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Abstract

Fine-grained dynamic voltage/frequency scaling (DVFS)
is an important tool in managing the balance between
power and performance in chip-multiprocessors. Although
manufacturing process variations are giving rise to signifi-
cant core-to-core variations in power and performance, tra-
ditional DVFS controllers are unaware of these variations.

Exploiting the different power/performance profiles of
the cores can significantly improve energy-efficiency. Two
hardware DVFS control algorithms are considered and
the gains enabled by incorporating variability-awareness
are demonstrated on multithreaded commercial work-
loads. For a design with per-core voltage/frequency is-
lands (VFIs), the mean power per unit throughput for a
simple threshold-based controller is reduced by 8.0% when
variability-awareness is added. A complex greedy-search
controller sees an even larger reduction of 15.4%. The
variability-aware versions of the two controllers achieve
power/throughput reductions of 2.1% and 9.9% relative to
LinOpt, a recent software variability-aware DVFS scheme.

Designs which apply DVFS at a coarser granularity
are also considered, and the variability-aware schemes
maintain significant improvement over the -unaware ones.
With four cores per VFI, variability-awareness reduces
power/throughput by 6.5% and 9.2% for the threshold-
based and greedy-search controllers, respectively.

1. Introduction

Dynamic voltage/frequency scaling (DVFS) is a popu-
lar method for improving microprocessor energy-efficiency.
By lowering clock speed and supply voltage during
frequency-insensitive application phases, large reductions
in power can be achieved with modest performance loss.
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Technology scaling allows designers to integrate increas-
ing numbers of cores onto a single die. Microprocessor
designs are moving away from full-chip voltage/frequency
control towards finer-grained methods which allow in-
creased energy-efficiency. For example, AMD’s recent
quad-core Opteron allows independent frequency control of
all four cores, the shared L3 cache and on-chip northbridge,
the DDR interface, and four HyperTransport links [10].

However, scaling also results in worsening manufactur-
ing process variations in key physical and electrical parame-
ters. Variations can result in nominally correct designs fail-
ing to meet frequency or power targets. Traditionally, the
interdie component of process variation dominated and was
addressed through speed-binning. However, intradie varia-
tions have become increasingly important at recent technol-
ogy nodes, resulting in core-to-core variations in power and
performance [16]. Despite this, traditional DVFS control
algorithms treat all cores as nominal.

Exposing variability information to DVFS controllers
significantly improves energy-efficiency. Two hardware
DVFS controllers are considered: a simple threshold-based
controller (Threshold) and a more complex greedy-search
controller (Greedy). Methods for exploiting core-to-core
variability are proposed and the benefits on multithreaded
commercial workloads are quantified. For Threshold, a re-
duction of 8.0% in power per unit throughput is obtained,
while Greedy sees a larger power/throughput reduction of
15.4%. When tuning the variability-unaware and -aware
versions of an algorithm to iso-performance, variability-
awareness maintains most of its power/throughput advan-
tage (7.0% for Threshold and 10.8% for Greedy). Thresh-
old and Greedy are compared with LinOpt, a recently
proposed software variability-aware DVFS scheme [28].
Variability-aware Threshold achieves power/throughput
2.1% lower than LinOpt, while variability-aware Greedy ex-
hibits power/throughput 9.9% lower than LinOpt.

The proposed schemes are also evaluated on a design
which aggregates clusters of four cores into single volt-
age/frequency islands (VFIs), sacrificing flexibility for re-
duced design complexity. Here, variability-awareness re-



sults in reductions in power/throughput of 6.5% and 9.2%
for the Threshold and Greedy controllers, respectively.

The overhead of adding variability-awareness to these
DVFS controllers is limited. In the case of Threshold,
the only additional hardware is a set of fuses to be pro-
grammed at test time describing each VFI’s variations. If
the complex variability-unaware Greedy scheme is imple-
mented in a power management microcontroller, then the
cost of adding variability-awareness is once again limited
to fuses. If Greedy is built in custom hardware, variability-
awareness requires four additional multiplexers.

This study uses new numerical models for how fre-
quency and leakage current scale with supply voltage, tem-
perature, and process variations. These models achieve
worst-case errors with respect to SPICE of 0.22% for fre-
quency and 0.49% for leakage current, significantly outper-
forming analytical models used in prior microarchitecture-
level studies [16,21,27]. Variability information is exposed
to DVFS hardware via an effective process variation param-
eter, peff , which aggregates the impact of a VFI’s variations
into a single value.

The remainder of this paper is organized as follows. Sec-
tion 2 details the target architecture and Section 3 the vari-
ability models. Section 4 explains the specifics of the DVFS
algorithms considered in both their variability-unaware and
-aware forms. Section 5 presents the experimental method-
ology and Section 6 the results. Section 7 gives an overview
of related work and Section 8 concludes the paper.

2. Target Architecture

A chip-multiprocessor with 16 out-of-order SPARCv9
cores is considered, with the parameters shown in Table 1.
The cores have private L1 instruction and data caches, while
a single logical L2 cache is shared among the cores using a

Table 1. Processor parameters
Parameter Value
Nominal frequency 3.0 GHz
Technology 22 nm node with Vdd = 0.9 V
DVFS interval 50 μs
Number of tiles 16 core tiles, 16 L2 tiles
On-chip network 8 × 4 mesh
L1-I/D caches 64 KB, 64 B blocks, 2-way SA,

2-cycle load-to-use, LRU, 4R/W
L2 cache 16 × 1 MB, 64 B blocks,

16-way SA, 20-cycle hit, LRU,
1R+1W per bank

Main memory 60 ns for random access,
64 GB/s peak bandwidth

Pipeline 8 stages deep, 4 instructions wide
ROB/LSQ size 128
Store buffer size 64

Piranha-style design [2]. The L2 is implemented as 16 in-
dependent banks distributed across the chip. Each core and
L2 cache tile is a node in an 8x4 mesh on-chip network.

