
Hardware Support for Prescient Instruction Prefetch

Tor M. Aamodt† Paul Chow†

†Dept. of Elec. & Comp. Eng.
University of Toronto

Toronto, Canada
{aamodt,pc}@eecg.toronto.edu

Per Hammarlund‡
‡Desktop Platforms Group

Intel Corporation
Hillsboro, OR 97124

Hong Wang § John P. Shen §

§Microarchitecture Research Lab
Intel Corporation

Santa Clara, CA 95054
{ per.hammarlund, hong.wang, john.shen }@intel.com

Abstract

This paper proposes and evaluates hardware mecha-
nisms for supporting prescient instruction prefetch—an
approach to improving single-threaded application per-
formance by using helper threads to perform instruc-
tion prefetch. We demonstrate the need for enabling
store-to-load communication and selective instruction ex-
ecution when directly pre-executing future regions of an
application that suffer I-cache misses. Two novel hard-
ware mechanisms, safe-store and YAT-bits, are introduced
that help satisfy these requirements. This paper also pro-
poses and evaluates finite state machine recall, a technique
for limiting pre-execution to branches that are hard to pre-
dict by leveraging a counted I-prefetch mechanism. On
a research Itanium® SMT processor with next line and
streaming I-prefetch mechanisms that incurs latencies rep-
resentative of next generation processors, prescient instruc-
tion prefetch can improve performance by an average of
10.0% to 22% on a set of SPEC 2000 benchmarks that suf-
fer significant I-cache misses. Prescient instruction prefetch
is found to be competitive against even the most aggres-
sive research hardware instruction prefetch technique:
fetch directed instruction prefetch.

1. Introduction

Instruction supply may become a substantial bottleneck
in future generation processors that have very long memory
latencies and run application workloads with large instruc-
tion footprints such as database servers [20]. Prefetching is
a well-known technique for improving the effectiveness of
the cache hierarchy. This paper investigates the use of spare
simultaneous multithreading (SMT) [27, 10, 13] thread re-
sources for prefetching instructions and focuses on single-
threaded applications that incur significant I-cache misses.

Even though SMT has been shown to be an effective
way to boost throughput performance with limited im-

pact on processor die area [11], the performance of single-
threaded applications does not directly benefit from SMT
and running such workloads may result in idle thread re-
sources. Recently, a number of proposals have been put
forth to use idle multithreading resources to improve single-
threaded application performance by running small helper
threads that reduce the latency impact of D-cache misses,
and branch mispredictions that foil existing hardware mech-
anisms [9, 5, 6, 30, 28, 22, 18, 3, 17, 8, 7, 16, 15].

However, there has been little published work focused
specifically on improving I-cache performance using such
helper threads. A key challenge for instruction prefetch is
to accurately predict control flow sufficiently in advance of
the fetch unit to tolerate the latency of the memory hier-
archy. The notion of prescient instruction prefetch [1] was
first introduced as a technique that uses helper threads to im-
prove single-threaded application performance by perform-
ing judicious and timely instruction prefetch.

The key contribution of this paper is the introduction of
simple hardware mechanisms that provide support neces-
sary to feasibly implement prescient instruction prefetch.
When supplied with prescient instruction prefetch en-
abled application software, these hardware mechanisms can
yield significant performance improvement while remain-
ing complexity-efficient. While the potential benefit of pre-
scient instruction prefetch was demonstrated previously
via a limit study [1], the techniques presented in this pa-
per show how to implement prescient instruction prefetch
under realistic constraints. In addition, we evaluate the per-
formance scalability of prescient instruction prefetch as
memory latency scales up, and in comparison to aggres-
sive hardware-only I-prefetch mechanisms. We demonstrate
that prescient instruction prefetch may yield similar or bet-
ter performance improvements than the most aggressive
hardware-based instruction prefetch technique, by lever-
aging existing SMT resources without large amounts of
additional specialized hardware.

The rest of this paper is organized as follows: Section 2
reviews the prescient instruction prefetch paradigm; Section

 prefix

 infix

 postfix

 (a) program structure (b) thread view

spawn

target

Main
Thread

Phase #2

Phase #1

I-cache
misses

Spawning
helper
thread

Figure 1. Prescient Instruction Prefetch

3 presents a straightforward technique for implementing
prescient instruction prefetch called direct pre-execution,
along with hardware mechanisms supporting it; Section 4
introduces an enhanced technique for implementing pre-
scient instruction prefetch called finite state machine recall,
which also leverages hardware support for a counted in-
struction prefetch operation and precomputes only hard to
predict branches; Section 5 presents a performance evalua-
tion of both techniques; Section 6 reviews related work; and
Section 7 concludes.

2. Prescient instruction prefetch

Prescient instruction prefetch uses helper threads to per-
form instruction prefetch on behalf of the main thread. Fig-
ure 1 illustrates prescient instruction prefetch by highlight-
ing a program fragment divided into three distinct control-
flow regions by two points labeled the spawn and target. Of
particular interest is the region following the target, called
the postfix region that is known from profiling to suffer sig-
nificant I-cache misses. Once a spawn-target pair is iden-
tified (at compile time, using profile feedback) a helper
thread is generated and attached to the original program bi-
nary (i.e., the main thread). At runtime, when a spawn-point
is encountered in the main thread, a helper thread can be
spawned to begin execution in an idle thread context. The
execution of the helper thread prefetches for anticipated I-
cache misses along a control flow path after the target.

In the context of this work the term “prescient” carries
two connotations: One, that helper threads are initiated in a
timely and judicious manner, and two, that the instructions
prefetched are actually useful as the helper thread closely
follows the same path through the program that the main
thread will follow when it reaches the target.

An efficient methodology for optimizing the selection
of spawn-target pairs based on a rigorous statistical model
of dynamic program execution has been described previ-
ously [1].

0%

20%

40%

60%

80%

100%

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

Instructions Ahead of Fetch

C
u

m
m

u
la

ti
ve

 I-
p

re
fe

tc
h

es
 fpppp

fma3d
eon
mesa
vortex
crafty
gcc

Figure 2. Prefetch distribution for a branch
predictor guided I-prefetch mechanism

Prescient instruction prefetch is similar to specula-
tive multithreading [24] insofar as it exploits both control-
independence (also referred to as control-equivalence) to
skip ahead in program execution, and bandwidth read-
ily available for multiple fetch streams on multithreading
processors. Furthermore, the use of precomputation for pro-
ducing live-ins to a future task has been explored in mas-
ter/slave speculative parallelization [29]. However,
whereas these techniques primarily achieve speedup by ex-
ploiting thread-level parallelism available by reusing the ar-
chitectural results of speculative computation, prescient in-
struction prefetch improves performance by reducing mem-
ory latency, in particular by reusing the microarchitectural
side-effects (i.e., cache warm-up) of speculative precompu-
tation threads.

