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Abstract

If current technology scaling trends hold, leakage power
dissipation will soon become the dominant source of power
consumption. Caches, due to the fact that they account for
the largest fraction of on-chip transistors in most modern
processors, are a primary candidate for attacking the leak-
age problem. While there has been a flurry of research in
this area over the last several years, a major question re-
mains unanswered. What is the total potential of existing
architectural and circuit techniques to address this impor-
tant design concern? In this paper, we explore the limits in
which existing circuit and architecture technologies may ad-
dress this growing problem. We find that by using perfect
knowledge of the address trace to carefully apply sleep and
drowsy modes, the total leakage power from the instruction
cache may be reduced to mere 3.6% of the unoptimized case,
and the total from the data cache reduced to only 0.9%. We
also present a complete parameterized model to determine
the optimal leakage savings while the implementation tech-
nology changes over time. We futher suggest how such lim-
its might be approached using a form of prefetching for low
power.

1. Introduction

Power dissipation has become a major concern to
those designing processors for high performance desk-
tops, servers, and battery-operated portable devices.
Higher energy dissipation requires more expensive pack-
aging and cooling technology, which in turn increases
cost and decreases system reliability. There are fundamen-
tally two ways in which power can be dissipated: either dy-
namically (due to switching activity), or statically (which
is mainly due to leakage in the gates). If current tech-
nology scaling trends hold [5], leakage will soon be-
come the dominant source of power consumption, and as
such new techniques are needed to battle this growing prob-
lem.
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Figure 1. Projected leakage power consump-
tion as a fraction of the total power consump-
tion according to the International Technol-
ogy Roadmap for Semiconductors [5].

The problem of leakage stems from the need for a trade-
off between dynamic power and performance. One of the
most effective ways of reducing the dynamic energy dis-
sipation is to scale down the transistor supply voltage. To
maintain high switching speed under reduced voltages, the
threshold voltage must be also scaled down accordingly. As
the threshold voltage drops, it is easier for current to leak
through the transistor resulting in significant leakage energy
dissipation. New technologies targeted at reducing dynamic
power and increasing performance, such as low threshold
voltage and gate oxide scaling, further increase the relative
importance of leakage power [5] (Figure 1).

In modern processors, a large and growing fraction of
the total on-chip area, and an even larger fraction of the to-
tal number of transistors, is consumed by caches and local
memory. Because they account for such a significant por-
tion of the total chip real estate, caches provide a healthy-
sized target for designers to try circuit and architectural opti-
mizations with the goal of reducing leakage power. The cen-
tral idea behind most of these techniques is to exploit some
form of temporal locality. By putting infrequently or unused
cache lines into low leakage mode, much of the power will
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be reduced. By keeping frequently accessed cache lines ac-
tive, total performance will not be reduced significantly.

Though there are several circuit techniques and manage-
ment schemes concerning how and when to turn on or off
individual cache lines, little work has been done to explore
the limit of how well such techniques can work. What is the
best we could hope to do with a given low power technol-
ogy? The primary goal of this paper is to explore these limits
under different architectural and design assumptions in the
hope of guiding research effort on leakage power in much
the way that Belady’s MIN algorithm [1] helps (and contin-
ues to help) in the study of replacement policies.

There has been lots of work on leakage power reduction
already, and any proposed methods for calculating the limits
of their effectiveness must be both general enough to cap-
ture a variety of techniques, yet specific enough to provide
useful bounds. Our methods capture both state-preserving
and state-destroying techniques, and additionally we show
how to optimally combine two such techniques into a hy-
brid scheme. We show that, given perfect knowledge of the
future address trace, there exists a break-even point between
Drowsy and Gated-Vdd. If the same cache line is accessed
twice in an interval of time less than or equal to this break-
even point then Drowsy mode should be used. If the same
cache line is not used again within an amount of time greater
than the break-even point then more power can be saved by
turning off the cache line using Gated-Vdd. If these timings
are known, then an optimal policy can be achieved.

Clearly perfect knowledge of the future trace is not al-
ways known, but it serves several purposes. First it provides
an important bound. No management method will be able to
beat our power reduction scheme under the given circuit as-
sumptions. Second, it demonstrates that there is still a great
deal of potential for policy decisions (when to turn a cache
line on or off) to significantly reduce leakage power. Fi-
nally, while perfect knowledge of future references cannot
be known, it can often times be approximated by architec-
ture techniques such as address prediction or prefetching.
We explore this relationship between prefetching and low
power and show the counter intuitive result that prefetch-
ing has the potential to lead to lower power. In particular,
our paper shows:

• We relate the potential savings that can be obtained
from Drowsy and Gated-Vdd techniques, under various as-
sumptions for both the instruction and data caches.
• We show that with oracle knowledge of future ac-

cesses, a simple optimal power management scheme can
be derived from a small set of circuit parameters.
• In addition to showing the optimal leakage savings

on a set of implementation parameters, we present a pa-
rameterized model to determine the optimal leakage sav-
ings while the implementation technologies change over
time.

• We show that while both schemes are useful on their
own, when combined, we can push the upper bounds of
the leakage power savings to 96.4% for the instruction
cache and 99.1% for the data cache with the 70nm im-
plementation technology.
• Combining both the next-line and the Stride-based

prefetching techniques, it is possible to approach the up-
per bound of the data cache (savings of 92.4%), which is
about 7% better than turning off cache lines after 10K cy-
cles.

