

Power-Aware Control Speculation through Selective Throttling

Juan L. Aragón1, José González2 and Antonio González2,3
1Dept. Ing. y Tec. de Computadores

Universidad de Murcia
Murcia, Spain

jlaragon@ditec.um.es

2Intel Barcelona Research Center
Intel Labs, UPC
Barcelona, Spain

josex.gonzalez.gonzalez@intel.com

3Dept. d’Arquitec. de Computadors

Universitat Politècnica de Catalunya
Barcelona, Spain

antonio@ac.upc.es

Abstract

With the constant advances in technology that lead to
the increasing of the transistor count and processor
frequency, power dissipation is becoming one of the major
issues in high-performance processors. These processors
increase their clock frequency by lengthening the pipeline,
which puts more pressure on the branch prediction engine
since branches take longer to be resolved. Branch
mispredictions are responsible for around 28% of the
power dissipated by a typical processor due to the useless
activities performed by instructions that are squashed.

This work focuses on reducing the power dissipated by
mis-speculated instructions. We propose Selective
Throttling as an effective way of triggering different
power-aware techniques (fetch throttling, decode
throttling or disabling the selection logic). The particular
set of techniques applied to each branch is dynamically
chosen depending on the branch prediction confidence
level. For branches with a low confidence on the
prediction, the most aggressive throttling mechanism is
used whereas high confidence branch predictions trigger
the least aggressive techniques. Results show that
combining fetch bandwidth reduction along with select
logic disabling provides the best performance both in
terms of energy reduction and energy-delay improvement
(14% and 9% respectively for 14 stages, and 17% and
12% respectively for 28 stages).

1. Introduction

Power dissipation and energy consumption have
become an important concern in the design of high
performance microprocessors. In such systems it may be
necessary the use of very expensive cooling schemes,
which may have a significant impact on the final cost. For
mobile systems, battery life is a key design concern.
Furthermore, since power translates directly into heat, an
increase in power dissipation may cause chip malfunction
due to some failures such as thermal runaway, junction
fatigue and electro-migration diffusion [26].

Current processor design trends lead to large pipelines
in order to meet the cycle time requirements (e.g. 20

stages in the Pentium 4 [12]). In these architectures, a
branch takes longer to be resolved and the processor is
filled with many speculative instructions. Due to
mispredicted branches, part of the power dissipated by a
typical processor (around 28% on average) is due to mis-
speculated instructions that waste energy performing
useless activities.

In this work, we focus on reducing the energy wasted
by mis-speculated instructions by means of Selective
Throttling. According to the confidence level assigned to
each branch prediction, different processor blocks are
dynamically throttled: fetch unit, decode unit or selection
logic (from more to less aggressive). Aggressive throttling
will be applied for those branches with high probability of
being mispredicted (at the expense of reducing perfor-
mance if the branch hits). On the other hand, when the
estimator is not sure about the correctness of the predic-
tion, less aggressive techniques, both in terms of power
reduction and performance degradation, are applied.

Among prior related work we can point out Pipeline
Gating originally proposed by Manne et al. [21]. Since
this scheme is an all-or-nothing mechanism, it is very
sensitive to the goodness of the underlying confidence
estimator in the sense that performance is highly penalized
if a confidence estimation turns out to be wrong, and the
fetch or decode stages had been completely stalled (see
Section 5.2).

In this paper we make the following contributions:
• Throttling policies are selectively applied according

to the branch confidence estimation. In addition,
these policies have a certain degree of variation (i.e.
complete fetch stall vs. stalling fetch every 4 cycles).

• A new throttling technique is proposed which avoids
the selection of instructions that are control
dependent on a low confident branch.

• The evaluation of the proposed scheme in terms of
power and energy consumption, instead of using
indirect and approximate metrics such as Extra Work
[21] or Instruction Traffic [6].

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 analyzes the power
and energy consumption due to mis-speculated

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

instructions. The proposed Selective Throttling mechanism
is described in Section 4. Section 5 analyzes performance
and energy reductions of our proposal. Finally, Section 6
summarizes the main conclusions of this work.

2. Background and Related Work

A very large body of research has been targeted at
reducing the performance degradation caused by branch
mispredictions. Many proposals try to improve branch
prediction accuracy [29][22][10][2]. Others try to
minimize performance degradation by fetching and/or
executing multiple paths [15][19][28][3]. However,
analyzing how mis-speculated instructions influence
energy consumption has not received much attention.

As mentioned above, Pipeline Gating [21] prevents
wrong-path instructions from entering the pipeline and
wasting energy. This is accomplished by using a
confidence estimator to assess the quality of branch
predictions [14][16]. These confidence estimations are
used to decide if the processor is likely to fetch and
execute instructions that will not commit. The number M
of unresolved low confidence branches is used to
determine when and how long to gate. Thus, if M exceeds
a threshold, the fetch or decode stage is stalled although
previously fetched or decoded instructions continue
traversing the pipeline. The authors evaluated their
proposal for several confidence estimators with different
hardware complexities. The best results, reported for an
underlying gshare branch predictor [22], use the JRS
confidence estimator [16] with an MDC-threshold of 12
and a gating threshold of 2.