Whereas trace preconstruction [14] employs a hardware-
based breadth-first search of future control-flow to cope
with weakly-biased future branches, prescient instruction
prefetch uses precomputation to resolve which control-
flow path to follow. Furthermore, as the precomputation
frequently contains load instructions, prescient instruction
prefetch often improves performance by prefetching data.

In contrast to branch predictor guided instruction
prefetch mechanisms such as fetch directed instruction
prefetch [21], prescient instruction prefetch uses a macro-
scopic view of control-flow gained by a profile-driven sta-
tistical analysis of program behavior. Such global analysis
allows helper threads to accurately anticipate potential per-
formance degrading code regions from a long distance
ahead. For instance, the distance between spawn and tar-
get could be thousands of dynamic instructions.

To illustrate how prescient instruction prefetch may po-
tentially improve performance beyond existing techniques,
Figure 2 shows a plot of the cumulative distribution of I-
prefetch distances for prefetches successful in reducing or
eliminating the latency impact of an I-cache miss generated
by a branch predictor guided instruction prefetch technique
called fetch directed instruction prefetch [21] (abbreviated

to FDIP herein, see Table 1 for implementation details).
A point (x, y) in Figure 2 indicates that y percent of in-
struction prefetches required to avoid an I-cache miss were
issued x or more dynamic instructions ahead of the fetch
unit. The effectiveness of this prefetch mechanism is a con-
sequence of the branch predictor’s ability to anticipate the
path of the program through code regions not in the I-cache.
As memory latency grows, the minimum prefetch distance
required to tolerate that latency increases, and hence the
fraction of timely prefetches tends to decrease. The same
trend occurs for a fixed memory latency as more parallelism
is exploited by the processor core.

By exploiting the global macroscopic control-flow cor-
relation of spawn and target, prescient instruction prefetch
threads can provide ample, scalable slack and achieve both
timeliness and accuracy.

3. Direct pre-execution

We begin by investigating a straightforward implemen-
tation of prescient instruction prefetch we call direct pre-
execution. During direct pre-execution, instructions from
the main thread’s postfix region are prefetched into the first-
level I-cache by executing those same instructions on a
spare SMT thread context. In this section requirements for
effective direct pre-execution are examined and hardware
mechanisms supporting these requirements are described.

3.1. Requirements for direct pre-execution

We begin by highlighting several significant challenges
to obtaining effective direct pre-execution.

3.1.1. Constructing precomputation slices. For di-
rect pre-execution to correctly resolve postfix branches,
the outcome of the backward slice of each postfix branch
must be accurately reproduced. This slice may con-
tain computations from both the infix and postfix regions.
Thus, as shown in Figure 1(b), direct pre-execution con-
sists of two phases: The first phase, live-in precomputation,
reproduces the effect of the code skipped over in the in-
fix region that relates to the resolution of branches in
the postfix region. We refer to these precomputation in-
structions as the infix slice. Similar to speculative pre-
computation [8, 16], infix slices for direct pre-execution
helper threads could be encoded as additional instruc-
tions embedded in a program’s binary image. In the sec-
ond phase, the helper thread executes the remaining slice
operations while executing the postfix region. As in-
structions in the infix region not related to any branch
instruction in the postfix region are not duplicated in the in-
fix slice they are neither fetched, nor executed by the helper
thread which enables the helper thread to start execut-
ing through the postfix region before the main thread.

To construct infix slices, we consider dynamic slices
similar to those studied in previous work [2, 30]. A dy-
namic slice can be decomposed into value, address, con-
trol and existence sub-slices [30]. In the present context,
the value slice refers to those operations that compute val-
ues directly used to determine the outcomes of branches in
the postfix region. The address slice includes those oper-
ations that compute load and store addresses in the value
slice to resolve store-to-load dependencies between mem-
ory operations in the value slice. Likewise, the control slice
resolves the control dependencies of the value and address
slices. Lastly, the existence slice is the portion of the con-
trol slice that determines whether the target is reached.

Similar to Zilles and Sohi [30], in this study we examine
variable infix-slices, extracted per dynamic spawn-target in-
stance from the control-flow through the infix and postfix
region, assuming perfect memory disambiguation, and con-
taining the value, and address sub-slice, as well as the sub-
set of the control sub-slices that generate instruction predi-
cates for computation in the value and address slice.

3.1.2. Handling stores in precomputation threads.
Helper threads run ahead of the main thread. In the post-
fix region helper threads execute the same code as the
main thread and will inevitably encounter store instruc-
tions. These stores should not be executed the same way
as in the main thread, but they cannot simply be ig-
nored: On the one hand, allowing stores from a helper
thread to commit architecturally could violate program cor-
rectness (e.g. a load from the main thread may end up er-
roneously depending on a later store committed by a
helper thread). On the other hand, as shown in Sec-
tion 5, store-to-load communication can indeed be part of
the slice required to resolve control flow through the post-
fix region. To satisfy these conflicting requirements a novel
mechanism called the safe-store is introduced in Sec-
tion 3.2.2.

3.1.3. Handling ineffectual instructions. To ensure
the effectiveness of prescient instruction prefetch, helper
threads should avoid executing postfix instructions that are
not related to the resolution of postfix branches. These in-
structions are called ineffectual instructions1. Although
computing these instructions may potentially bring benefi-
cial side effects such as data prefetching (if data addresses
are computed correctly), they could waste processor re-
sources. Worse yet, these ineffectual instructions may even
corrupt the computation responsible for resolving post-
fix branches if they are not filtered out.

For example, Figure 3 shows four instructions from a
postfix region where asterisks are used to indicate opera-

1 Sudaramoorthy et al. [25] use this term to describe those dynamic in-
structions that do not impact the results of program execution.

<spawn>
...
<target>
S1 cmp p3 = r1,r2 // r2 arbitrary
S2 (p3) add r1 = ...
S3* cmp p5 = r3,r1
S4* (p5) br X

The code after <target> is the postfix region for a helper
thread started when the main thread reaches <spawn>. p3
and p5 are predicate registers controlling whether S2 and
S4 are executed. Mnemonics are “cmp” for compare, “add”
for addition, “br” for branch (if predicate is true).

Figure 3. Postfix pre-execution and filtering

tions in the slice leading to the resolution of a branch. State-
ment S2 is found to be predicated “false” most of the time
(so register r1 is usually not updated at S2). Hence, the dy-
namic slice algorithm considered statements S1 and S2 in-
effectual and excluded them from the slice, however, exe-
cuting S1 and S2 may cause the helper thread to diverge
from the main thread’s future path: As r2 contains an arbi-
trary value at S1, S2 may (incorrectly) be predicated “on”
by the helper thread, resulting in an update to r1. This up-
date to r1 may result in S3 computing the wrong value for
p5 leading to control flow divergence after S42.