The rest of the paper is organized as follows. We re-
view related work and motivate our limit study in Section 2.
In Section 3, we propose our method for combining the
Gated-Vdd method and the drowsy method. We also explore
the limit of leakage power saving that we can potentially
achieve using our hybrid scheme. A model which parame-
terizes all the individual assumptions is also presented. Sec-
tion 4 describes our simulation setup and the benchmarks
in our study, and shows the results of our empirical study
in exploring the upper bounds. In Section 5, we present the
prefetching techniques employed in our method and exper-
imental results. We offer concluding remarks in Section 6.

2. Circuits and Architectures of Reduced
Cache Leakage Power

In order to derive a useful limit for leakage power reduc-
tion in caches, we must first begin with a discussion of those
related technologies so that our model will be grounded in
reality. In this section we review several circuit techniques,
and develop the general ideas of our approach.

Leakage power comes from transistors that are simply
left on, and the easiest way to think about reducing the
amount of the consumed leakage power is to “turn off” those
transistors that are not needed. While this is the easiest to
think about, it is by no means the easiest to implement. One
such approach, Gated-Vdd [12], attempts to solve this prob-
lem by reducing leakage through the use of a high thresh-
old sleep transistor to break the connection from the sup-
ply voltage Vdd. This leakage reduction technique is often
called sleep mode, and this is the naming convention that
we use here. While efficient in saving leakage, sleep mode
does not preserve the state of the data. When a cache line
is needed again after it has been put to sleep, it must be re-
fetched from lower levels of the memory hierarchy. This re-
fetch is essentially an extra cache miss, and this process can
take many cycles depending on the memory hierarchy, ar-
chitectural assumptions, etc.

A different way of saving leakage power in the caches
is to make use of multiple supply voltages. When the cache
line is left fully on, it will dissipate too much leakage power.
If Vdd is fully gated, it will use very little power, but the data
is lost. A compromise is to use a lower supply voltage when
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data is not needed for a while. This will reduce the leakage
power without losing the data. The trade-off is that, while
data will be preserved at this low supply voltage, it can-
not be accessed while in this state. Thus there is a small
wakeup time associated with changing from the lower volt-
age up to Vdd (hence the name “drowsy”). Drowsy mode
does not fully turn off the memory, and thus does not re-
duce the leakage power as much as Gated-Vdd. For a piece
of data that is not going to be accessed for a very long time,
sleep mode will be better because it reduces more leakage
power. For a piece of data that is accessed in a moderate
amount of time, drowsy mode will be better because there
is not a large re-fetch penalty. This sets up one of the funda-
mental questions answered in our paper — how long is long
enough for each mode?

While our paper attempts to address a previously unan-
swered question, there is a great deal of prior work aimed
at reducing leakage power in caches. While we cannot de-
scribe all of such techniques in full here, we briefly de-
scribe some representative studies here. DRI cache [12] uses
the Gated-Vdd technique to dynamically adjust the size of
the active portion of the cache by turning off a bank of
cache lines based on the miss rates. Kaxiras et al. [6] pro-
posed the cache line decay scheme to turn off the cache
lines in the dead periods of their cache generations using
the Gated-Vdd technique. Instead of placing both the tag
and the data into the sleep mode, AMC [19] keeps the tag
alive and tracks the miss rate with respect to the ideal miss
rate. This helps to dynamically adjust the turn-off interval
and control the overall performance. Velusamy et al. [16]
used formal feedback-control theory to adaptively adjust
the cache decay interval and cache lines are turned off ac-
cordingly. Another approach to reducing leakage power is
called drowsy cache [8], which decreases the supply volt-
age of idle cache lines. Specifically, all cache lines are peri-
odically placed into drowsy mode. [9] studies techniques for
data retention with lower supply voltage. Parikh et al. [10]
compared Gated-Vdd and drowsy cache at different L2 la-
tencies with HotLeakage and showed Gated-Vdd is superior
for a set of faster L2 latencies. Heo [4] reduced bitline leak-
age by leaving bitlines open whose cache banks are not ac-
cessed. In contrast, Zhang et al. [17] studied a software ap-
proach. They used compiler to insert power mode instruc-
tions that control the voltage for the cache lines to control
leakage energy.

All of the above approaches strive to develop a scheme
for predicting when a section of the cache should be put
into a low power mode. They all use some heuristics based
on either static analysis or run-time behavior to determine
what mode each line should be in. One major open ques-
tion is: what is the best that these approaches could hope
to do? Clearly some of the cache lines will have to be left
in a high Vdd mode so they can be accessed, but how many

and for how long? Are these approaches the ultimate in pol-
icy leakage power reduction, or is there still room for im-
provement?

3. Calculating the Limits of Leakage Power
Reduction Techniques

Now that we have reviewed the circuit and architecture
techniques employed to reduce leakage power, we describe
how to calculate the savings that could be achieved by an
optimal approach.

3.1. Cache Intervals

Our analysis of the leakage power saving limit relies on
the idea of breaking up the lifetime of each cache line into
a series of intervals. An interval is the time that a cache line
rests between two accesses. If an interval is very long then
it would be beneficial to put that cache line in sleep mode
for the duration of that interval. If an interval is very short,
it should be simply left in a high-Vdd mode. If an interval is
somewhere in the middle, perhaps drowsy mode would be
the best.