In [6], Baniasadi and Moshovos propose a mechanism
in order to reduce power dissipation, by enabling or
disabling the fetch or decode stages according to certain
heuristics. They introduce two control-flow heuristics that
are orthogonal to confidence-based approaches: instead of
fetching and decoding as many instructions as possible,
they analyze instruction traffic identifying situations in
which the additional parallelism that may be exposed does
not improve performance. In such situations they propose
to turn the fetch stage off during 3 cycles.

In [13] an extensive evaluation of the tradeoffs between
power and performance for different architectural
paradigms can be found. Many works have focused on
power consumption in cache memories [18][4][17] since it
is a critical component that is devoted a large portion of
the chip. Several architecture-level power models have
been developed for use in architecture power-performance
research such as Wattch [8] and SimplePower [27].

In [1], it is proposed to balance the clock rate
dynamically to match the requirements of the instruction
stream. In [7], it is minimized power consumption of
functional units, exploiting the fact that the sizes of
operands are often less than the size of the available
functional units. In [5], Pipeline Balancing dynamically

tunes the resources of a general purpose processor to the
needs of the application by monitoring performance. In
[11], energy consumption of the issue logic is reduced by
dynamically re-sizing the instruction queue and disabling
the wake-up of ready operands. In [25], critical path
prediction is used to separate high-speed functional units
dedicated to critical instructions from low-power
functional units dedicated to non-critical ones. Recently,
several branch predictor schemes have been evaluated
considering power-performance tradeoff [24]. Note that
these proposals do not tackle the problem of consumption
due to mis-speculated instructions.

3. Power and Energy Consumption of Mis-
speculated Instructions

Conventional front-end designs rely on control flow
speculation, which allows a processor to guess the target
of a conditional branch without waiting for it to execute.
While speculation greatly improves performance, it also
increases power dissipation and energy consumption in
case of a misprediction. As showed in previous works, the
number of incorrectly fetched instructions can account for
up to 80% of all instructions. Obviously, this extra traffic
is greater in the front-end stages (fetch/decode), since
fewer mis-speculated instructions reach the issue or
execution stages.

Table 1. Overall power breakdown and the fraction wasted
by mis-speculated instructions.

Overall Power
Breakdown

% of overall power
wasted by mis-
speculated instr.

Overall Power 56.4 Watts 27.9%
icache 10.0% 6.4%
bpred 3.8% 1.4%
regfile 1.6% 0.2%
rename 1.1% 0.5%
window 18.2% 5.6%
lsq 1.9% 0.2%
alu 8.7% 1.0%
dcache 10.6% 1.1%
dcache2 0.7% 0.0%
resultbus 9.5% 1.9%
clock 33.8% 9.5%

To understand how these extra instructions affect
power dissipation, we ran the eight benchmarks from the
SPECint95 and SPECint2000 that exhibit the highest
misprediction rate using the Wattch v1.02 power-
performance simulator [8] (see Section 5.1 for details
about the simulation methodology). The branch predictor
is an 8 KB gshare [22] whose history register is
speculatively updated.

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

Table 1 shows the overall power breakdown1 for each
block of the baseline microprocessor as well as the
percentage of overall power wasted by all mis-speculated
instructions for both conditional and unconditional
branches. It can be seen that about 28% of the overall
power is dissipated by incorrect instructions. This
represents an upper bound of the power reduction we can
achieve with the techniques proposed in this paper. As
expected, the fetch stage (“icache”+“bpred”), which is
responsible for 13.8% of the overall power, wastes 7.8%
of the overall power processing incorrect instructions.
Similarly, the decode stage (“rename” + a fraction of
“regfile”2 + a fraction of “window”3) wastes some
power processing incorrect instructions. Finally, it is
interesting to note that other portions of the processor such
as the “window” –the fraction corresponding to the issue
logic, wake-up and selection logic–, LSQ, functional units,
data caches and the result bus still waste up to 9.8% of the
overall power processing mis-speculated instructions,
which is a considerable amount of power.

In order to precisely determine the potential of the
proposed techniques, we ran the following experiments:

• Oracle fetch: only fetches correct-path instructions.
In case of misprediction the processor does not fetch
the mis-speculated path.

• Oracle decode: uses realistic fetch but only decodes
correct-path instructions.

• Oracle select: uses realistic fetch and decode but only
selects for issuing correct-path instructions.

oracle fetch
oracle decode

oracle select

S
pe

ed
up

 &
 S

av
in

gs
 (

%
)

0

5

10

15

20

25

30
Speedup
Power savings
Energy savings
E-D improvement

Figure 1. Oracle fetch, decode and select savings.

1 Using the Wattch’s clock-gating style cc3, which scales power
linearly with unit usage. Inactive units still dissipate 10% of its
maximum power.
2 According to Wattch power model, the “regfile” activity
counter is updated at decode stage to read a ready operand, and
also at commit to write the result.
3 The “window” activity counter is updated at decode stage to
write ready operands into RUU (physical registers), at issue to
read operands from physical registers and at writeback to write
the result into the corresponding physical register.