To filter out ineffectual computation a novel mechanism
called the YAT-bit is introduced in Section 3.2.3 that would
allow only S3 and S4 to execute in the preceding example.

3.2. Hardware support

In this section, we describe hardware mechanisms to
support direct pre-execution.

3.2.1. Helper thread spawning. When the main thread
commits a spawn-point a helper thread is spawned if there
is an idle thread context. The helper thread first reads the set
of live-in register and memory values required for infix-slice
precomputation from the main thread. We consider a regis-
ter or memory value to be live-in to a region if the value
is used before being defined in that region. The infix slice
is responsible for computing the set of live-in register and
memory values relevant to branch resolution in the post-
fix region. Once infix slice precomputation completes, the
helper thread jumps to the target and starts executing the
main thread’s code in the postfix region.

3.2.2. Safe-stores. To honor store-to-load dependencies
during helper-thread execution without affecting program

2 The problem illustrated is not unique to predication: Executing inef-
fectual stores can also lead to control flow divergence.

Tag 1 Line 1
Tag 2 Line 2

 Tag N Line N

safe bits

S et 1

S et M

a

ap h y sical tag
h el p er = 1

m ain = 0

l oad = 1
store = 0

F r o m

LD / S T

U n it &

dTLB

b
d

tag s

W ay 1

W ay N

W ay S el ec t

(o n e h o t

en c o din g)

L1 D - c ac h e

tag / data

ar r ay s

N ot sh ow n: l ogic

f or v al id/ dirty bits

c

b
d

c

e

Tag 1 Line 1
Tag 2 Line 2

 Tag N Line N

Way selection enabled if: (a) conventional tag match found;
and: (b) line has safe-bit set and access is from helper
thread; or (c) line does not have safe-bit set and access
is from main thread; or (d) single matching line does not
have its safe bit set, and access is from helper thread.

Figure 4. Safe-store way-selection logic

correctness we propose safe-stores—a simple microarchi-
tectural mechanism for supporting a type of speculative
store. Store instructions encountered during helper thread
execution are executed as safe-stores. A safe-store is writ-
ten into the first-level D-cache, but cannot be read by any
other non-speculative thread. This selectivity is achieved by
extending the cache tags with a safe-bit to indicate whether
or not the line was modified by a helper thread.

To implement safe-stores the tag match logic is extended
to include comparison of the safe-bit as shown in Figure 4.
The safe-bit is initially cleared for cache lines brought in
by the main thread but is set when a line is modified by a
helper thread. The augmented tag matching logic guaran-
tees that a load from the main thread will never consume
data produced by a store in a helper thread, thus ensuring
program correctness. However, upon a D-cache hit, a load
from the helper thread is allowed to speculatively consume
data stored by the main thread or another helper thread.

For example, a safe-store modified line may be evicted
from the D-cache by a store from the main thread with the
same tag, which is then followed by a dependent load from
the helper thread that hits in the cache and receives the data
written by the main thread (we call this condition a safe-
store eviction). Hence it cannot be guaranteed that the data
consumed was produced by the safe-store upon which it
logically depends. Similarly, when multiple helper threads
operate concurrently, they may (erroneously) read values
stored by each other (we call this safe-store aliasing). If
multiple helper threads often write to the same lines con-
currently, performance may improve if safe-store modified
lines are further distinguished by adding a couple of helper
thread instance specific tag bits in addition to the safe-bit.

After a helper thread exits, a safe-store modified line may
remain in the cache long enough that a subsequent helper

Physical

R e g ist e r I D
Y A T - b it

A r chit e ct u r al R e g ist e r I D ’ s :

Phase 1 : L o o k u p S r c R e g I D ’ s / Y A T b it s

Phase 2 : A llo cat e D st R e g I D ’ s / Y A T b it s

S r c # 1 ' s Y A T b it
S r c # 2 ' s Y A T b it

D st Y A T b it

Figure 5. YAT-bit rename logic

thread reads a stale value from it. One way of reducing the
chance of this happening is to mark loads that read helper
thread live-in values so they invalidate matching safe-store
modified lines. As shown in Section 5, we found the safe-
store mechanism can frequently enforce the correct store-
to-load dependency within a helper thread.

If the D-cache uses a write-through policy, the line mod-
ified by a safe-store is prevented from being written into
the next level cache hierarchy. If the D-cache instead uses a
write-back policy, a line with safe-bit set behaves as an in-
valid line when it participates in a coherence transaction.
Furthermore, when using a write-back policy, a write-back
of non-speculative state must be generated when a helper
thread writes to a line modified by the main thread. When
a safe-store modified line is evicted it is not written back
to the next level of the memory hierarchy. Safe-store mod-
ified lines may reduce performance by increasing the num-
ber of D-cache misses incurred by the main thread, and by
triggering additional write-backs.

3.2.3. YAT-bits. To avoid executing ineffectual instruc-
tions, we introduce the YAT-bit3, a simple extension
to existing register renaming hardware. Register re-
naming is used in out-of-order processors to eliminate
false dependencies resulting from reuse of architec-
tural registers. Similarly, a form of register renaming is
used to reduce function call overhead, via register win-
dowing, and software pipelining overhead, via register
rotation, in the Itanium® architecture [12]. In the pro-
posed extension each architectural register is associ-
ated with an extra bit, called the YAT-bit that indicates
whether the corresponding physical register likely con-
tains the same value as the main thread will when it
reaches the point where the helper thread is currently ex-
ecuting. Upon spawning a helper thread all YAT-bits for
the helper thread are cleared. After copying live-in regis-
ters from the main thread, the YAT-bit for each live-in reg-
ister is set to indicate the content is meaningful, then

3 YAT-bit stands for “yes-a-thing bit” in analogy to the Itanium® NAT-
bit (“not-a-thing bit”) used for exception deferral.

precomputation of the infix slice begins. YAT-bits prop-
agate as follows: When an instruction enters the re-
name stage, the YAT-bits of each source operand are looked
up. If all source YAT-bits are valid, the destination regis-
ter YAT-bit(s) will also be marked valid, and the instruc-
tion will execute normally. However, if any source register
YAT-bits are invalid, the instruction’s destination reg-
ister YAT-bits will be invalidated, and the instruction
will be treated as a “no-op” consuming no execution re-
sources down the rest of the pipeline (see Figure 5)4.

The hardware support used to implement the YAT-bit
mechanism is reminiscent of that used to support runahead
execution [19]. In runahead execution the register-renamer
tracks so-called invalid registers—those registers dependent
upon a value that would be produced by a load that misses
in the L2-cache which is instead ignored by the runahead
thread. YAT-bit operation fundamentally differs in that an
invalid YAT-bit indicates a register is dependent upon a live-
in that was not copied from the main thread. An invalid
YAT-bit therefore indicates that the value is both inaccu-
rate and likely irrelevant when resolving postfix branches.