The chip is divided into voltage/frequency islands
(VFIs). The L2 cache, network, and memory controller al-
ways run at the nominal Vdd. Due to process variations,
individual tiles have different maximum operating frequen-
cies at identical supply voltages. There is a single clock
domain for the L2 cache and memory controller, which is
run at the maximum frequency of the slowest L2 tile, and a
second one for the network, which is run at the maximum
frequency of the slowest tile overall (core or L2).

Finally, there are either four or 16 clock domains for the
cores. In the fine-grained VFI design, each core has its own
clock and Vdd. The core and L2 cache tiles are interleaved at
the tile granularity, giving rise to the fine-grained floorplan
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Figure 1. Floorplans for each design. “P” is a processor tile, “M” is a memory (L2) tile.



shown in Figure 1a. With coarse-grained VFIs, clusters of
four cores share a clock and supply voltage. The floorplan is
altered to make cores in a cluster physically adjacent, which
makes each core VFI contiguous at a cost in the quality of
the on-chip network. The floorplan for the coarse-grained
design is shown in Figure 1b.

Three PLLs are used for clocking. One clocks the L2 and
memory controller, one clocks the on-chip network, and the
third is used to clock the cores. Each core VFI contains a
clock divider to create its own local clock signal from the
output of this shared PLL, as in Intel’s Montecito [11]. This
approach allows single-cycle frequency transitions.

Due to the narrowing gap between supply and thresh-
old voltages, a limited set of four supply voltages is avail-
able. Supply voltages of 0.9 V, 0.8 V, 0.7 V, and 0.6 V
result in nominal frequencies of 3 GHz, 2.5 GHz, 2 GHz,
and 1.4 GHz. On-chip voltage regulators [14] enable fast
voltage transitions taking only 5 ns. An interval of 50 μs is
assumed for making DVFS decisions.

The cores on a single die support different frequencies
due to intradie process variations. In the variability-unaware
designs, the slowest core determines the frequency levels
available to all of the core VFIs. The variability-aware de-
signs, on the other hand, can exploit frequency asymmetry
by running each core VFI at its own maximum frequency.

The only interdomain communication is between the
tiles and the network. As in AMD’s quad-core Opteron,
asynchronous queues provide interfacing between clock do-
mains [10], with the buffers between the tiles and their
routers implemented as dual-clock FIFOs [8].

3. Variability Modeling

3.1. Parameter Variation Modeling

Variations are considered in two key parameters: thresh-
old voltage Vth and effective channel length Leff . A model
of spatially-correlated intradie process variation developed
by Sarangi et al. is used to generate their values [23].
Spatially-correlated Leff variation is the main source of
spatially-correlated Vth variation [7], so perfect correlation
is assumed between the spatially-correlated components of
the two parameters. The two are lumped into a single pro-
cess variation parameter p, which gives the value of varia-
tions in standard deviations from the mean. Sarangi et al.
determined the spatially-correlated component of intradie
Vth variation to have σ

μ = 6.4% and the spatially-correlated
component of intradie Leff variation to have σ

μ = 3.2%.
The processor die is divided into a uniform 88× 88 grid,

yielding 242 points per tile. Using a multiple of eight for
the grid dimensions ensures the same number of grid points
in every tile, given the 8x4 floorplans shown in Figure 1.

Parameter values are assumed to follow a multivariate
normal distribution. The correlation between parameter val-
ues at two points is position- and direction-independent and
given by a spherical function:

ρ (r) =

{
1 − 3r

2φ + 1
2

(
r
φ

)3

r ≤ φ

0 r > φ
(1)

r is the distance between the points and φ is the distance
past which the correlation is zero; these are given relative to
the die size. This function decreases roughly linearly as r
increases from zero and then decreases more slowly, reach-
ing zero at r = φ. Sarangi et al. determined φ = 0.5 for a
typical microprocessor die.

Interdie variations do not induce core-to-core variations
and are ignored. Uncorrelated intradie variations average
over the transistors in a path, and thus with σrand ≈ σsys

(as in a typical manufacturing process [1]) the core-to-core
frequency variations will be dominated by the spatially-
correlated component [3]. Aggregating leakage over all
the transistors within a single core ensures that uncorrelated
variation will not have a large core-to-core leakage effect.

3.2. Frequency and Leakage Modeling

Vth and Leff values are used to determine the maximum
frequency and subthreshold leakage of each core across Vdd

and temperature. SPICE simulation data obtained using the
22 nm hi-K metal gate BSIM4 predictive technology mod-
els were used to fit the model coefficients [31].

Fit data were generated on a grid of uniformly-spaced
(Vdd, T, p) tuples. Vdd values were spaced between the low-
est and highest levels in the processor, 0.6 V and 0.9 V. The
processor has a worst-case temperature of 100 ◦C, enforced
by dynamic thermal management. Frequency simulations
were run assuming this worst case, and thus the frequency
model conservatively underestimates maximum frequency.
For leakage simulations, T values were spaced between
45 ◦C, the ambient temperature used in microarchitecture-
level simulations, and 100 ◦C. Finally, p values were evenly
spaced between −4 and 4, an 8σ range.