Figure 1 shows the average speedup as well as power
and energy savings and energy-delay improvement for the
eight selected benchmarks. The oracle fetch experiment
provides similar results to those shown in Table 1 except
that now only conditional branches are considered.
However, since confidence estimation is assigned to
conditional branches, the oracle fetch experiment provides
a precise upper bound about how much power is dissipated
by mis-speculated instructions. Overall savings for power,
energy and energy-delay are 21%, 24% and 28%
respectively. Note also that the oracle fetch experiment
obtains a speedup of 5%. This is mainly due to the I-cache
pollution and to the fact that wrong-path instructions waste
resources and may delay the execution of correct ones.

Because of how Wattch provides the dissipated power,
it is not easy to determine the overall power fraction
corresponding to mis-speculated instructions for each
pipeline stage, since some Wattch’s blocks belong to
several stages. Experiments shown in Figure 1 allow
obtaining the power wasted by wrong-path instructions on
a per-stage basis. In particular, the difference between the
power savings of the oracle fetch and oracle decode
experiments represents an upper bound of the power
wasted in the fetch stage (7.3%). Analogously, the
difference between the power savings of the oracle decode
and oracle select experiments constitutes an upper bound
of the power wasted in the decode stage (5.0%). Energy
consumption can be similarly calculated for the front-end
stages (10.8% and 5.0% respectively).

Finally, this analysis demonstrates that, contrary to
what it was suggested in previous work [21], a
considerable amount of power and energy can be saved if
we were able to gate at decode or issue stages whenever a
wrong-path is being processed: up to 13.7% (power
savings with oracle decode) and 8.7% (power savings with
oracle select) respectively.

4. Selective Throttling

Selective Throttling is a mechanism that reduces
dynamic power dissipation and energy consumption while
attempting to minimize performance degradation. This is
accomplished by limiting the number of mis-speculated
instructions fetched, decoded and issued, and therefore
decreasing the useless activity of the processor.

As previous proposals, Selective Throttling relies on
branch confidence estimation to initiate a particular
heuristic. We propose to use different policies depending
on the confidence estimation, with the goal of obtaining an
optimal tradeoff between power and performance.

4.1. Power-Aware Heuristics

The aim of the power-aware heuristics is to provide
different throttling levels with different impact on
performance whenever a heuristic is erroneously applied.
We have evaluated the following ones:

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

• Fetch throttling: reduces the fetch bandwidth to a

half, to a quarter or it stalls the fetch unit.
• Decode throttling: reduces the decode bandwidth to a

half, to a quarter or it stalls the decode unit.
• Selection throttling: avoids the selection of those

instructions control-dependent on a low confidence
branch.

Limiting the fetch and decode bandwidth is achieved by
alternating full activity cycles with stalled cycles. For
instance, in an 8-way processor, reducing the fetch
bandwidth to a half implies that eight instructions are
fetched in a given cycle and zero instructions are fetched
in the next one.

The aim of the novel selection throttling heuristic is to
reduce the power dissipated when mis-speculated
instructions are executed. In order to do that, the selection
of instructions control-dependent of a low confidence
branch is disabled. An incorrect instruction will not use
buses to send its operands to the functional units, which, in
turn, will not be unnecessarily wasted. The corresponding
results will not be forwarded to incorrect dependent
instructions (avoiding useless activity of the issue logic,
especially waking-up mis-speculated instructions) that
would store them at the reservation station entries (recall
that, as shown in the oracle select experiment of Section 3,
this useless work represents 8.7% of the total power
dissipation).

On the other hand, this novel heuristic has a minor
impact on performance when it is incorrectly applied (i.e.
activated for correctly predicted branches), mainly when
compared with more aggressive techniques such as fetch
throttling or decode throttling.

Note also that there are no pipeline deadlocks when this
heuristic is incorrectly applied: although control-
dependent instructions cannot be selected, those data
dependent on instructions prior to the branch are indeed
awakened, and after the branch resolution, ready
instructions can be quickly issued. Finally, the selection
throttling heuristic is fairly straightforward to implement,
requiring a bit in each instruction window entry to disable
selection. Figure 2 shows how the no-select bit is used to
avoid raising the request signal used by the selection logic.

· · ·

request
signal

•

•

•

rdyL opd tagL opd tagR rdyR no-select instN-1

•

•

•

•

rdyL opd tagL opd tagR rdyR no-select inst0

OR OR · ·
=

= =

=

tag1 tagIW

Figure 2. Wake-up logic [23] and the generation of the

request signal used by the selection logic.

4.2. Confidence-Based Categorization of Branches

The power-performance efficiency of Selective
Throttling strongly depends on the confidence estimator's
accuracy. If the confidence estimator labels a prediction as
low confidence and the prediction turns out to be correct,
the heuristic triggered by Selective Throttling incurs in a
serious penalization: power dissipation is not reduced
whereas performance is degraded, which leads to a higher
energy consumption. On the other hand, if a prediction is
labeled as high confidence and the branch turns out to be
mispredicted, performance is not additionally degraded but
energy is again wasted.

Thus, in order to obtain an optimal power-performance
tradeoff, instead of using the conventional two states
(high/low) provided by the confidence estimator, we
propose to categorize each branch prediction into the
following four states: a) very-high confidence branches
(VHC); b) high confidence branches (HC); c) low
confidence branches (LC); and d) very-low confidence
branches (VLC).

