Selective Throttling mechanism. We 
varied the pipeline depth by changing the number of stages 
of the in-order front-end (fetch/decode) and also 
incrementing the execution and L1 D-cache latencies5. 
Figure 6 shows the results for pipelines from 6 to 28 
stages. First, we can see that Selective Throttling is robust 
against pipeline length variations, with a performance 
degradation between 5% and 6% in all cases. However, 
power savings, energy savings and E-D improvements 
grow with pipeline depth due to the fact that the energy 
wasted by useless instructions increases since they spend 
more cycles in the pipeline, and the Selective Throttling 
mechanism limits the number of wrong-path instructions 
traversing the pipeline. The average energy savings for 6 
stages are 11%, going up to 17.2% for 28 stages. Finally, 
the E-D improvements are 5.4%, 8.5% and 12% for 6, 14 
and 28 stages respectively. This shows the benefits of 
Selective Throttling as pipelines become longer. 
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Figure 6. Pipeline depth evaluation. 

                                                           
5 We have not varied the processor frequency. 
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Figure 7. Table size evaluation. 

5.3.2. Branch Predictor and Confidence Estimator Size 

The second group of experiments concerns the size of 
the gshare branch predictor and the size of the confidence 
estimator. The studied total size ranges from 8 KB to 64 
KB. In all cases, we always compare equal total sizes. 
Therefore, Selective Throttling devotes half of the total 
size to the branch predictor and the other half to the 
confidence estimator.  

As expected, for both the baseline and the Selective 
Throttling experiments, the branch prediction accuracy is 
incremented as the branch predictor size becomes larger. 
This situation leads to higher IPCs in both cases. However, 
in Figure 7 we can see that the performance degradation 
derived from the Selective Throttling mechanism is 
reduced as size grows because the confidence estimator 
becomes more accurate determining wrong paths. On the 
other hand, the power savings derived from the Selective 
Throttling mechanism are reduced (20.3% for 8 KB and 
16.5% for 64 KB) because there are less opportunities for 
improvement due to the higher prediction accuracy. These 
opposite trends in both performance and power dissipation 
lead to energy savings and E-D improvements almost 
constant respect to size changes: between 11% and 12% 
energy savings, and between 4% and 5% E-D 
improvements. 

6. Conclusions 

In modern superscalar processors around 28% of the 
dissipated power comes from mis-speculated instructions 
that waste energy performing useless activities. In this 
work we propose a mechanism, Selective Throttling, that 
depending on the confidence degree assigned to branch 
predictions, dynamically apply a different power-aware 
technique. We propose throttling at three different levels: 
fetch, decode and selection. Confidence estimation will be 
used to assign the appropriate level of throttling. The goal 
of our proposal is to obtain an optimal tradeoff between 
power and performance. For those branches likely to be 
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mispredicted, aggressive throttling will be applied. On the 
other hand, when the estimator is not quite sure about the 
confidence level of the prediction, less aggressive 
techniques, both in terms of power reduction and 
performance degradation, are used.  

We have evaluated the proposed scheme in terms of 
power and energy consumption, instead of using indirect 
metrics. Results for Selective Throttling using an 8 KB 
BPRU confidence estimator obtain average energy savings 
of 13.5% (up to 19.2% for go). Furthermore, the average 
energy-delay improvement (which is an appropriate metric 
for high performance systems) is 8.5%, significantly 
higher than that obtained by Pipeline Gating (3.5%). 

Finally, we have also shown that the power-
performance efficiency of the Selective Throttling 
mechanism is robust against modifications of some 
architectural features. Both energy savings and E-D 
improvements are incremented as pipelines become 
deeper, as it is the current trend, obtaining 17% and 12% 
respectively for 28 stages. 
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