To illustrate the above situations, let’s take a two-level
loop example (Figure 2) extracted from a human resource
management application. It counts the total number of peo-
ple employed during a year. In the example, the interval
(Iadd) of the two consecutive accesses to the same instruc-
tion add depends on the size of the inner loop. When the
range of the inner loop variable j is large, the interval Iadd

is long, which indicates the cache line of add instruction
should be put into sleep mode to save leakage power. And
when the range is very small, the interval Iadd is small,
which means this cache line should be left in the high-Vdd

mode for fast accesses. While the range is in the middle,
the drowsy mode should be applied to save leakage power
without much performance cost. The idea behind our opti-
mal scheme is to determine what the best policy would be
for each interval in the program, and then to apply the ap-
propriate leakage technique to that interval.

In an optimal approach, each interval can be thought of
as atomic in the eyes of the optimal policy. With oracle
knowledge of the future address traces known (as would
be for an optimal approach), there should be no reason
to perform any new power saving techniques in the mid-
dle of an interval. Instead, the same technique should have
been applied for the entire duration of the interval as less
power would be consumed with the same penalty (for ei-
ther wakeup or re-fetch).

One thing to note is the notion of live intervals and
dead intervals. A live interval starts when a new memory
is brought into the cache frame, and ends after the last ac-
cess. Between the last access to a line of memory and the
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......
int i, j, sum, total;
int low(int);
int high(int);
......
for (total = 0, i = 0; i < 12; i ++)
{
    for (sum = 0, j = low(i); j < high(i); j ++)
        sum += a[j];
    sum *= i;
    add: total += sum;
}
......

Figure 2. The access interval example. The in-
terval length of the consecutive accesses to
the add instructions depends on the range of
the inner loop |high(i) − low(i)|.

time it is evicted from the cache, it is regarded as dead. Be-
sides turning off cache lines in dead periods as the cache de-
cay scheme does [6], our method also explores the live pe-
riod of a cache generation, which demonstrates high poten-
tials in leakage reduction. In fact we found that dead peri-
ods did not contribute a large amount of leakage savings in
the optimal case, because any long interval would be turned
off whether live or dead. Thus the only additional savings
that are achieved from considering dead intervals are from
short dead intervals, of which there are very few. For the
rest of this paper we ignore the effect of live and dead inter-
vals, and instead concentrate on the durations of the inter-
vals.

3.2. The Optimal Approach

Our optimal approach works as follows. Each cache ac-
cess interval is first classified into one of the following
three types: sleep-mode optimal, drowsy-mode optimal and
active-optimal. If the size of an interval is very small (i.e.
there are multiple consecutive accesses within a short pe-
riod of time), then it is best to leave the cache line in a fully
active (non-power saving) mode. If the size of an interval is
long, then the best policy is to completely turn off that cache
line (sleep) and then re-fetch it when it is needed again. The
final case is if the interval size is neither very long nor very
short. In this case it is best to put the cache line into a drowsy
state, which consumes a small amount of power, has a small
wakeup cost and has the advantage of retaining the data val-
ues.

The key to dividing intervals into these categories is
knowing the precise length of an interval. The interval
length where the power saving mode changes is an inflection
point. There are two inflection points: one between sleep

and drowsy modes and the other between drowsy and ac-
tive modes.

One thing to note is that our optimal approach will have
no-effect on the performance of the machine. Because we
assume perfect access pattern knowledge, an optimal ap-
proach can re-fetch any needed data just before it is needed
and avoid any performance impact. By exploiting this fact
we can separate out the power problems from the perfor-
mance problems. Even though a just-in-time re-fetch or per-
fect prefetching will not affect the performance of the ma-
chine, it does have a power cost which we do consider in
this paper. Figure 3 is used to illustrate this point. In the
sleep mode, due to turning off the cache line to save leak-
age power, the data is not preserved. If the data is accessed
again, it needs to be refetched, and this refetching process
may usually take 7 cycles [10]. Without just in time refetch
(Figure 3(b)), the other parts of the whole system will have
to stall for these 7 cycles, waiting for the data to be ready.
The stall will lead to significant energy consumption as the
big circle indicates. Similar things happen to the drowsy
mode. But the drowsy mode preserves the data and only
takes 1-2 cycles [8] to wake up the cache line. So, without
just-in-time refetch (Figure 3(d)), the amount of energy the
drowsy mode consumes is less than that of the sleep mode
during the system stalling, which is indicated by a small cy-
cle. By contrast, with just-in-time refetch (Figure 3(c) and
(e)), the data will be ready when it is needed and the whole
system does not need to be stalled and to consume energy
for waiting for data.

For the convenience of illustrating how our approach
works in general, we will use (Figure 4(a) and (b)) to show
how the inflection points are calculated. Figure 4(a) shows
that the sleep mode and the drowsy mode require time to re-
duce the voltage from high Vdd to off (s1) and from high to
Vddlow

(d1), respectively. Also, there is a similar time over-
head in coming out of the mode (s3 or d3). For the sleep
mode, since the latency D of fetching data from L2 cache
is longer than s3, there is another overhead (s4 = D − s3)
before the next access. We divided the lifetime of an inter-
val into several durations to illustrate these overheads. Fig-
ure 4(b) shows the length of each duration s1, s2, s3, s4,
d1, d2, d3 in an access interval of both a sleep mode and
a drowsy mode. The total length of the cache access inter-
val using the sleep technique is s = s1 + s2 + s3 + s4, and
that of using the drowsy mode is d = d1 + d2 + d3.

For the sleep mode, the data has been lost due to an in-
duced miss [6] and must be re-fetched from the memory
hierarchy. As such, there is a significant amount of power
consumed by the dynamic activity required to fetch the data
from the L2 cache, marked with “*” in Figure 4(b). This dy-
namic power cost can be obtained from CACTI [15].