This categorization is carried out by using the value of
the confidence counter stored in each entry of the
confidence estimator, although each confidence estimator
may require a particular implementation. Therefore, this
categorization allows a fine grain decision concerning the
heuristic applied depending on the likelihood of a
prediction to be incorrect. Finally, to improve the Selective
Throttling mechanism, after initiating a power-aware
heuristic, if a later branch is labeled as VLC or LC before
the first branch is resolved, a more restrictive heuristic can
be initiated but not a less restrictive one.

4.3. Evaluated Confidence Estimators

According to the metrics introduced by Grunwald et al
[14], a good confidence estimator should have high SPEC
and PVN

4 metrics. This led us to use the confidence
estimator proposed for the Branch Prediction Reversal
Unit (BPRU) scheme [2], that makes use of predicted data
values to assess the confidence of branch predictions.

In order to obtain a better power-performance tradeoff,
it is necessary to label more branches as VLC or LC, and
thus, initiating more power-aware heuristics. For this
reason, the original BPRU behavior has been modified.
Since BPRU uses a tagged table, whenever a branch
misses in that table, the saturating counter of the
underlying branch predictor is used to provide the
estimation. If a branch is predicted as either weakly taken
or weakly not-taken, the branch is considered as LC. As
expected, this change increments the SPEC metric at the
expense of reducing the PVN metric. Simulations for an 8

4 SPEC is defined as the fraction of incorrect predictions labeled
as low confidence, whereas PVN is defined as the fraction of low
confidence branches that are finally mispredicted.

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

KB gshare predictor along with an 8 KB BPRU obtain an
average SPEC = 60% and a PVN = 45% for the eight
selected benchmarks. Finally, whenever a branch hits in
the BPRU table it is labeled as follows: since each entry
has a 3-bit up/down saturating counter, values 0-1 of the
counter assign VHC to the branch, values 2-3 assign HC,
values 4-5 assign LC and finally, values 6-7 assign VLC to
the branch.

We have also evaluated Pipeline Gating [21] using an 8
KB JRS confidence estimator with an MDC-threshold of
12. It obtains an average SPEC = 90% and a PVN = 24%,
which is consistent with results reported in [14].

5. Experimental Results
5.1. Simulation Methodology

To evaluate the power-performance efficiency of
Selective Throttling, we used the eight benchmarks from
the SPECint95 and SPECint2000 suites that exhibit the
highest branch misprediction rates. All benchmarks were
compiled with maximum optimizations (-O4 -fast)
by the Compaq Alpha compiler and were run using a
modified version of the Wattch v1.02 power-performance
simulator [8]. Due to the large number of dynamic
instructions in some benchmarks, we reduced the input
data set while keeping a complete execution. Table 2
shows the characteristics for each particular benchmark.

Table 2. Benchmark characteristics.

input set
simulated
instruc.
(Mill.)

dyn.cond.
branches
(Mill.)

gshare
8 KB

miss-rate

compress 40000 e 2231 170 13 10.2%
gcc genrecog.i 145 19 9.2%
go 9 9 146 15 19.7%
bzip2 input.source 1 500 43 8.0%
crafty test (modified) 437 38 7.7%
gzip input.source 1 500 52 8.8%
parser test (modified) 500 64 6.8%
twolf test 258 21 11.2%

benchmarks

S
pe

c9
5

S
pe

c2
00

0

Table 3 shows the configuration of the simulated
architecture. The pipeline has been lengthened to 14 stages
(from fetch to commit), following the pipeline scheme of
the IBM Power 4 processor [20], as an example of a
current microprocessor with a deep pipeline. These extra
stages have been implemented in both Wattch’s power
model and sim-outorder’s timing model. All results
presented in this work use Wattch’s clock-gating style
“cc3”, which scales power linearly with port or unit
usage, whereas inactive units still dissipate 10% of its
maximum power.

The following metrics are used to evaluate the results:

• Performance: in terms of instructions committed per
cycle (IPC).

Table 3. Configuration of the simulated processor.

Fetch engine
Up to 8 instr/cycle, 2 taken branches,
2 cycles of misprediction penalty.

BTB 1024 entries, 2-way

Execution engine
Issues up to 8 instr/cycle, 128-entries
reorder buffer, 64-entries load/store queue.

Functional Units
8 integer alu, 2 integer mult, 2 memports,
8 FP alu, 1 FP mult.

L1 Instr-cache 64 KB, 2-way, 32 bytes/line, 1 cycle hit lat.

L1 Data-cache 64 KB, 2-way, 32 bytes/line, 1 cycle hit lat.

L2 unified cache
512 KB, 4-way, 32 bytes/line, 6 cycles hit
latency, 18 cycles miss latency.

Memory 8 bytes/line, virtual memory 4 KB pages.

TLB 128 entries, fully associative.

Technology 0.18µm, Vdd = 2.0 V, 1200 Mhz.

• Average Instantaneous Power (Watts): the total
power dissipated in a per-cycle basis.