It is interesting to note a few concerns specific to archi-
tectures supporting predication and/or register windows. If
an instruction is predicated “false”, the destination registers
are not updated and hence the associated YAT-bits should
remain unchanged. If the predicate register YAT-bit is in-
valid the correct value of the predicate is unknown and
hence it may be unclear whether the destination YAT-bits
should change. In practice we found it was effective to sim-
ply let the destination register YAT-bits remain unchanged.

On architectures using register windowing a register
stack engine typically spills and fills the values in registers
to/from memory automatically. If this mechanism is trig-
gered during helper thread execution, saving and restoring
YAT-bits can improve prefetch accuracy and therefore may
improve performance.

3.2.4. Helper thread kill. To ensure helper threads do not
run behind the main thread or run astray, a helper thread
is terminated when the main thread catches it (in practice–
when both threads having the same next fetch address), or
when a maximum number of postfix operations (predeter-
mined during spawn-target pair selection) have executed.

4. Exploiting predictability

In this section we examine a technique for reducing the
amount of precomputation required for achieving prescient
instruction prefetch. Typically, many postfix branches are
either strongly biased, thus predictable statically, or dy-
namically predictable with high confidence using a mod-

4 The infix slice may leave stale temporary register values, clearing their
YAT-bits before postfix precomputation improves prefetch accuracy.

Postfix Profile:

Frequency S p a w n T a rg et P o s t f i x B ra nch O ut co m e H i s t o ry
 1 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTN N N N N N N N N N N T

 1 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTN N N N N N N N N N N TN TN TN N N N T

 1 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTN N N N N N N N TN T

 1 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTN N N N N N N N TN TN TN TN N N N T

 2 6 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTN N N N N N N N TN T

 1 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTTNTNTNTNTNNNN

 16 0 x 4 5 4 3 d 0 - 0 x 4 5 4 9 2 0 N N N N TN N N TTTTNTNTNTNTNNNNT

S ta te M a c h in e:

Precompute this

b ra n ch

T : ta k en

N : n ot- ta k en

Figure 6. Postfix profile & FSM construction

ern hardware branch predictor. Hence, using branch predic-
tion can reduce the amount of precomputation required to
ensure accurate instruction prefetch.

An interesting alternative to the direct pre-execution
technique uses a counted I-prefetch operation encoded in
the processor’s instruction set to decouple I-prefetch from
precomputation. The precomputation slices used by this
technique, called transition slices (t-slices), merely resolve
weakly-biased branches. A counted I-prefetch operation
provides the processor with a starting address, and num-
ber of lines to prefetch as a hint (i.e., the action may be ig-
nored without affecting program correctness). A hardware
prefetch engine queues these instruction prefetch requests,
and issues them to the memory system at a later time. The
counted I-prefetch operations we envision resemble the I-
prefetch hints encoded in the br.many and the br.few
instructions of the Itanium® architecture, except the hint
would also express the number of lines to be prefetched.

The following section describes how to implement pre-
scient instruction prefetch helper threads that use counted
instruction prefetches.

4.1. Finite state machine recall

The control flow paths through a postfix region alternate
between path segments containing strongly-biased branches
(which may be summarized with a sequence of counted
prefetches) separated by weakly-biased branches. For ex-
ample, the top half of Figure 6 shows profile information
(from 186.crafty) for a single spawn-target pair’s postfix re-
gion illustrating that the target is followed by 10 strongly-
biased branches ending at a weakly-biased branch. These
dominant path segments can be summarized as states in a
finite state machine in which transitions represent the reso-
lution of weakly-biased branches (bottom half of Figure 6).

In finite state machine recall (FSMR) a t-slice is con-
structed for each of these weakly-biased branches. If some

0x454ba0 ...

0x454be 2 T

0x4549 2 0 ad d r 8 7 = - 1 4441 9 2 , r 1

 c m p . e q . u n c p 1 3 = r 7 8 , r 0

. . . NNNN. . .

0x4549 d 2 T

0x454ab0 .. . NNN. . .

0x454b3 2 T

0x454b50 ...

0x454b6 2 T

0x45507 0 ...

0x454e 2 0 ...

0x454e 6 2 (p 1 4) br . c o n d $ I P + 0x2 1 0

 i p r e f e t c h 0x4549 00, 4

 i p r e f e t c h 0x454a8 0, 3

 . . .

p r e c o m p u t e X o u t c o m e

i p r e f e t c h 0x454e 7 0, . . .

i p r e f e t c h 0x45507 0, . . .

(a) main program (b) F S M R h e l pe r t h re ad

a

b

c

d

X

a: b
c: d

0x454e 7 0 ...

do m i n an t

p at h

T

N

Figure 7. FSMR example showing use of
counted prefetch “iprefetch x,n” that trig-
gers a hardware counted prefetch engine to
prefetch n cache lines starting from address
x. Underlined statement in part (b) is a t-slice.

of these weakly-biased branch could be predicted accu-
rately via some hardware mechanism then an instruction
that queries the predictor could be used instead of a t-slice.

Figure 7 shows an FSMR helper thread example. In Fig-
ure 7(a) the block starting at ‘a’ and ending at ‘b’ is merged
together with the block starting at ‘c’ and ending at ‘d’ into
the first state in the FSMR helper thread because the branch
at ‘b’ is strongly biased to be taken. Figure 7(b) shows a
fragment of the finite state machine encoding the region
shown in part (a). Note that only non-contiguous blocks of
code require separate counted prefetch operations.

In contrast to the infix slice used in direct pre-execution,
the code in a t-slice may include copies of computation from
both the infix and the postfix region. If the outcome gener-
ated by a t-slice does not match one of the transitions in the
state machine, the helper thread exits. Note FSMR helper
threads may benefit from using safe-stores to enable store-
to-load communication.

Since the instructions prefetched by any state are in-
dependent of the t-slice outcome, we scheduled counted
prefetches first to initiate prefetches for code in the main
thread before precomputing a t-slice to determine the next
state transition. Counted prefetch memory accesses con-
tinue in parallel with the execution of the subsequent t-
slices. A more aggressive implementation might spawn t-
slices speculatively based upon less reliable control flow
prediction techniques (cf. chaining speculative precomputa-
tion [8] where essentially the prediction is that a backward
branch is taken), or reuse common sub-computation from
one t-slice to the next. In the extreme case, provided there
are a sufficient number of idle thread contexts and fetch
bandwidth, from one single state multiple t-slices can be ea-

Decode

I - C a ch e

B r a n ch P r edi ct or

F T Q

P I Q
NL and

I - S t r e am

R en a m e
P e r - T h r e ad

E x p ans i o n

Q u e u e s

P e r - T h r e ad

R e g i s t e r

F i l e

D- C a ch e

E x ecu t i on

U n i t s

t o/ f r om u n i f i ed L 2 ca ch e

t o/ f r om u n i f i ed L 2 ca ch e

C P E

Figure 8. Processor model (FTQ and PIQ for
FDIP only, CPE for FSMR only)

gerly spawned for multiple successor states.
Our simulator models a modest per-thread context de-

coupled counted prefetch engine. When a counted prefetch
reaches the execute stage of the pipeline the counted
prefetch is inserted to the back of the queue for the associ-
ated thread context. Prefetch requests are issued from this
queue upon available bandwidth to the L2 cache.