Fitting a response surface model generally yields a
model that is accurate for parameter values within the range
that was fit, but which loses accuracy outside that range.
Vdd and T are deterministic parameters and can be bounded.
However, p is a random variable. Due to spatial correlation
in process variations there are entire cores which exhibit p
values far from nominal when simulating a large number of
dies. In order to avoid significant error for such cores, equal
importance was given to all p values.

Both models are of the form eP (Vdd,T,p), where
P (Vdd, T, p) is some polynomial function (for the fre-
quency model, all the terms containing T are dropped be-
cause a constant worst-case temperature is assumed). This
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(a) Distribution of mean VFI frequencies on a die
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(b) Distribution of mean VFI leakages on a die

Figure 2. Distributions for the amount of inter-VFI variation

yields better accuracy than models of the form P (Vdd, T, p)
with the same number of coefficients. The models were
fit by minimizing the maximum absolute percent error
(MAPE).

Vdd, T , and p are scaled to [−1, 1], so the value of ev-
ery term which is multiplied by a model coefficient (e.g.,
V 2

dd · T · p) falls in [−1, 1]. Thus, the absolute values of
the coefficients give some indication of the importance of
the corresponding terms. Fitting starts with a full nth or-
der model and proceeds iteratively. In each iteration, the
term with the coefficient with the smallest absolute value is
dropped and the model is refit. The process terminates when
the removal of a term would more than double the error.

The frequency model tracks the frequency of a 13-stage
ring oscillator built from FO4 inverters of eight times min-
imum size. While the ring oscillator may not accurately
track wire-dominated paths, the vast majority of micropro-
cessor critical paths are gate-dominated [4]. The design pro-
cess avoids creating wire-dominated critical paths because
such paths would severely limit the benefit that a design
would obtain from being scaled to a new technology [24].

Simulations were performed on a grid of 24,311
uniformly-spaced pairs of Vdd ∈ [0.6 V, 0.9 V] and p ∈
[−4, 4]. A constant worst-case temperature of 100 ◦C was
used. Initially, the full third-order model was fit, which con-
tains ten coefficients. After the iterative pruning described
above, the final model contains six terms.

24,000 test data points were generated on another grid of
uniformly spaced (Vdd, p) pairs, with no values identical to
those in the fitting data. Across this test data, the model’s
root-mean-square percent error (RMSPE) is 0.09% and its
MAPE is 0.22% relative to SPICE.

The leakage model predicts the source-to-drain sub-
threshold leakage current in uA/um, averaged across

NFETs and PFETs, for a given Vdd, T , and p. In
the 22 nm technology used, gate leakage is controlled
such that source-to-drain leakage is the dominant form
of static power. Simulations were performed on a grid
of 274,625 (Vdd, T, p) triples, with Vdd ∈ [0.6 V, 0.9 V],
T ∈ [45 ◦C, 100 ◦C], and p ∈ [−4, 4]. Because subthresh-
old leakage is more nonlinear than frequency, model fitting
started with the full fourth-order model. Iterative pruning
reduced the model from 30 coefficients to 14 coefficients.

262,144 test data points were generated on another
uniformly-spaced grid over the same Vdd, T , and p ranges.
No parameter value in the test data was identical to one in
the fitting data. On the test data, the model achieves a RM-
SPE of 0.21% and MAPE of 0.49% relative to SPICE.

3.3. Model Results

Inter-VFI variation was examined over 2.5 million gen-
erated dies. Vdd was set to the nominal 0.9 V. The leakage
model was run assuming T = 75 ◦C, as this is more typi-
cal than the worst-case temperature of 100 ◦C assumed by
the frequency model. In the microarchitecture-level simu-
lations used to generate the performance results, the leak-
age model is run with thermal data dynamically generated
by the HotSpot thermal simulator [25]. Figure 2 shows
the results; each sample point is the average of the fre-
quencies/leakages of the VFIs on a die relative to the fre-
quency/leakage of the slowest, least leaky VFI on that die.

There is significantly more variation in leakage than in
frequency. For fine-grained VFIs, the mean VFI leakage
is 45% higher than the lowest VFI leakage on average.
For coarse-grained VFIs, this is reduced to around 20%.
It is primarily this large inter-VFI leakage variation that
variability-aware DVFS exploits.



3.4. Exposing Variation Information

For each die, the full grid data must be reduced to a man-
ageable size before being exposed at the microarchitecture
level. Frequency variations can be accounted for using the
greatest p value within each VFI, corresponding to its slow-
est part. For the leakage model, the p values at every grid
point within a VFI must be aggregated together. This is
done by finding the single effective p value, peff , which
most closely tracks a VFI’s leakage across Vdd and T .

peff is computed from four measurements. Leak-
ages for each grid point at (Vdd, T ) ∈ {0.6 V, 0.9 V} ×
{45 ◦C, 100 ◦C} are aggregated into the leakages for each
VFI at each (Vdd, T ). Each VFI’s peff is then found as the
single p value for that VFI that will minimize the MAPE
with respect to the aggregated data across the four points.