The sleep-drowsy inflection point is derived as the ac-
cess interval length when the sleep and the drowsy modes
consume the same amount of energy. If the interval is of
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Figure 3. Using perfect prefetching to avoid performance degradation. Assuming perfect access pat-
tern knowledge, an optimal approach uses perfect prefetching to refetch data just before it is needed
and avoids stalling the whole system to reduce energy consumption.
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Figure 4. Time-Voltage Diagrams of Sleep-
Mode and Drowsy-Mode. In Sleep-Mode the
cache line is essentially turned completely
off and the power consumed drops to nearly
zero. While beneficial over a long period of
time, there is a more significant overhead
due to re-fetch. Drowsy-Mode has a smaller
overhead, but the cache line still consumes
a measurable amount of power because the
voltage has not been completely turned off.

a length less than the inflection point then drowsy mode
would be optimal. If it is greater than the inflection point
then sleep mode would be optimal. We denote the leakage
power consumption of each cache line as PL, which can be
obtained from the HotLeakage tool [18], and the cost of dy-
namic power due to an induced miss for the sleep mode as
CD. The energy of a sleep mode interval can be calculated
as Equation 1:

ES =

4∑

i=1

PL(si) ∗ si + CD. (1)

Similarly the energy consumption using the drowsy
model can be calculated as Equation 2:

ED =

3∑

i=1

PL(di) ∗ di. (2)

When the two modes consume the same amount of en-
ergy, we reach Equation 3:

ES = ED. (3)
Applying the data in Figure 4(b) into Equation 3, we can

calculate the sleep-drowsy inflection point.
The other inflection point is between drowsy and active

modes. The drowsy-active inflection point is calculated as
the sum of the durations d1 and d3, within which the voltage
changes either from Vdd to Vddlow

or from Vddlow
to Vdd.

Note that the sleep-drowsy inflection point is the point at
which sleep mode has the potential to save power of drowsy
mode. Sleep mode does not provide benefit at small interval
lengths because of the larger penalty associated with com-
ing out of sleep mode (the power of re-fetch) as opposed to
drowsy mode. The only way to save power on small interval
lengths is to know exactly when the cache line will be ac-
cessed again so that it can be brought out of sleep mode be-
fore the data is needed. This is how an optimal leakage man-
agement scheme would take advantage of it’s perfect knowl-
edge. While clearly such an assumption is not easily trans-
lated to implementation, there are some ways in which we
can hope to approximate perfect knowledge using a form of
prefetching (see Section 5).

When an interval between two accesses to the same
cache line is longer than the sleep-drowsy inflection point,
using sleep mode has the potential to save more leakage
power. When an interval is less than the sleep-drowsy inflec-
tion point but still greater than the active-drowsy inflection
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point, the drowsy mode saves more leakage. When its in-
terval length is less than the active-drowsy inflection point,
the cache line is always active and cannot have its leak-
age power reduced without causing a delay in delivering the
data.

Input: A set of intervals I
Output: Total leakage power saving
optimal leakage(I)

total saving := 0
i := 0
while (Ii ∈ I) do

if (|Ii| > b) then
total saving := total saving + sleep saving(|Ii|)

else if (|Ii| > a) then
total saving := total saving + drowsy saving(|Ii|)

else
no leakage power saving can be obtained

i := i + 1
end do
return(total saving)

Figure 5. The algorithm to compute the opti-
mal leakage power saving.

Figure 5 details our optimal leakage power saving ap-
proach. By classifying cache intervals into the three types
and applying to them the appropriate leakage saving mode,
the maximal leakage power saving can be obtained as the
accumulation of the leakage saving over all access inter-
vals, which provides us an upper bound for optimal leakage
power savings. It can be proved that based on the perfect
knowledge of the lengths of all intervals, the optimal leak-
age power saving can be achieved by applying the proper
operating mode on each interval (see Appendix).

3.3. The Generalized Model for Optimal Leakage
Power Savings

After illustrating our optimal leakage power saving ap-
proach, we evolve our approach to a complete model that
can capture the optimal leakage savings while the config-
uration and technology changes over time. In this model,
all the individual assumptions namely the durations, energy
costs of transitions between modes, the leakage power con-
sumption of each mode, and the intervals, are parameterized
and used as inputs to the model. The transition energies can
be obtained from CACTI [15], the leakage power consump-
tion can be obtained from HotLeakage [18], and the inter-
vals are from SimpleScalar [2]. The outputs of the model are
the optimal leakage saving percentages of using the optimal
sleep, optimal drowsy, and the optimal combining methods.

Active
P(Active)

Sleep
P(Sleep)

Drowsy
P(Drowsy)

EAD EAS

ESAEDA

Figure 6. The Optimal Leakage Power Saving
Model. The circles indicates states and edges
represent transitions between states.

In the model (Figure 6), the circles indicate the states of
Active, Drowsy, and Sleep, and the edges represent transi-
tions between states (self edges means that the state remains
the same in the next cycle). Each state is associated with its
static power consumption (P ), and the weights (EAD, EAD ,
EAD , EAD) on the edges are the transition energy con-
sumptions. For example, EAD is the energy consumption
when transiting from the state Active to the state Drowsy.

The model for optimal leakage power savings serves two
major functions. First, instead of being an abstract model,
it is coded in C language and is publicly availabe for cache
leakage studies1. Second and the most important is that this
model was designed to explore the optimal leakage savings
under different architectural and design assumptions with
the hope of guiding research effort on leakage power study.