4.2. FSM and t-slice construction

To construct the finite state machine and t-slices, the pro-
file guided spawn-target pair selection algorithm [1] is used
to supply spawn-target pairs. Spawn-target pairs for FSMR
are selected assuming the number of instructions prefetched
per cycle by a helper thread allows it to keep the same pace
as the main thread. For each pair, postfix path profiling is
applied to the postfix region and the results of this postfix
path-profile are then used to construct a separate FSM for
each static spawn-target pair as described in Section 4.1.
The t-slices are extracted similarly to dynamic slices. The
data in Table 2 shows that these finite state machines are
typically small. For example, the number of t-slice transi-
tions per dynamic helper thread instance ranges from 0.39
to 6.8 (see Row 15 in Table 2), even though the number of
branches encountered varies from 1.53 to 47 (Row 8).

5. Performance evaluation

In this section we evaluate the performance of the pro-
posed techniques.

5.1. Processor model

We model a research Itanium® SMT processor with four
hardware thread contexts based upon SMTSIM [27] (see
Figure 8). The processor configurations listed in Table 1 are
modeled. To gauge performance scalability with respect to
future memory latencies, we evaluate two memory hierar-
chies, labeled 2x and 4x, representative of 2GHz and 4GHz
Itanium® processors, respectively.

The baseline configuration includes the follow-
ing I-prefetch support: Upon a demand miss, a request
is generated for the next sequential cache line. In addi-
tion, Itanium® instruction prefetch hints (e.g., br.many)
are used to trigger a streaming prefetch address genera-
tor that can send additional requests up to four cache lines
ahead of the fetch address. If an instruction prefetch re-
quest encounters a second-level iTLB miss that requires
accessing the page table in main memory, the request is ig-
nored without generating an iTLB update. Instruction cache
miss requests are prioritized in the memory hierarchy. De-
mand fetches have highest priority, followed by next line
and streaming prefetches, followed by counted prefetch re-
quests. For FDIP configurations the Itanium® stream
I-prefetch mechanism is not used.

In our processor model, helper threads contend for fetch
and issue bandwidth with the main thread, but have lower
priority. For I-cache access, each cycle the fetch unit can
access two cache lines. If the main thread is currently wait-
ing for an outstanding I-cache miss, up to two active helper
threads are selected (in round-robin order) to access the I-
cache. Otherwise, one access from the main thread, and one
from an active helper thread are allowed.

During instruction issue, ready instructions are selected
from the main thread provided there is availability of func-
tion units. Any left over issue bandwidth is available for
helper thread instructions.

5.2. Prescient instruction prefetch models

We model both direct pre-execution and FSMR mecha-
nisms for prescient instruction prefetch.

5.2.1. Direct pre-execution. For direct pre-execution we
model both an idealized version that assumes perfect live-in
prediction (PLP) and a more realistic version that uses dy-
namic infix slices to perform precomputation, called vari-
able slice (VS). PLP models the ideal case where helper
threads begin executing at the target as soon as the spawn
is encountered by the main thread and initially see the same
architectural state that the main thread will be in when it
also reaches the target. As in the earlier limit study [1], for
PLP an infinite store buffer model is assumed (rather than
the safe-store mechanism), and a helper thread is triggered
when the main thread commits a spawn-point (if no con-
texts are available the spawn-point is ignored). The helper
thread begins fetching from the target the following cycle
and runs the maximum number of instructions, or until it is
caught by the main thread, at which point it exits. For the VS
model, after a helper thread is spawned it first pre-executes
the infix slice and only afterwards jumps to the target-point
to start executing (and thereby effectively prefetching) in-
structions in the postfix region. For VS safe-stores are mod-
eled with a 2-bit tag that reduces interference between con-

Threading SMT processor with 4 thread contexts priority main thread,
Pipelining In-order: 8-stage (2x), or 14-stage (4x) pipeline

Issue
helper threads round-robin

1 line per thread, 2 bundles from Function Units 4 int., 2 FP, 3 br., 2 mem. units
Fetch 1 thread, or 1 bundle from 2 threads Register Files 128 general purpose, 128 FP, 64

priority main thread, helper threads ICOUNT [26] (per thread) predicate, 8 branch, 128 control regs.
maximum 60 outstanding I-cache requests of any type L1 (separate I&D): 16 KB, 4-way (each)
(a) next line prefetch on demand miss L2 256KB, 4-way 14-cycle
(b) I-stream prefetch, max. 4 lines ahead of fetch 2x L3 3MB, 12-way 30-cycle
(c) counted i-prefetch engine (CPE) - allocates into L1 I-cache 64-byte lines, D-cache uses a

Instruction 64-entry FIFO per thread, max. 2 issued per cycle write-through, no write allocate policy
Prefetch (d) fetch-directed instruction prefetch [21]: Cache

enqueue cache probe filter (enqueue-CPF) latencies changed to:
dedicated port for tag lookup 4x L2 28-cycle
16- entry fetch target queue (FTQ), FIFO prefetch L3 60-cycle
instruction queue (PIQ)

Branch 2k-entry GSHARE, 64-entry RAS with mispec. repair [23] 2x: 230-cyc. TLB miss 30 cyc.
Predictor 256-entry 4-way associative fetch target buffer (FTB)

Memory
4x: 450-cyc. TLB miss 60 cyc.

Table 1. Processor Configurations

benchmark 145.fpppp 176.gcc 177.mesa 186.crafty 191.fma3d 252.eon 255.vortex
row description abbrev. fpppp gcc mesa crafty fma3d eon vortex

1 Static spawn-target pairs 62 3545 34 166 34 152 1348
2 Dynamic spawn-target pairs 18483 16105 10515 32092 16973 20786 22035
3 Avg. spawn-target distance (insts.) 638 645 1161 553 835 690 1028
4 Avg. PLP postfix region size (insts.) (2x/4x) 150 / 146 85 / 92 239 / 181 98 / 104 103 / 64 136 / 130 124 / 122