• Energy (Joules): is equal to the product of the power
dissipated and total execution time. It is more
appropriate in low-end embedded and portable
systems in which battery life is the primary index [9].

• Energy-Delay product (Joules*sec): is equal to the
product of energy and total execution time. It is more
appropriate in high performance systems since the
extra delay factor ensures a greater emphasis on
performance [9].

5.2. Power-Performance Efficiency of Selective
Throttling

In order to measure the power-performance efficiency
of Selective Throttling, we carried out three set of
experiments evaluating the effect of each power-aware
heuristic. The first set of experiments exercises the fetch
throttling heuristic independently of the other heuristics.

Figure 3 shows the speedup, power and energy savings
as well as energy-delay (E-D) improvement using different
throttling levels, from less to more aggressive, for the
selected benchmarks. The underlying branch predictor is
an 8 KB gshare [22] and the confidence estimator is an 8
KB BPRU. For comparison purposes, we have also
evaluated Pipeline Gating using an 8 KB JRS confidence
estimator with an MDC-threshold of 12 and a gating
threshold of 2.

Experiments A1, A2 and A3 reduce the fetch
bandwidth to a half after a LC branch, and after a VLC
branch the fetch bandwidth is reduced to a half, a fourth or
stalled respectively. Such throttling policies have a
negligible impact on performance, with an average
slowdown less than 1%. However, these limitations in the
bandwidth of the fetch stage reduce the power dissipation
resulting in average energy savings of 5.2%, 6.6% and
9.2% respectively. E-D improvements are consistent with

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

energy savings. Experiments A4 and A5 are more
aggressive, and therefore degrade more performance (3%).
But they obtain greater energy savings (11.2%) than
previous experiments because the flow of incorrect
instructions is drastically reduced, pointing out the
benefits of more aggressive throttling policies. However,
E-D product metric is penalized in experiment A4, and
especially in experiment A6, which stops the fetch unit
completely for both LC and VLC branches (as Pipeline
Gating without using the gating threshold). In this case,
the average slowdown is 12%, resulting in a null E-D
improvement. Therefore, those reductions of the fetch
bandwidth are not appropriate for high performance
systems, where the E-D product is the more interesting
metric.

Finally, Pipeline Gating (experiment A7) also has a
significant impact on performance, with an average
slowdown of 8% (up to 15% for go). This negative impact
is also reported in [6] and more recently in [24]. In
addition, it obtains a higher average E-D improvement
(3.5%) than experiment A6, showing how the use of the
gating threshold may palliate the effect of the aggressive

gating policy of stalling the fetch unit. Nevertheless, if we
only consider energy savings, both experiments A6 and
A7 obtain 12.3% and 11.0% respectively, showing such
gating policies as appropriate for low-end systems in
which battery life is the primary index [9].

Summarizing, the best tradeoff between power and
performance is obtained by stopping the fetch unit when a
VLC branch is encountered, and reducing four times the
fetch bandwidth when a branch is labeled as LC (11.7% of
energy savings and 8.6% of E-D improvement).

The second set of experiments evaluates the effect of
the decode throttling heuristic independently and in
combination with the fetch throttling heuristic. In order to
limit the number of experiments, and since in the previous
analysis the best tradeoff is obtained by experiment A5,
we have assumed that every VLC branch stops the fetch
unit. Therefore, this analysis exercises the decode
throttling heuristic only when a LC branch is encountered.
Figure 4 shows the results using different throttling levels
for the selected benchmarks using an 8 KB gshare and an
8 KB BPRU. Again, results of Pipeline Gating are
presented for comparison purposes.

comp. gcc go bzip2 crafty gzip parser twolf Average

S
pe

ed
up

0.7

0.8

0.9

1.0

comp. gcc go bzip2 crafty gzip parser twolf Average

Po
w

er
 s

av
in

gs
 (

%
)

0
5

10
15
20
25
30
35

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

rg
y

sa
vi

ng
s

(%
)

0

5

10

15

20

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

r-
D

el
 im

pr
ov

.(
%

)

-5

0

5

10

A4) LC: fetch/4, VLC: fetch/4

A5) LC: fetch/4, VLC: fetch=0

A6) LC: fetch=0, VLC: fetch=0

A7) Pipeline Gating (JRS)A1) LC: fetch/2, VLC: fetch/2

A2) LC: fetch/2, VLC: fetch/4

A3) LC: fetch/2, VLC: fetch=0

Figure 3. Evaluation of the fetch throttling heuristic.

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

Experiments B1, B2 and B3 only change the decode
bandwidth while leaving the fetch bandwidth unaltered at
full speed when a LC branch is found. The speedup plot
shows a significant impact on performance while the
decode bandwidth is reduced, obtaining an average
slowdown of 12% in experiment B3.

As expected, the reduction of the number of
instructions traversing the decode and next stages reduces
power dissipation resulting in experiment B2 having a
greater average energy saving (8.2%) than B1 (7.1%). But
this trend is not followed by experiment B3, which
consumes more energy than B2. This negative behavior is
more evident looking at the E-D improvement, being
experiment B1 much better than B3 (−5.0%). This reveals
that throttling the decode stage must be done carefully,
since aggressive policies result in significant impact on the
E-D product metric.