This process is extremely effective. Due to spatial cor-
relation, a VFI’s peff value extremely rarely has to ac-
count for large regions of both very positive p values and
very negative p values. Across 1,000 dies and 13,456
pairs of uniformly spaced Vdd ∈ [0.6 V, 0.9 V] and T ∈
[45 ◦C, 100 ◦C] values, the worst single-VFI RMSPE and
MAPE are 0.006% and 0.011% for fine-grained VFIs and
0.007% and 0.014% for coarse-grained VFIs.

Figure 3 shows the peff distributions for the two chip de-
signs across the 1,000 dies. For fine-grained VFIs, the mean
peff value is −0.012, the median is −0.010, and 52.3% of
VFIs have peff < 0. For coarse-grained VFIs, the corre-
sponding figures are −0.021, −0.017, and 53.8%. A slight
bias towards negative peff is observed, which is expected
because leakage is roughly exponential in p.

4. DVFS Algorithms

Two DVFS controllers are considered. Threshold is a
simple threshold-based algorithm, while Greedy is a more
complex greedy-search controller which attempts to find
the operating point minimizing power/throughput. The
energy-efficiency metric used to judge DVFS algorithms is
power/throughput (P/T).

Variability-aware DVFS primarily addresses leakage
power disparity to improve energy-efficiency. Subthreshold
leakage current is strongly dependent on Vdd due to drain-
induced barrier lowering (DIBL), which results in a transis-
tor’s Vth decreasing as its Vds increases. For example, for
relatively leaky transistors with a process variation param-
eter of p = −2 operating at T = 75 ◦C and Vdd = 0.9 V,
the subthreshold leakage current falls by 29% for an 11%
reduction in Vdd, 51% for a 22% reduction in Vdd, and 66%
for a 33% reduction in Vdd. Leakage power is given by
Pleak = Ileak ·Vdd, so the reduction in power is even greater.

To implement variability-aware DVFS, each VFI’s pro-
cess variations are characterized at test time via leakage
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Figure 3. peff distributions

current measurements and the peff describing that VFI’s
variations is computed. As shown in Section 3.4, peff can
be accurately determined through IDDQ testing of bare die
by measuring the leakage current of each VFI at only four
(Vdd, T ) points. peff values are used at runtime to bias
leaky VFIs towards lower V/F levels and less leaky VFIs
towards higher V/F levels. As was shown in Section 3.4,
the peff distribution is roughly symmetric about 0, so ap-
proximately the same number of VFIs will be biased in each
direction. The reduction in leakage from the leaky VFIs will
more than compensate for the increase from the less leaky
VFIs, both lowering total power and evening out the power
profile across the cores.

More throughput is lost on the VFIs which are slowed
down than is gained on the ones which are sped up. Fre-
quency asymmetry is exploited to recover lost performance.
Leaky cores, which are biased to lower V/F levels, also tend
to have higher maximum frequencies. In the baseline de-
sign, all core VFIs run with the same set of frequency levels,
set by the slowest VFI. In the variability-aware designs, fast
VFIs with peff < 0 run at their own maximum frequencies.

Frequency asymmetry can be exploited by extending the
standard testflow used during fabrication. Normally, the fre-
quency of a fabricated chip is determined by sweeping a se-
ries of test vectors through it, increasing frequency until the
slowest core fails. To exploit asymmetry, this process must
continue past the failure of the slowest core to the failure of
the fastest, resulting in somewhat longer test time.

4.1. Threshold

Threshold-unaware is a simple controller which attempts
to keep some structure’s utilization within given bounds.
The original algorithm due to Talpes and Marculescu was
applied to single-core multiple clock domain architectures



and worked by monitoring the queues between clock do-
mains [26]. The CMP version proposed by Herbert and
Marculescu considers the utilization of each VFI, computed
as the number of non-spin instructions retired divided by the
number of retire slots [15].

Every interval, the utilization U is compared to the up
threshold Tup and the down threshold Tdown. If U > Tup,
the VFI does not have sufficient frequency headroom and
its V/F level is raised. If U < Tdown, the VFI has too
much excess capacity and its V/F level is lowered. While
U ∈ [Tdown, Tup], the VFI’s voltage and frequency are held
unchanged. Tdown is set to 0.2 and Tup to 0.4, lower than
the values proposed by Herbert and Marculescu and result-
ing in a greater bias towards preserving performance. This
will be compared to Greedy, which considers only maxi-
mizing energy-efficiency.

Threshold-aware assigns each VFI its own thresholds
based on process variations. The target utilization needs
to be raised for leaky cores to bias them towards lower V/F
levels and lowered for non-leaky ones to bias them towards
higher V/F levels. Leakage current is roughly exponential in
p, so an exponential scaling is applied. The target utilization
range for VFI i is set to [e−peff,i · Tdown, e−peff,i · Tup].
For VFIs which are leakier than nominal, peff,i < 0 and
thus e−peff,i > 1, while the opposite is true for the VFIs
which are less leaky than nominal. This scaling results in a
target utilization band of [0.279, 0.558] for the single-core
VFI in the 5th percentile in Figure 3 (a very leaky core) and
[0.139, 0.278] for the single-core VFI in the 95th percentile
(a core with very low leakage).

The extra hardware needed to make Threshold
variability-aware is minimal. If Threshold-unaware
uses hardwired thresholds, those thresholds must be made
single-writable so that they can be set at test time. If the
original algorithm uses thresholds stored in some special
register set by the operating system, then Threshold-aware
can be implemented by exposing the per-VFI peff values
from the hardware to the operating system so that the
threshold can be adjusted by the OS before it is set. The
same effect could be achieved with some hardware cost by
scaling the OS-programmed thresholds in hardware.