Direct pre-execution (4x)
5 Avg. # live-ins (register / memory) 0.88 / 1.07 4.5 / 13.7 8.9 / 14 8.0 / 12.9 3.4 / 5.3 3.9 / 7.4 5.1 / 12.1
6 Avg. # infix slice instructions 4.9 9.1 26 35 20 27 26.1
7 Avg. # infix store-to-load pairs 0.158 0.94 1.19 1.52 0.74 2.2 1.67
8 Avg. # postfix branches (static / dynamic) 2.6 / 1.53 25 / 29 22 / 18.8 31 / 13 1.09 / 2.4 17.0 / 8.4 26 / 47
9 Fraction of YAT-ed postfix inst. 8% 68% 54% 74% 24% 55% 76%
10 Avg. # YAT-ed loads / stores 3.1 / 0.61 16.1 / 2.1 19 / 2.2 15.0 / 3.0 7.1 / 0.73 11.2 / 2.4 18.1 / 4.3
11 Avg. # threads with a safe-store safe-bit 14 / 9 19.7 / 113 100 / 88 37 / 96 0 / 0 13.4 / 11.7 78 / 173
12 eviction / alias (per 1000) + 2-bit tag 0.18 / 0.31 2.9 / 2.1 0.54 / 0.33 18.3 / 12.2 0 / 0 0 / 0.09 59 / 10

FSMR (4x)
13 Avg. # total t-slice instructions 7.4 94 25 140 38 79 14
14 Avg. # sliced postfix branches (static) 0.72 13.3 12.1 30 0.35 9.9 1.20
15 Avg. # precomputed postfix branches (dyn.) 0.50 6.8 1.91 6.4 0.39 2.1 0.53

Table 2. Helper Thread Statistics

current helper threads (increasing D-cache misses incurred
by the main thread). If a helper thread load, known to read
a live-in value, hits a safe-store modified line it invalidates
the line and triggers a D-cache fill of non-speculative state,
or reads the non-speculative value if it is already in the
D-cache. When the main thread catches up with a helper
thread (has matching next instruction fetch address), that
helper thread stops fetching instructions. Once the helper
thread’s instructions drain from the pipeline the thread con-
text is available to run other helper threads.

The PLP model serves to gauge the upper bound for the
direct pre-execution approach, while the VS model serves to
evaluate the impact of live-in precomputation overhead, the
performance penalty of safe-stores due to increased misses
in the D-cache; the ability of YAT-bit filtering to reduce re-
source contention, and prevent ineffectual instructions from
corrupting postfix precomputation; and the relatively less
D-cache data prefetching side effects compared to PLP as
fewer loads are executed by helper threads.

5.2.2. FSMR. For FSMR, counted prefetch requests
are queued into a FIFO buffer, and eventually issued to
the memory system (if no buffers are available, new re-
quests are discarded). Similar to direct pre-execution,
counted prefetches issued via FSMR are allocated right
into the I-cache rather than a prefetch buffer. Safe-stores
are modeled as with VS, but without additional tag bits.

5.3. Simulation methodology and workloads

We selected six benchmarks from SPEC2000 and one
from SPEC95 that incur significant instruction cache misses
on the baseline processor model. For spawn-target pair se-
lection we profiled branch frequencies and I-cache miss be-
havior by running the programs to completion. To evalu-
ate performance we collect data for 5 million instructions
starting after warming up the cache hierarchy while fast-
forwarding past the first billion instructions assuming no
prescient instruction prefetch. We found that longer simula-

0.8

1

1.2

1.4

1.6

1.8

fpppp gcc mesa crafty fma3d eon vortex AVG

S
pe

ed
up

Perfect-I$
PLP
VS
FSM-recall
FDIP

Figure 9. Performance on 2x configuration

tions did not exhibit significant IPC variation for the work-
loads we employ. For FSMR, postfix path profiling was also
performed over this simulation window.

Our spawn-target generation algorithm selected between
34 and 3545 spawn-target pairs per benchmark as shown in
Row 1 of Table 2, which also quantifies several character-
istics of the slices executed for the VS and FSMR configu-
rations. The small number of static spawn-target pairs im-
plies a small instruction storage requirement for prescient
instruction prefetch helper threads. Hence, we model single-
cycle access to infix slice and t-slice instructions, and as-
sume they can be stored in a small on-chip buffer.

Comparing the average spawn-target distances (i.e., the
average number of instructions executed by the main thread
between spawn, and target) in Row 3 of Table 2 with the
data in Figure 2 for FDIP highlights the fact that prescient
instruction prefetch has the potential to provide significantly
larger slack. For the benchmarks we study, most I-cache
misses are satisfied from the low latency L2 cache so they
do not show substantial benefit from this larger slack (i.e.,
applications with larger instruction footprints than those we
study may obtain larger benefits from prescient instruction
prefetch).

The number of infix slice instructions averaged between
4.9 and 35 (Row 6), which is comparable in size to those
required for speculative precomputation of load addresses
for data prefetching [8, 18], and implies prescient instruc-
tion prefetch can start executing through the postfix region
long before the main thread will reach the target. On aver-
age the number of store-to-load dependencies within an in-
fix slice was less than three (Row 7). Furthermore, very few
safe-store evictions, or safe-store alias errors occur for the
4-way set associative D-cache we modeled. For FSMR there
were almost no safe-store evictions, and less than 1.54% of
helper threads encountered a safe-store alias error. For VS
less than 5.9% of all helper threads encounter a safe-store
eviction, and fewer than 1.22% of helper thread instances
encounter a safe-store alias error when using a 2-bit tag
in addition to the safe-bit mechanism (Row 12). (Row 11

0.8

1

1.2

1.4

1.6

1.8

fpppp gcc mesa crafty fma3d eon vortex AVG

S
pe

ed
up

Perfect-I$
PLP
VS
FSM-recall
FDIP

Figure 10. Performance on 4x configuration

shows the increase in evictions and aliasing that occur for
VS using safe-bits without additional tag bits.)

The average postfix region sizes were fairly large, rang-
ing from 85 to 239 instructions (Row 4). The number of
branches in a postfix region can be quantified both in terms
of the number of static branches it contains, and by the
number of dynamic branch instances executed each time
a helper thread executes through it. Averages for both are
given in Row 8, and indicate most benchmarks are control
flow intensive in addition to having poor I-cache locality.

For FSMR the total number of slice instructions per
helper thread instance tends to be larger than for VS, how-
ever, FSMR t-slices may also include operations from the
postfix region. Furthermore, slice operations from one
branch precomputation may intersect the set of slice oper-
ations from a subsequent branch. For FSMR the average
number of branch outcomes precomputed per helper thread
instance is between 0.5 and 6.8 (Row 15), which is signif-
icantly lower than the number of branches encountered in
the postfix region per helper thread instance.

5.4. Performance evaluation

Figures 9 and 10 display the performance for the 2x and
4x memory hierarchy configurations described more fully
in Table 1. Each figure shows five bars per benchmark. The
first bar from the left, “Perfect I$”, represents the speedup
obtained if all instruction accesses hit in the I-cache. The
next few bars, labeled “PLP”, “VS”, and “FSMR” repre-
sent the speedup of the various models of prescient in-
struction prefetch described earlier. The bar labeled “FDIP”
shows the performance of our implementation of Reinman
et al.’s fetch directed instruction prefetch mechanism using
the configuration described in Table 1.