Regarding the particular effect of the decode throttling
heuristic over the best experiment of the previous analysis
(A5), experiments B7 and B8 represent an incremental

change since a LC branch also reduces the decode
bandwidth four times or stops it, respectively. The
additional reduction of the traffic of incorrect instructions
allows experiment B7 obtaining a slightly higher average
energy savings (11.9%) than A5 (11.7%), but lower
average E-D improvements (7.8%) than A5 (8.6%).
Therefore, for low-end systems decode throttling provides
additional benefits, but not for high performance systems.

The third set of experiments evaluates the effect of the
selection throttling heuristic in combination with both
fetch throttling and decode throttling heuristics. In order to
properly determine its effect, Figure 5 plots again, the best
experiments from the previous analysis (without the
selection throttling heuristic) along with the same
experiment using the selection throttling heuristic.
Therefore, experiment C1 is the same as experiment A5,
experiment C3 is the same as B5 and experiment C5 is the
same as B7. Finally, experiments C2, C4 and C6 include
the use of the selection throttling heuristic. Again, we plot
the results of Pipeline Gating for comparison purposes.

Figure 4. Evaluation of the decode throttling heuristic independently and in combination with the fetch
throttling heuristic. In all experiments, the fetch unit is stalled when a VLC branch is found.

comp. gcc go bzip2 crafty gzip parser twolf Average

S
pe

ed
up

0.7

0.8

0.9

1.0

comp. gcc go bzip2 crafty gzip parser twolf Average

P
ow

er
 s

av
in

gs
 (

%
)

0
5

10
15
20
25
30

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

rg
y

sa
vi

ng
s

(%
)

0

5

10

15

20

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

r-
D

el
 im

pr
ov

. (
%

)

-10

-5

0

5

10

B7) LC: fetch/4+decode/4
B8) LC: fetch/4+decode=0

B4) LC: fetch/2+decode/2
B5) LC: fetch/2+decode/4
B6) LC: fetch/2+decode=0

B1) LC: fetch/1+decode/2
B2) LC: fetch/1+decode/4
B3) LC: fetch/1+decode=0 B9) Pipeline Gating (JRS)

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

It can be seen that the inclusion of the selection
throttling heuristic scarcely degrades performance. For
instance, experiment C1 has an average slowdown of 3%
whereas C2 (with selection throttling) drops it to 5%. The
rest of experiments follows this trend. Thus, this heuristic
introduces an additional slowdown of about 2%. On the
other hand, power dissipation is reduced due to the lower
issue and execution activities, resulting in higher energy
savings due to the selection throttling heuristic.
Experiment C2 increments the average energy savings of
C1 from 11.7% to 13.5%. Similar results are obtained
when comparing C3 with C4, and C5 with C6. The trend is
about 2% of additional average energy savings provided
by the use of selection throttling, which reveals that this
heuristic obtains an additional balance in power-
performance efficiency for low-end systems. Regarding E-
D improvement, it can be seen that selection throttling
does not provide additional benefits, although using it does
not degrade the power-performance balance for high
performance systems, as it is the case of Pipeline Gating.

Summarizing, after evaluating the effect of the three
power-aware heuristics, the best approach is obtained by
experiment C2, which stops the fetch unit after a VLC
branch is encountered, reduces the fetch bandwidth four
times for a LC branch as well as avoids the selection of
those instructions depending on the LC branch. This
experiment obtains an average energy saving of 13.5% (up
to 19.2% for go) whereas Pipeline Gating obtains 11.0%.
Furthermore, the average E-D improvement is 8.5% (up to
12% for go), which is significantly better than that
obtained by Pipeline Gating (just 3.5%).

Therefore, results show that for the power of
mispredicted branches to be reduced, aggressive
techniques must be applied for non-confident predictions
and conservative but smart heuristics must be applied to
weak confident predictions.

The selection throttling heuristic is important when
considering energy savings while at the same time it does
not harm the E-D metric. This reveals the fine grain
balance in power-performance efficiency provided by this

comp. gcc go bzip2 crafty gzip parser twolf Average

Sp
ee

du
p

0.7

0.8

0.9

1.0

comp. gcc go bzip2 crafty gzip parser twolf Average

Po
w

er
 s

av
in

gs
 (

%
)

0
5

10
15
20
25
30

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

rg
y

sa
vi

ng
s

(%
)

0

5

10

15

20

comp. gcc go bzip2 crafty gzip parser twolf Average

E
ne

r-
D

el
 im

pr
ov

. (
%

)

0

3

6

9

12

C7) Pipeline Gating (JRS)C1) VLC: fet=0, LC: fet/4

C2) VLC: fet=0, LC: fet/4+noselect
C3) VLC: fet=0, LC: fet/2+dec/4

C4) VLC: fet=0, LC: fet/2+dec/4+noselect

C5) VLC: fet=0, LC: fet/4+dec/4
C6) VLC: fet=0, LC: fet/4+dec/4+noselect

Figure 5. Evaluation of the selection throttling heuristic.

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

heuristic: in case of erroneously labeling a branch as LC,
control-dependent instructions can be decoded and some
of them even awakened, allowing a fast recovery.