4. Empirical Study

In Section 3, we discussed the limits of leakage power re-
duction techniques and how they are calculated. In this sec-
tion we show limit results gathered from actual benchmarks
with parameters extracted from modern processors and prior
work. Our objective is to evaluate the limits on some leak-
age power saving techniques as applied to both instruction
and data caches. We show an upper bound on the possible
savings using Sleep mode, Drowsy mode, or a potential hy-
brid of the two. We also hope to show how these bounds can
be approached using the idea of prefetching.

4.1. Methodology

To test the amount of power that can be saved by us-
ing an improved leakage reduction technique, we employed
detailed cycle-level simulation. The simulator we use is a
version of SimpleScalar closely resembling Compaq Al-
pha 21264 [7]. The execution core is a 4-wide superscalar
pipeline, and the memory hierarchy includes a 64KB, 2-way
set associative L1 instruction cache with a single-cycle hit

1 http://www.engr.ucsb.edu/∼yanmeng/leakage.html
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latency, a 64KB, 2-way set associative L1 data cache with
a 3-cycle hit latency, and a unified 2MB direct-mapped L2
cache with a 7-cycle hit latency. We use LRU as the replace-
ment policy throughout the memory hierarchy.

In order to capture the most important program behav-
iors while at the same time reducing simulation time to rea-
sonable levels, we used the simulation points that were de-
scribed and verified in SimPoint [14]. The benchmark suite
for this study consists of a set of six SPEC2000 benchmarks:
ammp, applu, mesa, vortex, gcc, and gzip compiled for the
Alpha AXP ISA. We chose these benchmarks because they
are frequently used in the computer architecture literature,
or in the case of ammp and applu, they are singled out in
other leakage power reduction papers.

4.2. Calculating Inflection Points

Inflection points are the keys to choosing the best power
saving mode of a given interval distribution. An intervals
with its length greater than the sleep-drowsy inflection point
is put into the sleep mode, and an interval with its length
less than the active-drowsy inflection point is left in the ac-
tive mode. For an interval with its length between the two
inflection points, it is put into drowsy mode to save power
and has little performance impact.

Technology 70nm 100nm 130nm 180nm
Active-Drowsy point 6 6 6 6
Drowsy-Sleep point 1057 5088 10328 103084

Table 1. Active-Drowsy and Drowsy-Sleep in-
flection points dipicted in cycles for different
technologies.

To calculate inflection points with respect to different
technologies, we used the durations s1=30, s3=d1=d3=3
and s4=4 cycles [10] (s2 and d2 are dependent on an interval
length). When we applied the parameters into Equation 1, 2
and 3, we obtained the inflection points shown in Table 1.
The table shows that the value of the sleep-drowsy point
decreases while the technology scales down from 180nm
to 70nm (These are the only currently available technolo-
gies provided by the Hotleakage [18] tool. If in the future
Hotleakage is extended to incorporate more technologies,
our approach can still be applied to obtain their inflection
points). This is due to the fact that the leakage power con-
sumption per cache line increases while the dynamic en-
ergy consumption caused by an induced miss decreases with
technology scaling down (see Equation 3).

Since 70nm is the most advanced technology that will be
reached in a few years according to ITRS [5], we employed

it and its corresponding sleep-drowsy inflection point (1057
cycles) in the rest of our study.

4.3. Combining Sleep and Drowsy Modes

With the inflection points calculated, the first question
to be answered is how well a hybrid of sleep and drowsy
modes can perform versus sleep mode. If, in the optimal
case for sleep mode, we can perfectly predict the distances
between access to cache lines then we can potentially make
use of sleep mode even if the cache line is accessed ev-
ery 1057 cycles. In this case, there will be little benefit
from using drowsy mode for those cache lines that are ac-
cessed more frequently than every 1057 cycles. However, if
the threshold was different, if the inflection point between
drowsy and sleep modes changed dramatically, there would
be a point at which using both drowsy mode (for occa-
sionally accessed line) and sleep mode (for rarely accessed
lines) would become beneficial. The purpose of Figure 7 is
to demonstrate this point. In our experiments, when a sleep
mode is applied, the dynamic power consumption due to
an induced miss was removed from the total leakage power
savings.

The results in Figure 7 are derived based on the av-
erage leakage power saving of all the given benchmarks.
Through this figure, we examine the potential effectiveness
of a pure sleep mode versus a hybrid sleep/drowsy method
where we change the minimum interval length that can be
put into sleep mode from 1057 to 10000. These results indi-
cate that a hybrid method (Sleep+Drowsy) can work consis-
tently better than the sleep or the drowsy method alone, es-
pecially if one is very conservative about which lines are put
to sleep. However, as the minimum sleep length approaches
the sleep-drowsy inflection point (decreases), the usefulness
of applying the drowsy method in addition to the sleep mode
decreases. Under such conditions, the sleep mode removes
most of the leakage power and thus there is not much more
for drowsy to save. While clearly a non-optimal scheme will
not have the luxury of perfect future knowledge, for those
that we do have knowledge for, sleep mode should be ap-
plied very aggressively.

Moreover, the figure depicts that the gap between the
hybrid method and the sleep mode for the data cache is
much smaller than for the instruction cache. The reason
is that the same cache block in the data cache tends to be
less frequently accessed than in the instruction cache, and
the interval-lengths between consecutive accesses are much
longer. Hence, the sleep mode plays a much more impor-
tant role in the data cache for the leakage power saving than
in the instruction cache.