4.2. Greedy

Greedy-unaware is based on the CMP extension by Her-
bert and Marculescu [15] of the greedy-search scheme pro-
posed by Magklis et al. [20]. The controller attempts
to operate its VFI at the V/F level which minimizes
power/throughput, assuming that P/T is a convex function
of V/F level. During each interval, the controller counts
the number of non-spin instructions retired, as in Thresh-
old. Current sensors are used to approximate the energy
consumed by the VFI over the interval, allowing the com-

putation of energy per instruction (EPI), which differs from
power/throughput only in units.

Each interval, the controller compares the current and
previous intervals’ EPI values. If EPI has improved, the
controller makes another move in the same direction as the
last one. If EPI has degraded, the controller assumes that it
has overshot the optimal level. It makes a transition in the
opposite direction of the last one to the suspected optimal
level and stays there for N = 5 intervals. The controller
then continues exploration by making a move in the direc-
tion opposite the V/F level which preceded the hold.

A simple optimization improves the algorithm’s perfor-
mance relative to Herbert and Marculescu’s version. When
their controller reached either the highest or lowest V/F
level it would stay there until the energy-efficiency metric
worsened, then move away and hold. Noise in the metric
values resulted in the original controller spending relatively
little time at the optimal level if it was one of the two ex-
tremes. The optimization triggers a hold whenever either
extreme is reached and the metric has improved, guarantee-
ing that at least N + 1 intervals will be spent there.

Although not intentionally designed to do so, Greedy-
unaware implicitly adapts to variability because each each
VFI’s V/F level is chosen based on its measured power con-
sumption. Thus, two VFIs running identical threads but
with different leakage characteristics might be run at differ-
ent V/F levels. However, Greedy-unaware attempts to min-
imize each VFI’s local P/T. Global P/T may be improved
by explicitly exposing variability information and sacrific-
ing some throughput on a leaky VFI if a similar amount of
throughput can be gained on a less leaky VFI.

Greedy-aware scales metric values exponentially to bias
core V/F levels as proposed. Each interval, the scaled EPI
for VFI i is computed as SEPIn,i = (epeff,i)Ln,i ·EPIn,i.
Ln,i is the V/F level of VFI i on interval n. The V/F lev-
els are indexed by consecutive integers, starting from 0 and
with a higher index indicating a lower Vdd. For VFIs which
are leakier than nominal, peff,i < 0 and (epeff,i )Ln,i < 1
and decreases as the V/F level decreases, resulting in bet-
ter SEPI values at lower V/F levels. The opposite is true
for VFIs which are less leaky than nominal. For the single-
core VFI in the 5th percentile in Figure 3, this results in the
metric values being scaled by 1.00 at Vdd = 0.9 V, 0.70 at
Vdd = 0.8V, 0.49 at Vdd = 0.7V, and 0.34 at Vdd = 0.6V.
For the single-core VFI in the 95th percentile, the scaling
factors are 1.00 at Vdd = 0.9 V, 1.39 at Vdd = 0.8 V, 1.94
at Vdd = 0.7 V, and 2.71 at Vdd = 0.6 V.

Some processors incorporate power-management micro-
controllers, such as the Foxton unit in Intel’s Montecito
[22]. If Greedy-unaware is implemented in this way, the
hardware support required to make it variability-aware con-
sists of test-time programming of measured variation pa-
rameters. If this is not the case, the overhead is still



low compared to the initial complexity of Greedy-unaware,
consisting primarily of four multiplexers. Examining the
range of scaling factors above, a resolution of 12 bits will
be more than sufficient for performing variability-aware
scaling. Rather than multiply the current interval’s EPI
by (epeff,i)Ln,i , the previous interval’s EPI is divided by
(epeff,i)Ln,i . This allows the scaling to be done during the
interval by the same hardware used to compute energy per
instruction at the end of the interval, requiring additional
multiplexers for the two inputs and one output of this block.
There are three non-trivial values of (epeff,i)Ln,i , because
for Ln,i = 3 this expression is identically one. The other
three values are computed statically at test time and pro-
grammed into the chip. The controller then uses a fourth
multiplexer to choose the correct scaling factor at runtime.

4.3. LinOpt

Teodorescu and Torrellas proposed LinOpt, a software-
based variability-aware DVFS controller using linear pro-
gramming [28]. The effectiveness of exposing variability-
awareness in the manner proposed is demonstrated by com-
paring the Threshold and Greedy controllers to LinOpt.

To allow the selection of optimal voltage levels to be
posed as a linear programming problem, LinOpt assumes
that 1) a core’s frequency is directly proportional to its sup-
ply voltage, 2) a core’s throughput is directly proportional
to its frequency, 3) a core’s total power draw (static plus
dynamic) is a linear function of its supply voltage, and 4)
that the available supply voltages form a continuous inter-
val [Vdd,min, Vdd,max]. The first two assumptions lead to a
core’s throughput being expressed as Ti = ai · Vdd,i and
the third leads to its power draw being written as Pi =
bi ·Vdd,i + ci. The constants ai, bi, and ci are recomputed at
every DVFS interval, minimizing the maximum absolute er-
ror across data from the last three voltage levels used. The
last assumption means that the solution to the linear pro-
gramming problem will yield core supply voltages which
must be rounded to the nearest available ones.