5.3. Sensitivity Study

This section studies the power-performance efficiency
of Selective Throttling when some architectural parameters
of the processor are varied. We present the average
speedup, power and energy savings as well as E-D
improvement obtained by the best experiment C2, which
stops the fetch unit after a VLC branch, reduces the fetch
bandwidth four times for a LC branch and avoids the
selection of instructions depending on the LC branch.

5.3.1. Pipeline Depth

As stated previously, current processor design trends
lead to longer pipelines in order to meet the cycle time
requirements. The first group of experiments evaluate the
effect of pipeline depth on the power-performance
efficiency of the Selective Throttling mechanism. We
varied the pipeline depth by changing the number of stages
of the in-order front-end (fetch/decode) and also
incrementing the execution and L1 D-cache latencies5.
Figure 6 shows the results for pipelines from 6 to 28
stages. First, we can see that Selective Throttling is robust
against pipeline length variations, with a performance
degradation between 5% and 6% in all cases. However,
power savings, energy savings and E-D improvements
grow with pipeline depth due to the fact that the energy
wasted by useless instructions increases since they spend
more cycles in the pipeline, and the Selective Throttling
mechanism limits the number of wrong-path instructions
traversing the pipeline. The average energy savings for 6
stages are 11%, going up to 17.2% for 28 stages. Finally,
the E-D improvements are 5.4%, 8.5% and 12% for 6, 14
and 28 stages respectively. This shows the benefits of
Selective Throttling as pipelines become longer.

Pipeline Depth
6 8 10 12 14 16 18 20 22 24 26 28

S
pe

ed
up

 &
 S

av
in

gs
 (

%
)

-10

-5

0

5

10

15

20

25

Energy savings

E-D improv.

Speedup

Power savings

Figure 6. Pipeline depth evaluation.

5 We have not varied the processor frequency.

Branch Predictor size + Confidence Estimator size
8 16 32 64

Sp
ee

du
p

&
 S

av
in

gs
 (

%
)

-15

-10

-5

0

5

10

15

20

25

Energy savings

E-D improv.

Speedup

Power savings

Figure 7. Table size evaluation.

5.3.2. Branch Predictor and Confidence Estimator Size

The second group of experiments concerns the size of
the gshare branch predictor and the size of the confidence
estimator. The studied total size ranges from 8 KB to 64
KB. In all cases, we always compare equal total sizes.
Therefore, Selective Throttling devotes half of the total
size to the branch predictor and the other half to the
confidence estimator.

As expected, for both the baseline and the Selective
Throttling experiments, the branch prediction accuracy is
incremented as the branch predictor size becomes larger.
This situation leads to higher IPCs in both cases. However,
in Figure 7 we can see that the performance degradation
derived from the Selective Throttling mechanism is
reduced as size grows because the confidence estimator
becomes more accurate determining wrong paths. On the
other hand, the power savings derived from the Selective
Throttling mechanism are reduced (20.3% for 8 KB and
16.5% for 64 KB) because there are less opportunities for
improvement due to the higher prediction accuracy. These
opposite trends in both performance and power dissipation
lead to energy savings and E-D improvements almost
constant respect to size changes: between 11% and 12%
energy savings, and between 4% and 5% E-D
improvements.

6. Conclusions

In modern superscalar processors around 28% of the
dissipated power comes from mis-speculated instructions
that waste energy performing useless activities. In this
work we propose a mechanism, Selective Throttling, that
depending on the confidence degree assigned to branch
predictions, dynamically apply a different power-aware
technique. We propose throttling at three different levels:
fetch, decode and selection. Confidence estimation will be
used to assign the appropriate level of throttling. The goal
of our proposal is to obtain an optimal tradeoff between
power and performance. For those branches likely to be

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

mispredicted, aggressive throttling will be applied. On the
other hand, when the estimator is not quite sure about the
confidence level of the prediction, less aggressive
techniques, both in terms of power reduction and
performance degradation, are used.

We have evaluated the proposed scheme in terms of
power and energy consumption, instead of using indirect
metrics. Results for Selective Throttling using an 8 KB
BPRU confidence estimator obtain average energy savings
of 13.5% (up to 19.2% for go). Furthermore, the average
energy-delay improvement (which is an appropriate metric
for high performance systems) is 8.5%, significantly
higher than that obtained by Pipeline Gating (3.5%).

Finally, we have also shown that the power-
performance efficiency of the Selective Throttling
mechanism is robust against modifications of some
architectural features. Both energy savings and E-D
improvements are incremented as pipelines become
deeper, as it is the current trend, obtaining 17% and 12%
respectively for 28 stages.

Acknowledgements

We thank the anonymous referees for their valuable
comments. This work has been supported by the Spanish
Ministry of Science and Technology under grants
TIC2000-1151-C07-03 and TIC2001-0995-C02-01.

References

[1] D. Albonesi. “Dynamic IPC/Clock Rate Optimization”.
Proc. of the Int. Symp. on Computer Architecture, 1998.