On the 2x memory configuration, PLP obtains a har-
monic mean speedup of 9.7%, VS obtains a 5.3% speedup,
FSMR obtains a 10.0% speedup, and FDIP obtains a 5.1%
speedup. Similarly, on the 4x memory configuration PLP
obtains a harmonic mean speedup of 18.7%, VS obtains a

0

1000000

2000000

3000000

4000000

5000000

6000000

B I P V R F B I P V R F B I P V R F B I P V R F B I P V R F B I P V R F B I P V R F B I P V R F

fpppp gcc mesa crafty fma3d eon vortex average

C
yc

le
s

dcache

icache-mem

icache-L3

icache-L2

i/d overlap

bp/fetch

iq-full

i/e overlap

execute

Figure 11. Classification of execution cycles (4x memory configuration). B=baseline, I=Perfect-I$,
P=PLP, V=VS, R=FSMR, and F=FDIP.

0

0.2

0.4

0.6

0.8

1

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

P
LP V

S

F
S

M
R

F
D

IP

fpppp gcc mesa crafty fma3d eon vortex AVG

fr
ac

tio
n

of
 b

as
el

in
e

m
is

se
s

pending
evicted
too-slow
no-context
no-slice
no-spawn
no-target

Figure 12. Classification of remaining I-cache misses (4x memory configuration)

11.1% speedup, FSMR obtains a 22% speedup, and FDIP
obtains a 16.2% speedup. The data shows that prescient in-
struction prefetch can obtain significant speedups over our
baseline model and in particular, FSMR is competitive with,
and often outperforms fetch directed instruction prefetch.

To provide insight into this result Figure 11 provides a
breakdown of how execution cycles are spent, and Figure 12
analyzes the cause of remaining I-cache misses.

Figure 11 shows the total execution time broken down
into nine categories: d-cache represents cycles lost to D-
cache misses; icache-L2, icache-L3 and icache-mem repre-
sent cycles spent waiting for instructions to return from the
associated location in the cache hierarchy; i/d overlapped
and i/e overlap represents I-cache stall cycles overlapped
with D-cache and execution cycles; bp/fetch represents cy-
cles lost due to branch mispredictions, misfetched branch
targets, taken branches, and crossing cache line boundaries;
iq-full represents cycles lost due to the need to refill the
front-end of the pipeline after the expansion queue over-
flows; finally, execute represents the number of cycles re-
quired given available function units and the schedule pro-
duced by the compiler.

On the baseline configuration each benchmark spends an

average of about 22% of total execution time waiting for in-
struction fetch requests to return from L2, which drops to
14% for PLP, 13% for VS, 7% for FSMR, and 8% for FDIP.
Hence, all of the mechanisms yield performance gains by
reducing stall cycles due to I-cache misses. However, the
prescient instruction prefetch techniques also reduce execu-
tion time by prefetching some data. For example FSMR re-
duced D-cache stall cycles on gcc, mesa, crafty and vortex.
Most notably, 177.mesa has a 42% reduction in D-cache
stall cycles for FSMR, translating into a 1.6% speedup, and
176.gcc has a 33% reduction in D-cache stall cycles for VS,
translating into a 6.3% speedup. Even larger gains are seen
for PLP because all loads in the postfix region are executed
and helper thread stores do not write to the D-cache. On
the other hand, some benchmarks see an increase in data
cache stall cycles for the VS and FSMR configurations. This
increase is due to safe-stores increasing the number of D-
cache misses seen by the main thread as described in Sec-
tion 3.2.2. For FDIP, the D-cache stall cycle component in-
creases by an average of 10.9% and 11.8% on the 2x and
4x memory configurations due to increased contention with
I-prefetches for bandwidth in the cache hierarchy.

The cause of the remaining I-cache misses are analyzed

in Figure 12. For FDIP, the bottom portion of each bar rep-
resents complete I-cache misses, and the top portion repre-
sents partially prefetched misses. For prescient instruction
prefetch, I-cache misses are classified in more detail by ex-
amining the history of events leading up to them. If no tar-
get was encountered recently enough that the correspond-
ing postfix region would have included the instruction that
missed, the classification is no target. If a target was found,
but no preceding spawn could have triggered a helper thread
to start at this target, the classification is no spawn. For a
given implementation technique (e.g., FSMR), “no-spawn”
and “no-target” I-cache misses can only be reduced by se-
lecting spawn-target pairs that yield higher coverage. On av-
erage about 43% and 25% of remaining I-cache misses fall
in these categories for VS, and FSMR respectively.

The FSMR mechanism has significantly fewer “no tar-
get” and “no spawn” misses than VS because the spawn-
target selection for FSMR was performed with the expec-
tation that FSMR helper threads can make faster progress
through the postfix region than VS because fewer branches
need to be precomputed. The shorter spawn-target distance
provides more flexibility for spawn-target selection and
hence higher coverage. Thus, faster helper threads may lead
to better performance because they enable more flexible
spawn-target selection.

If both a spawn and target are found, but an idle thread
context did not exist at the time the spawn-point was com-
mitted by the main thread, the classification is no con-
text (4% and 8% of I-cache misses on average for VS and
FSMR, respectively). If a helper thread was successfully
spawned there are three remaining possibilities: First, that
the helper thread ran too slow so the main thread caught it
before it could prefetch the instruction (5% and 3%); sec-
ond, that the helper thread ran so far ahead that the instruc-
tion was brought into the cache but then evicted (7% and
17%). The number of “evicted” misses increases for FSMR
relative to VS on 177.mesa. So while faster helper threads
may help spawn-target selection, it may be helpful to elimi-
nate such I-cache misses by regulating the subsequent issu-
ing of counted prefetches. Finally, the access may already
be pending (37% and 43%)5.

FSMR improves performance more than FDIP for all
benchmarks on the 2x configuration but only for gcc, mesa,
crafty, and vortex on the 4x memory configuration. Com-
paring this data with that in Figure 2 we see that the
benchmarks on which FDIP does best were the same three
which obtained the largest prefetch distances. FSMR im-
proved performance more on those benchmarks that showed
smaller prefetch distances with FDIP in Figure 2.

5 Slicing was limited to dynamic spawn-target pairs under 4000 instruc-
tions apart leaving a small number of I-cache misses due to no slice.