Finally, this figure also confirms that the small variances
of the sleep-drowsy inflection point will not change our
findings significantly.
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Figure 7. Comparison of the hybrid method vs. the sleep-mode method for the sleep interval-lengths
between 1057 and 10000. The usefulness of applying the drowsy method to save leakage power de-
creases as the sleep length approaches the sleep-drowsy inflection point, and the sleep mode plays
a more important role in the data cache for leakage power saving than in the instruction cache.
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Figure 8. Comparisons of Different Leakage Power Saving Schemes.

4.4. Exploring the Upper Bound

With the assumption of perfect-prefetching, the upper
bound of the leakage power saving was derived in Sec-
tion 3 based on the two inflection points. We now explore
the leakage-power-saving limits of the following methods
assuming perfect knowledge of the future address trace:
• OPT-Drowsy: The optimal drowsy cache that has no per-

formance penalty for waking up data (although there is a
power penalty as discussed in Section 3).

• OPT-Sleep(10K): The optimal cache line sleeping tech-
nique that is capable of sleeping all intervals of a size
greater than 10K with no performance penalty.

• Sleep(10k)2: Similar to the OPT-Sleep(10K) with the ex-
ception that instead of optimally turning off any cache line

2 The sleep(10K) is similar to the cache-decay scheme in [6], in which
the decay interval was set to be 10K cycles, and the extra leakage
power consumed by the counter per cache line was taken into account.

that has an interval larger than 10K, the line must now stay
active for 10K and then may be optimally slept.

• OPT-Hybrid: The method that optimally combines
drowsy and sleep modes based on the inflection points
without any performance penalty.

The above listed techniques are depicted by the four left-
most bars of each benchmark in Figure 8. The y-axis is the
percent of total leakage power in comparison with a cache
in which all lines remain constantly active. As for the two
rightmost bars, we will discuss them in Section 5.2.

For the convenience of discussing the implementation
of each technique, we define an access interval of a cache
line as Ti. OPT-Drowsy puts the line into the drowsy mode
during Ti, if Ti is greater than 6; while OPT-Sleep(10K)
puts the cache line into the sleep mode during Ti if Ti is
greater than 10K. We also studied Sleep(10K) to simulate
the cache-decay scheme, whose decay interval is 10K. In
this case, a cache line is put into the sleep mode for (Ti-
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10K) cycles if Ti is greater than 10K. The OPT-Hybrid is
to put a cache line into the sleep mode during Ti if Ti is
greater than 1057, and to put it into the drowsy mode if Ti

falls into the range of (6, 1057]. When Ti is less than 6, all
the above methods keep the cache line active to insure fast
access time.

Figure 8(a) shows that for the instruction cache, the
limit of leakage power saving that OPT-Hybrid can achieve
is 96.4%. It is 26% higher than Sleep(10K), 16% higher
than OPT-Sleep(10K), and 30% higher than OPT-Drowsy.
For the data cache (Figure 8(b)), the leakage power saving
limit is 99.1%, which is 15% higher than the Sleep(10K),
12% higher than the OPT-Sleep(10K), and 33% higher than
the OPT-Drowsy. The results indicate that while the initial
Drowsy and Sleep techniques devised are quite effective,
there is still far more potential left in these techniques. In-
deed, the leakage power savings for the optimal case are so
large that it is fair to say that leakage power would become
a less significant portion of the total overall power if these
savings could be realized. All these savings could be real-
ized with new policies for cache management. Of course re-
alizing these optimal numbers requires perfect knowledge
of the address trace and timing, which is not typically pos-
sessed by a management policy.

4.5. Empirical Study with the Generalized Model

To show the feasibility of our model while the implemen-
tation technology changes over time, we also study 100nm,
130nm and 180nm processes. Table 2 summarizes the op-
timal leakage saving percentages we can possibly achieve
by using OPT-Drowsy, OPT-Sleep, and OPT-Hybrid meth-
ods. Instead of using OPT-Sleep(10K) on intervals that are
greater than 10K cycles, we study OPT-Sleep to figure out
what is the best leakage power saving we can achieve by ag-
gressively turning off all intervals that are greater than the
sleep-drowsy inflection point. The OPT-Drowsy and OPT-
Hybrid methods are the same as before. The results in the
table are the average results over all the benchmark applica-
tions.

The table illustrates that the leakage savings for both the
instruction and the data caches of using OPT-Hybrid in-
crease with the technology scaling down from 180nm to
70nm. The increment of the possible leakage savings is due
to the decrement of the sleep-drowsy inflection point. More-
over, the table shows that for the 180nm technology imple-
mentation, the drowsy mode plays a more important role in
saving leakage power than the sleep mode does; while for
the others, the sleep mode plays a leader role. This can be
also attributed to the large difference of the sleep-drowsy in-
flection points. Finally, the table also reveals that more leak-
age savings can be possibly achieved with the technology
scaling down, which leaves us more space for further im-

Technology 70nm 100nm 130nm 180nm 
Vdd (V) 0.9 1.0 1.5 2.0 
Vth (V) 0.1902 0.2607 0.3353 0.3979 

OPT-Drowsy (%) 66.4 66.6 66.6 66.7 
OPT-Sleep    (%) 95.2 85 80.6 61.5 

OPT-Hybrid  (%) 96.4 93.7 91.3 67.1 

OPT-Drowsy (%) 66.1 66.6 66.7 66.7 
OPT-Sleep    (%) 98.4 96.9 95.3 63.2 

OPT-Hybrid  (%) 99.1 98.1 97.3 67.3 D
-C

ac
he

I-
C

ac
he

Table 2. Optimal Leakage Saving Percentages
with Technology Scaling Down.

provement on leakage power savings.