[2] J.L. Aragon, J. Gonzalez, J.M. Garcia and A. Gonzalez.
“Confidence Estimation for Branch Prediction Reversal”.
Proc. of the Int. Conference on High Performance
Computing, pp. 214-223, 2001.

[3] J.L. Aragon, J. Gonzalez, A. Gonzalez and J.E. Smith.
“Dual Path Instruction Processing”. Proc. of the Int.
Conference on Supercomputing, 2002.

[4] I. Bahar, G. Albera and S. Manne. “Power and Performance
Trade-Offs Using Various Caching Strategies”. Proc. of the
Int. Symp. on Low Power Electronics and Design, 1998.

[5] R.I. Bahar and S. Manne. “Power and Energy Reduction Via
Pipeline Balancing”. Proc. of the Int. Symp. on Computer
Architecture, 2001.

[6] A. Baniasadi and A. Moshovos. “Instruction Flow-Based
Front-end Throttling for Power-Aware High-Performance
Processors”. Proc. of the Int Symp. on Low Power
Electronics and Design, 2001.

[7] D. Brooks and M. Martonosi. “Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and
Performance”. Proc. of the High-Perf. Comp. Arch., 1999.

[8] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A
Frame-Work for Architectural-Level Power Analysis and
Optimizations”. Proc. of the Int. Symp. Comp. Arch., 2000.

[9] D. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva,
A. Buyuktosunoglu, J.D. Wellman, V. Zyuban, M. Gupta
and P.W. Cook. “Power-Aware Microarchitecture: Design

and Modeling Challenges for Next-Generation
Microprocessors”. IEEE Micro, Nov/Dec 2000.

[10] P.Y. Chang, M. Evers and Y.N. Patt. “Improving Branch
Prediction Accuracy by Reducing Pattern History Table
Interference”. Proc. of the Int. Conf. on Parallel
Architectures and Compilation Techniques, 1996.

[11] D. Folegnani and A. González. “Energy-Effective Issue
Logic”. Proc. of the Int. Symp. on Comp. Architec., 2001.

[12] P.N. Glaskowsky. “Pentium 4 (Partially) Previewed”.
Microprocessor Report, August 2000.

[13] R. González and M. Horowitz. “Energy Dissipation in
General Purpose Microprocessors”. IEEE Journal of Solid
State Circuits, 31(9), pp 1277-1284, 1996.

[14] D. Grunwald, A. Klauser, S. Manne and A. Pleszkun.
“Confidence Estimation for Speculation Control”. Proc. of
the Int. Symp. on Computer Architecture, 1998.

[15] T.H. Heil and J.E. Smith. “Selective Dual Path Execution”.
Technical Report, Univ. of Wisconsin-Madison, ECE, 1997.

[16] E. Jacobsen, E. Rotenberg and J.E. Smith. “Assigning
Confidence to Conditional Branch Predictions”. Proc. of the
Int. Symp. on Microarchitecture, 1996.

[17] M. Johnson and W. Mangione-Smith. “The Filter Cache: An
Energy Efficient Memory Structure”. Proc. of the Int. Symp.
on Microarchitecture, 2001.

[18] M.B. Kamble and K. Ghose. “Analytical Energy Dissipation
Models for Low Power Caches”. Proc. of the Int. Symp. on
Low Power Electronics and Design, 1997.

[19] A. Klauser, A. Paithankar and D. Grunwald. “Selective
Eager Execution on the PolyPath Architecture”. Proc. of the
Int. Symp. on Computer Architecture, 1998.

[20] K. Krewell. “IBM’s Power4 Unveiling Continues”.
Microprocessor Report, Nov. 2000.

[21] S. Manne, A. Klauser and D. Grunwald. “Pipeline Gating:
Speculation Control For Energy Reduction”. Proc. of the
Int. Symp. on Computer Architecture, 1998.

[22] S. McFarling. “Combining Branch Predictors”. Tech. Report
#TN-36. Digital Western Research Lab., 1993.

[23] S. Palacharla, N.P. Jouppi and J.E. Smith. “Complexity-
Effective Superscalar Processors”. Proc. of the Int. Symp. on
Computer Architecture, 1997.

[24] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan.
“Power Issues Related to Branch Prediction”. Proc. of the
High Performance Computer Architecture, 2002.

[25] J.S. Seng, E.S. Tune and D.M. Tullsen. “Reducing Power
with Dynamic Critical Path Information”. Proc. of the Int.
Symp. on Microarchitecture, 2001.

[26] C. Small. “Shrinking Devices Put the Squeeze on System
Packaging”. EDN, pp. 41-46, February 1994.

[27] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim and W.
Ye. “Energy-Driven Integrated Hardware-Software
Optimizations Using SimplePower”. Proc. of the Int. Symp.
on Computer Architecture, 2000.

[28] S. Wallace, B. Calder and D.M. Tullsen. “Threaded
Multiple Path Execution”. Proc. of the Int. Symp. on
Computer Architecture, 1998.

[29] T.Y. Yeh and Y.N. Patt. “Two-Level Adaptive Branch
Prediction”. Proc. of the Int. Symp. on Microarchitec., 1991.

Proceedings of the The Ninth International Symposium on High-Performance Computer Architecture (HPCA-9’03)
1530-0897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