6. Related work

Song and Dubois proposed assisted execution as
a generic way to use multithreading resources to im-
prove single-threaded application performance [9].
Chappell et al. proposed simultaneous subordinate
multi-threading (SSMT), a general framework for lever-
aging otherwise spare execution resources to benefit a
single-threaded application [5], and later proposed hard-
ware mechanisms for dynamically constructing and spawn-
ing subordinate microthreads to predict difficult-path
branches [6]. Zilles and Sohi analyzed the dynamic back-
ward slices of performance degrading instructions [30].
They subsequently implemented hand crafted specu-
lative slices to precompute branch outcomes and data
prefetch addresses [28]. Roth and Sohi [22] proposed us-
ing data-driven multi-threading (DDMT) to dynami-
cally prioritize sequences of operations leading to branches
that mispredict or loads that miss. Moshovos et al. pro-
posed slice processors, a hardware mechanism for dy-
namically constructing and executing slice computations
for generating data prefetches [18]. Balasubramonian pro-
posed a mechanism for allowing a future thread to ad-
vance ahead of the main thread when a long latency
D-cache miss stalls the processor [4]. Annavaram et al. pro-
posed dependence graph precomputation [3]. Luk pro-
posed software controlled pre-execution [17] as a mech-
anism to prefetch data by executing a future portion of
the program. Collins et al. proposed speculative precom-
putation [8], and later dynamic speculative precomputa-
tion [7] as techniques to leverage spare SMT resources for
generating long range data prefetches and showed the im-
portance of chaining helper threads to achieve effective
data prefetching. Liao et al. extended this work by imple-
menting a post-pass compilation tool to augment a pro-
gram with automatically generated precomputation threads
for data prefetching [16]. Finally, Kim and Yeung de-
veloped a source-to-source translator for generating data
prefetch threads [15], and Mutlu et al. proposed runa-
head execution to prefetch when a data-cache miss would
otherwise stall the processor [19].

7. Conclusion

This paper demonstrates the effectiveness of prescient
instruction prefetch. In particular, we examine two cate-
gories of helper thread implementation techniques: direct
pre-execution and finite state machine recall. The former
achieves its efficiency via a combination of judicious con-
struction of helper threads and two simple and novel mi-
croarchitectural support mechanisms: safe-store and YAT-
bits. Safe-stores allow store-to-load dependencies to be ob-
served in the helper thread without affecting the execution

of the main thread, while YAT-bits enable filtering out in-
effectual computation when directly pre-executing a region
of the main thread’s code. Helper threads employing FSMR
use a finite state machine like sequence of code and counted
prefetch operations to prefetch along control flow path seg-
ments with biased branches and apply precomputation only
to resolve otherwise unpredictable branch outcomes thus
improving prefetch efficacy relative to direct pre-execution.

8. Acknowledgements

We would like to thank Andreas Moshovos, David Lie,
Guy Lemieux, Steve Liao, Ravi Rajwar, Ronny Ronen,
Greg Steffan, Michael Voss, Perry Wang and the anony-
mous referees for their valuable comments on this work. Tor
Aamodt and Paul Chow were partly supported by funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada. This work was performed while Tor Aamodt
was an intern at Intel Corporation in Santa Clara.

References

[1] T. M. Aamodt, P. Marcuello, P. Chow, A. González, P. Ham-
marlund, H. Wang, and J. P. Shen. A Framework for Mod-
eling and Optimization of Prescient Instruction Prefetch. In
SIGMETRICS, pages 13–24, 2003.

[2] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In
PLDI, pages 246–256, 1990.

[3] M. Annavaram, J. M. Patel, and E. S. Davidson. Data
Prefetching by Dependence Graph Precomputation. In ISCA-
28, pages 52–61, 2001.

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Dy-
namically Allocating Processor Resources Between Nearby
and Distant ILP. In ISCA-28, pages 26–37, 2001.

[5] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.
Patt. Simultaneous Subordinate Microthreading (SSMT). In
ISCA-26, pages 186–195, 1999.

[6] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt. Difficult-
Path Branch Prediction Using Subordinate Microthreads. In
ISCA-29, pages 307–317, 2002.

[7] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dy-
namic Speculative Precomputation. In MICRO-34, pages
306–317, 2001.

[8] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F.
Lee, D. Lavery, and J. P. Shen. Speculative Precomputation:
Long-Range Prefetching of Delinquent Loads. In ISCA-28,
pages 14–25, 2001.

[9] M. Dubois and Y. Song. Assisted execution. Technical Re-
port CENG 98-25, Department of EE-Systems, University of
Southern California, October 1998.

[10] J. Emer. Simultaneous Multithreading: Multiplying Alpha’s
Performance. Microprocessor Forum, October 1999.

[11] G. Hinton and J. Shen. Intel’s Multi-Threading Technology.
Microprocessor Forum, October 2001.

[12] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Za-
hir. Introducing the IA-64 Architecture. IEEE Micro,
20(5):12–23, 2000.

[13] Intel Corporation. Special Issue on Intel Hyper-Threading
Technology in Pentium 4 Processors. Intel Technology Jour-
nal. Q1 2002.

[14] Q. Jacobson and J. E. Smith. Trace preconstruction. In ISCA-
27, pages 37–46, 2000.

[15] D. Kim and D. Yeung. Design and Evaluation of Compiler
Algorithms for Pre-Execution. In ASPLOS-X, pages 159–
170, 2002.

[16] S. S. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery,
and J. P. Shen. Post-Pass Binary Adaptation for Software-
Based Speculative Precomputation. In PLDI, pages 117–
128, 2002.

[17] C.-K. Luk. Tolerating Memory Latency Through Software-
Controlled Pre-execution in Simultaneous Multithreading
Processors. In ISCA-28, pages 40–51, 2001.

[18] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi. Slice-
Processors: An Implementation of Operation-Based Predic-
tion. In 15th International Conference on Supercomputing,
pages 321–334, 2001.

[19] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead Ex-
ecution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors. In HPCA-9, 2003.

[20] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn,
J. Larriba-Pey, P. G. Lowney, and M. Valero. Code Lay-
out Optimizations for Transaction Processing Workloads. In
ISCA-28, pages 155–164, 2001.

[21] G. Reinman, B. Calder, and T. Austin. Fetch Directed In-
struction Prefetching. In MICRO-32, pages 16–27, 1999.

[22] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-
threading. In HPCA-7, pages 37–48, 2001.

[23] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Improv-
ing Prediction for Procedure Returns with Return-Address-
Stack Repair Mechanisms. In MICRO-31, pages 259–71,
1998.

[24] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In ISCA-22, pages 414–425, 1995.

[25] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream
Processors: Improving Both Performance and Fault Toler-
ance. In ASPLOS-IX, pages 257–268, 2000.

[26] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multithread-
ing Processor. In ISCA-23, pages 191–202, 1996.

[27] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In ISCA-
22, pages 392–403, 1995.

[28] C. Zilles and G. Sohi. Execution-based prediction using
speculative slices. In ISCA-28, pages 2–13, 2001.

[29] C. Zilles and G. Sohi. Master/Slave Speculative Paralleliza-
tion. In MICRO-35, pages 85–96, 2002.

[30] C. B. Zilles and G. S. Sohi. Understanding the Backward
Slices of Performance Degrading Instructions. In ISCA-27,
pages 172–181, 2000.