5. Approximating the Perfect Knowledge

Figure 8 also reveals that even though OPT-Sleep(10K)
can achieve a good amount of leakage power saving, there is
still great potential to approximate the optimal leakage sav-
ing that OPT-Hybrid can accomplish. For instruction cache,
the gap is 14.4%, and for data cache, 12.1%. In this section,
we will study how prefetching can be employed to approach
the optimal in the real situations where perfect knowledge
of the future address is unknown.

5.1. Approximation of the Perfect Knowledge with
Prefetching

In Section 3, we provide the upper bound of leakage sav-
ing, yet it is derived assuming perfect knowledge of the tim-
ing of the address trace. This information is used to insure
that no additional latency overhead will be added to the next
access of the cache line for either scheme because perfor-
mance overhead can be perfectly overlapped with the length
of the interval (see Figure 3.) As a result, there will be no
extra stalls that result in leakage power consumption of the
whole system.

While the upper bound on the amount of savings that
can be achieved is a useful notion to characterize, an actual
implementation will require that we approximate this per-
fect knowledge. Luckily, such a set of future address pre-
dictions is already well studied in a different area of pro-
cessor research — prefetching. The goal of prefetching is
to accurately predict future access patterns so that they can
be optimistically fetched from memory before their use.
We propose that prefetching can optimistically re-fetch data
that has been either turned off for sleep mode or put into
a drowsy state. This would allow a more aggressive sleep
mode policy as the penalty that is normally associated with
sleeping a line can be fully or partially hidden by the ap-
proximated future knowledge that prefetching provides.
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Prefetching is one of the primary techniques used in
modern processors to tolerate memory latency. Many mod-
els have been proposed for prefetching either instructions
or data to reduce latency, ranging from compiler-based
prefetching [11] to hardware-based prefetching [13]. In this
paper, we examine the potential use of two hardware based
schemes to capture simple but frequent forms of misses:
next-line prefetching and stride-based prefetching.

The idea behind next-line prefetching is that a cache miss
will likely be followed by one or more cache misses to con-
secutive cache blocks. Because programs exhibit a great
deal of spatial locality, this form of prefetching is very ef-
fective in hiding latency, and meanwhile is fairly straight-
forward to implement.

Stride-based prefetching is to eliminate miss patterns that
follow a regular pattern but access non-sequential cache
blocks. This type of accesses frequently occurs in programs
that use multidimensional arrays. To capture this type of
misses, Farkas et al [3] showed that the most efficient way
is by examining the access patterns on a per static load ba-
sis. A miss is taken as stride miss if the same stride has been
seen at least twice for the static load accesses.

In this study, we employ the next-line prefetching tech-
nique for the instruction cache, and both next-line and
stride-based techniques for the data cache, since most of the
cache misses can be captured by these schemes based on the
study in [13].

5.2. Employing Prefetching to Approach the Limit
of Leakage Power Savings

With the attempt to approach the upper bounds, we took
the access intervals within which one or more accesses to
the previous cache line occurs as prefetchable (P) and the
other intervals as non-prefetchable (NP). Since the intervals
that are less than 6 are always kept active and there is no
need to prefetch them, they are counted as non-prefetchable.
The prefetchability is deduced as the number of prefetch-
able intervals over the total number of intervals.

Figure 9 shows the prefetchability of cache accesses.
We divided the intervals into three types, (0, 6], (6, 1057],
and (1057, +∞), based on their lengths. The shaded ar-
eas within the range of (6, 1057] ∪ (1057, +∞) cover the
percentage of the intervals that are prefetchable, and the
other areas cover the intervals that are non-prefetchable.
For the instruction cache, the prefetchability of using the
next-line prefetching technique (P-NL) is 23%; and for the
data cache, the prefetchabilities of using the next-line (P-
NL) and the stride-based (P-stride) prefetching techniques
are 16.3% and 5.1% respectively. So, the total prefetchabil-
ity out of all intervals is 23% for the instruction cache and
21.4% for the data cache.

Table 3. Prefetch-A and Prefetch-B meth-
ods, emphasizing high performance and high
leakage power saving, respectively.

When employing prefetching to approach the upper
bound, we designed two methods: Prefetch-A and Prefetch-
B based on the understanding of the two fundamental ob-
jectives of pursuing high performance and low power.
• Prefetch-A was designed to provide the best perfor-

mance that the corresponding prefetching techniques
could achieve.

• Prefetch-B was designed to provide the best power sav-
ing that the corresponding prefetching techniques could
achieve.

Table 3 details the two methods. For both of them, when
an interval was identified as prefetchable, a correspond-
ing low power mode was applied onto it. For the non-
prefetchable cases, Prefetch-A keeps the cache lines always
on, while Prefetch-B puts them into drowsy mode.

The limit results with prefetching are shown as the two
rightmost bars in Figure 8. From the figure, we can have
the following four observations. Prefetch-B can closely ap-
proach the optimal (within 5.3% for the instruction
cache and within 6.7% for the data cache). For the in-
struction cache, Prefetch-A achieved 10% better than
Sleep(10K) and Prefetch-B achieved 21% better than
Sleep(10K); and for the data cache, Prefetct-B achieved
7% better than Sleep(10K). The leakage power differ-
ence between Prefetch-A and Prefetch-B is due to the un-
prefetchable intervals within the range of (1057, +∞),
and it can be alleviated by employing more sophisti-
cated prefetching techniques. Finally, the best design
trade-off of power and performance is somewhere in be-
tween of the Prefetch-A and Prefetch-B methods, which
will be studied in our future work.