The objective is to choose the Vdd,i to maximize the total
throughput:

T =
Ncores∑

i=1

ai · Vdd,i (2)

Each core’s Vdd must be in the allowable range:

∀i ∈ 1, 2, ..., Ncores : Vdd,min ≤ Vdd,i ≤ Vdd,max (3)

Each core’s power must be below its safe maximum:

∀i ∈ 1, 2, ..., Ncores : Pi = bi ·Vdd,i+ci ≤ Pcore,max (4)

The total power drawn by all cores must be below the target:

P =
Ncores∑

i=1

(bi · Vdd,i + ci) ≤ Ptotal,max (5)

LinOpt is compared against both Threshold and Greedy
in their variability-unaware and variability-aware forms.
Because the Threshold and Greedy controllers allow a core
to run at peak power, LinOpt is given additional free-
dom by removing the per-core power budgets from Equa-
tion 4. LinOpt attempts to maximize throughput given a
fixed power budget, so the total power budget for the cores
in Equation 5 is set equal to the power used by the cores in
the scheme being compared against on a per-checkpoint ba-
sis. Thus, the comparison tests whether LinOpt can provide
higher performance at iso-power.

5. Experimental Methodology

5.1. Microarchitecture-level Simulator

Evaluations are performed using Flexus CMPFlex.OoO,
a microarchitecture-level full-system simulator for chip-
multiprocessors [13]. Flexus runs real workloads on real
operating systems and models processors, main memory,
disks, and all other components of a computer system. It
supports the use of statistical sampling using checkpointed
workloads to speed up experiments and address simulation
variability. Each scheme was evaluated across 10 generated
dies, representing many CPU-years of simulation time.

The base CMPFlex.OoO models an implicit zero-latency
crossbar between the cores and shared L2, which was re-
placed with the tiled architecture and on-chip network de-
scribed in Section 2. The cycle-accurate network model
includes routers, buffers, and links. CMPFlex.OoO also
only models fully-synchronous designs. It was rewritten to
model VFI-based designs with arbitrary tile frequencies.

Detailed power and thermal modeling were also added.
The hybrid instruction-/microarchitecture-level dynamic
power model is based on Wattch [5], with 22 nm parameters
taken from ITRS predictions and observed scaling trends.
The static power model is based on that proposed by Butts
and Sohi [6]. The base leakage current is computed dynam-
ically during simulator execution using the leakage current
model from Section 3.2 with runtime temperature data.

These power estimates are used as inputs to the HotSpot
thermal simulator developed by Skadron et al. [25]. The
core floorplan is adapted from that used by Skadron et al.,
merging the separate integer and FP instruction windows,
moving the L1 caches, and scaling the design to the 22 nm
node. The chip floorplans from Figure 1 are used. Dynamic
thermal management is performed by reducing a VFI’s V/F
level if it approaches the 100 ◦C maximum temperature.
Iterated simulations are used to accurately account for the
effects of temperature on leakage power and power on tem-
perature, terminating when the difference in power values
from one run to the next is less than 0.01%.



5.2. Workloads Evaluated

The multithreaded workloads in Table 2 are evaluated.
The online transaction processing workloads consist of
TPC-C v3.0 on both IBM DB2 v8 ESE and Oracle 10g
Enterprise Database Server. The Decision Support Sys-
tems (DSS) workloads are two queries from TPC-H, both
on DB2. Apache HTTP Server v2.0 and Zeus Web Server
v4.3 are evaluated on SPECweb99 under request saturation.

Each workload is simulated at 40 to 80 points, with
the number determined by workload variability. For each
checkpoint, non-transient state (cache, branch predictor,
memory, and disk contents) is loaded and detailed simu-
lation is performed for 500 μs. The first 400 μs are used
for warmup and statistics are gathered over the last 100 μs.
Non-spin user-mode throughput serves as the performance
metric. This corresponds to the amount of useful work done
for workloads such as TPC-H, while it has been shown for
transaction-oriented workloads such as SPECweb and TPC-
C that the number of user instructions per transaction is rel-
atively constant [12] [30] (and thus user-mode throughput
is proportional to transactions per minute).

5.3. Configurations Evaluated

Configuration names take the form x-y-z. x indicates
the DVFS scheme used and can be “T” for Threshold or
“G” for Greedy. y indicates the VFI granularity and is ei-
ther “F” (fine) or “C” (coarse). z indicates the variability-
awareness of the DVFS controller. “U” indicates un-
aware, “VA” variability-aware with frequency asymmetry,
and “VS” variability-aware with symmetric frequencies.

Table 2. Workloads used
Workload Notes

Online Transaction Processing (TPC-C)
tpcc db2 DB2, 100 warehouses, 64 clients,

450 MB buffer pool
tpcc oracle Oracle, 100 warehouses, 16 clients,

1.4 GB SGA
Decision Support Systems (TPC-H on DB2)

tpch qry1 450 MB buffer pool, scan-dominated
tpch qry2 450 MB buffer pool, join-dominated

Web Server (SPECweb99)
apache 16K connections, FastCGI,

worker threading model
zeus 16K connections, FastCGI

6. Results

6.1. Effectiveness of Variability-Awareness

Figure 4 compares the effectiveness of variability-aware
DVFS for the two chip designs. Each data point is normal-
ized to variability-unaware DVFS on the same hardware,
isolating the impact of variability-awareness.

For Threshold, the improvement in mean P/T over the
variability-unaware design is 8.0% when using fine-grained
VFIs, reduced to 6.5% when using coarse-grained VFIs.
Exploiting frequency asymmetry is seen to be generally ef-
fective in removing the performance loss due to the biasing
of the VFI V/F levels, with mean throughput changed by
less than 0.5%.

For Greedy, variability-awareness brings even larger
energy-efficiency gains. It improves P/T by 15.4% for fine-
grained VFIs and 9.2% for coarse-grained VFIs. Again,
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Figure 4. Throughput and P/T results for variability-aware DVFS with asymmetric frequencies
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the mean throughput changes are moderate, with a 1.8%
loss for the fine-grained VFI design to a 2.2% gain for the
coarse-grained VFI design.

The change in throughput when adding variability-
awareness to Greedy is somewhat unpredictable due to
interactions between the DVFS controller and the higher
frequency levels set for the faster VFIs. In the case
where inter-VFI frequency asymmetry is not exploited,
adding variability-awareness always lowers throughput, as
expected. This can be seen in Figure 8b. However, changing
a domain’s available frequency levels may move the optimal
V/F level found by the controller. This is the effect observed
in tpch qry1 for G-C-VA. Exposing frequency asymmetry
results in higher optimal V/F levels, so the net frequency
increase is much larger than that from asymmetry alone.

Besides improving energy-efficiency, variability-aware
DVFS also smoothes out differences in power between the
cores by biasing leaky cores towards lower V/F levels and
less leaky cores towards higher V/F levels. One metric of
the intercore power variation is the standard deviation of
the power draws of the 16 cores, σPcore . Figure 5 shows
mean σPcore values, taken across the checkpoints within a
workload and all 10 simulated dies. Variability-awareness
reduces the mean σPcore by 17.0% for Threshold and 38.0%
for Greedy. The power drawn by a single core is on the or-
der of several Watts, so these represent reductions in mean
σPcore

μPcore
of 18.0% for Threshold and 33.3% for Greedy.

6.2. Comparison at Iso-performance

Enabling variability-awareness impacts throughput to
some extent. In order to examine what portion of
the energy-efficiency gain brought about by variability-
awareness remains after throughput changes are accounted
for, tuned versions of the variability-unaware algorithms are
simulated. The tuned variability-unaware controller uses
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Figure 6. P/T improvement over base and
tuned variability-unaware algorithms

the variability-aware control scheme, but with a single peff

value for all VFIs on all dies. This peff value is unrelated
to variations, but is chosen such that the mean throughput
of the tuned variability-unaware controller matches that of
the variability-aware one. The difference in mean through-
put between a tuned variability-unaware algorithm and its
variability-aware counterpart was under 0.05% in all cases.

Figure 6 shows the P/T improvement that the variability-
aware controller exhibits over both the base variability-
unaware controller (as in Figure 4) and the tuned variability-
unaware version. The data show that the energy-efficiency
advantage of variability-awareness does not simply stem
from modulating throughput. When using fine-grained
VFIs, variability-awareness degrades throughput slightly.
Thus, allowing the variability-unaware controllers the
same throughput degradation does narrow the advantages
of variability-awareness (T-F-VA’s power/throughput im-
provement drops from 8.0% to 7.1% and G-F-VA’s drops
from 15.4% to 10.8%). Variability-awareness has no im-
pact on the mean throughput of T-C-VA. For G-C-VA,
variability-awareness increases mean throughput. Match-
ing the same throughput increase through tuning merely
increases the energy-efficiency advantage of variability-
awareness.

6.3. Comparison with LinOpt

The P/T improvements of the proposed schemes over
LinOpt are shown in Figure 7. Fitting model coefficients
and solving the linear programming problem in LinOpt was
assumed to take no time. As described in Section 4.3,
LinOpt is run targeting iso-power with the scheme it is being
compared against. Due to the error inherent in LinOpt’s as-
sumptions, it does not precisely meet its power target, with
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LinOpt’s mean power deviating from the target mean power
by up to 2.5%. Thus, even though the intent was to reach
iso-power, results are presented as power/throughput to en-
sure a fair comparison. Tweaking the power targets so that
iso-power is actually achieved was found to have a negligi-
ble impact (less than 0.5%) on the P/T results.

All four of the other DVFS controllers are superior to
LinOpt on the TPC-C workloads, while LinOpt outperforms
Threshold-unaware and Greedy-unaware on the webserver
workloads and Threshold-unaware on the TPC-H work-
loads. LinOpt assumes that throughput is directly pro-
portional to core frequency. The original LinOpt evalua-
tion used multiprogrammed SPEC2000 workloads [28], for
which this assumption may be somewhat valid. However, it
is much less accurate for multithreaded workloads with con-
tention between threads and especially on those with large
memory stall components, such as TPC-C.