6. Conclusions

Leakage power dissipation is quickly becoming a major
concern in designing high performance processors. In this
paper we explore the limits to which known circuit level
techniques can be combined and employed to save cache
leakage power using new management methods and proto-
cols. In addition, we developped a parameterized model to
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(a) Instruction Cache (b) Data Cache
Figure 9. Prefetchability of intervals with different lengths.

determine the optimal leakage savings while the implemen-
tation technology changes over time. We also find that it is
possible with perfect knowledge of the future address trace
to reduce the amount of power dissipated by the instruc-
tion cache down by a factor of 5.3 from known techniques
(2 for the data cache). At this level, the leakage power of
the cache would become a less serious problem. We further
show that, while a hybrid method that combines both sleep
and drowsy modes is not very useful if each is used opti-
mally, it can substantially reduce leakage power by apply-
ing the appropriate power saving mode on each access inter-
val when the assumptions are less favorable. One such less
favorable assumption is that perfect knowledge of the fu-
ture is unknown, but it can be approximated using prefetch-
ing. We evaluate the potential usefulness of next-line and
stride-based prefetching toward reducing leakage power and
show that if prefetching can be used to guide sleep mode
and drowsy mode is used the other times then the leakage
power dissipation will be within a factor of 2.5 from the op-
timal.
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Appendix: Theorem of the Optimal Policy for
Leakage Power Saving

In this section, after defining the relevant terms in our
study, we provide the theorem of the optimal policy for leak-
age power saving.

Definition 1: We define I={Ii} as a set of intervals, and
the length of interval Ii as |Ii| ( |Ii| ∈ (0, +∞) ).

Definition 2: For each interval Ii ∈ I, we define three
possible operating modes Tj ∈ T, whereT = {T1 =
active, T2 = drowsy, T3 = sleep}, and the leakage en-
ergy saving of the interval Ii working in the mode of Tj is
defined as E(Ii, Tj).

Definition 3: We define two inflection points, the active-
drowsy inflection point a and the sleep-drowsy inflection
point b. The active-drowsy inflection point is defined as
the sum of the durations within which the supply voltage
changes either from high to low or from low to high. The
sleep-drowsy inflection point is defined as the access inter-
val length when the sleep and the drowsy modes consume
the same amount of energy.

Lemma 1: The active-drowsy inflection point a is less
than the sleep-drowsy inflection point b.

Proof: Because loads have physical capacities, the dis-
charging process takes less amount of time for the volt-
age dropping from high to low than from high to off, i.e.
d1 < s1. Similarly, the charging process takes less time
for increasing the voltage from low to high than from off
to high, i.e. d3 < s3. So, the sum of the durations a =
d1 +d3 < s1 +s3. Since the sleep-drowsy inflection point b
is greater than s1+s3, we can arrive at the conclusion that a

is less than b. Our study based on the 70nm technology pro-
cess also justifies that a (6 cycles) is less than b (1057 cy-
cles) from the experimental perspective.

Theorem 1: Under the context of the independent
model, where access intervals of a cache block are inde-
pendent from each other, we assume that for each inter-
val Ii ∈ I, one and only one of the three operating modes
Tj ∈ T can be applied for reducing leakage energy con-
sumption based on the following policy:

1. When the interval length |Ii| ∈ (0, a], the active oper-
ating mode or non-power saving mode is applied.

2. When the interval length |Ii| ∈ (a, b], the drowsy mode
is applied.
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Figure 10. Energy consumption for each of
the three operating modes and the lower en-
velope E(Ii, Tj) function for minimal energy
consumption.

3. When the interval length |Ii| ∈ (b, +∞), the sleep
mode is applied.

Then the maximal leakage saving can be obtained as the
combination of the power saving over all intervals Ii ∈ I,
which gives an upper bound for optimal leakage power sav-
ing.

Proof: We prove the theorem by contradiction. We di-
vide the whole range of the interval length (0, +∞) into
three independent portions based on the active-drowsy in-
flection point a and the sleep-drowsy inflection point b, i.e.
(0, a] ∪ (a, b] ∪ (b, +∞) (see Lemma 1 that a < b). Sup-
pose the energy saving M based on the above assumptions
is not maximal, then there must be another energy saving
M ′ that is greater than M , which indicates that there is at
least one interval Ii whose operating mode T ′

j is different
from Tj .

Figure 10 shows the function of interval vs. energy con-
sumption. In the figure, we can have the following deriva-
tions:

1. The function is continuous and monotonically increas-
ing.

2. The slopes P1, P2 and P3 indicate the power consump-
tions within the interval ranges of (0, a], (a, b] and
(b, +∞) respectively.

3. For intervals in the range of (0, a], the minimal energy
consumption can be achieved through the active mode
T1. For intervals in the range of (a, b], the minimal en-
ergy consumption can be achieved through the drowsy
mode T2. For intervals in the range of (b, +∞), the
minimal energy consumption can be achieved through
the sleep mode T3.

For a set of independent intervals, if at least one inter-
val Ii was applied with T ′

j , not the corresponding mode Tj ,
then E(Ii, T

′

j) is greater than E(Ii, Tj) (above the shadow
area in Figure 10), giving the contradiction. Therefore, the
maximal leakage power saving can be obtained by the pro-
posed policy.
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