LinOpt makes three linearizing assumptions. The as-
sumption that core power is a linear function of supply volt-
age is fairly accurate. Across all workloads and the four
configurations LinOpt is compared against, the RMSPE in
LinOpt’s estimate of the power that will be used by the cho-
sen assignment of supply voltages to cores is 9.1% for the
individual core powers and 6.1% for the aggregated core
power. This error is calculated with the actual voltage lev-
els used (i.e., after rounding the voltage levels chosen by the
algorithm to available ones). However, the assumption that
throughput is directly proportional to supply voltage is poor.
The RMSPEs in the throughput estimates are 132% for the
individual core throughputs and 55% for the aggregate core
throughput. The TPC-C workloads display the highest RM-
SPE in the throughput estimation at 160% for the individ-
ual core throughputs and 71% for the aggregate through-
put. The web server workloads, on which LinOpt does best,
have the lowest RMSPE in the throughput estimation at
87% for the individual core throughputs and 34% for the

aggregate throughput. The assumption that core frequency
is directly proportional to supply voltage is accurate, yield-
ing an RMSPE of 2.7% when fit to simulation data from
(Vdd, p) ∈ {0.6 V, 0.7 V, 0.8 V, 0.9 V}×{−2,−1, 0, 1, 2}.
Thus, the source of error in the assumption that throughput
is directly proportional to supply voltage is assuming that
throughput is directly proportional to frequency.

LinOpt is on par with Threshold-unaware in mean P/T,
although there is great variation between workloads de-
pending on the accuracy of LinOpt’s throughput estimates.
Threshold-aware slightly outperforms LinOpt, improving
mean power/throughput by 2.1%. However, both versions
of Threshold are much less complex than LinOpt and can be
easily implemented in hardware. LinOpt requires a software
implementation due to the complexity of fitting the model
coefficients and solving the LP problem.

Comparing LinOpt to Greedy-unaware is particularly
instructive because the two operate using the same in-
puts - runtime measurements of each core’s power and
throughput. Greedy-unaware does better on the database
workloads, while LinOpt does better on the web server
workloads. Greedy-unaware has 5.7% lower mean
power/throughput. Finally, adding variability-awareness
to Greedy-unaware allows it to outperform LinOpt on all
workloads with a 9.9% lower mean power/throughput.

6.4. Effectiveness of Frequency Asymmetry

Variability-aware DVFS consists of two parts: the bias-
ing of a VFI’s V/F level in a particular direction based on its
leakiness and the increase in the frequencies of fast, leaky
VFIs. To isolate the impact of the two parts, experiments
were performed in which the latter was disabled. Results
are shown in Figure 8, to be compared to Figure 4.

While not implementing frequency asymmetry does re-
duce the performance of Threshold-aware, the difference
is minimal (around a 1% difference in mean throughput re-
gardless of the chip design). Exploiting frequency asymme-
try has a larger performance impact for Greedy-aware, as
explained in Section 6.1. The largest impact is for coarse-
grained VFIs, for which throughput drops by 3.9%.

For both controllers, the difference in energy-efficiency
between the symmetric frequency level and asymmetric
frequency level cases is low. Thus, if the sole target of
variability-awareness is improving energy-efficiency, sym-
metric frequency levels can yield a simpler implementation.
Frequency asymmetry only needs to be exploited if it is de-
sirable that throughput be maintained.

7. Related Work

Several researchers have investigated DVFS for chip-
multiprocessors. Isci et al. examined global controllers op-
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Figure 8. Throughput and P/T results for variability-aware DVFS with symmetric frequencies

erating under fixed power budgets [17] while Juang et al.
proposed a distributed, control-theoretic scheme [18]. Li
and Martı́nez [19] examined the performance of full-chip
DVFS for CMPs. Herbert and Marculescu examined the
tradeoffs involved in choosing the VFI granularity for a va-
riety of different DVFS algorithms [15].

Schemes proposed to mitigate the impact of process and
temperature variations include the use of global asynchrony
and local clocking due to Marculescu and Talpes [21] and
the per-core adaptive body-biasing/adaptive supply voltage
scheme proposed by Humenay et al. [16]. Teodorescu et
al. proposed and evaluated an implementation of dynamic
body-biasing [27]. Tiwari et al. proposed ReCycle, a flex-
ible pipeline clocking scheme which uses time-borrowing
between stages to increase clock frequency [29].

There has been relatively little work on the interactions
between process variations and energy-efficiency (rather
than performance). Donald and Martonosi used an ana-
lytical model to evaluate the impact of process variations
on energy-efficiency in chip multiprocessors [9], examining
how the energy-efficiency of a parallel application varied
with the number of active cores. Teodorescu and Torrellas
proposed the variation-aware LinOpt DVFS algorithm for
CMPs [28], which was evaluated earlier.

8. Conclusion

Due to spatially-correlated intradie process variations,
nominally identical cores on the same chip-multiprocessor
die differ in power and performance. Traditional schemes
for dynamic voltage/frequency scaling have neglected
these variations, but exploiting them significantly improves
energy-efficiency.

A new method of expressing the variations within a sin-

gle voltage/frequency island by means of an effective pro-
cess variation parameter peff was proposed. The benefits
of exposing this variability information to existing DVFS
control algorithms were demonstrated for two hardware
DVFS controllers: a simple threshold-based controller and
a more complex greedy-search controller. For the former,
variability-aware DVFS is able to achieve an improvement
of 8.0% in power per unit throughput over the variability-
unaware scheme. For the latter, the benefit is even larger at
15.4%. The proposed schemes were found to outperform
LinOpt, a previously proposed software variability-aware
DVFS scheme. The proposed schemes were also compared
on a design which aggregates clusters of four cores into sin-
gle VFIs. Exposing variability information to the DVFS
controller was still effective: energy-efficiency improved by
6.5% for the threshold-based algorithm and 9.2% for the
greedy-search algorithm.
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