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Abstract

Growing concerns about power have revived inter-
est in in-order pipelines. In-order pipelines sacrifice
single-thread performance. Specifically, they do not al-
low execution to flow freely around data cache misses.
As a result, they have difficulties overlapping indepen-
dent misses with one another.

Previously proposed techniques like Runahead exe-
cution and Multipass pipelining have attacked this prob-
lem. In this paper, we go a step further and introduce
iCFP (in-order Continual Flow Pipeline), an adapta-
tion of the CFP concept to an in-order processor. When
iCFP encounters a primary data cache or L2 miss, it
checkpoints the register file and transitions into an “ad-
vance” execution mode. Miss-independent instructions
execute as usual and even update register state. Miss-
dependent instructions are diverted into a slice buffer,
un-blocking the pipeline latches. When the miss re-
turns, iCFP “rallies” and executes the contents of the
slice buffer, merging miss-dependent state with miss-
independent state along the way. An enhanced register
dependence tracking scheme and a novel store buffer de-
sign facilitate the merging process.

Cycle-level simulations show that iCFP out-performs
Runahead, Multipass, and SLTP, another non-blocking
in-order pipeline design.

1. Introduction

Growing concerns about power have revived interest

in in-order processors. Certainly designs which target

throughput rather than single-thread performance, like

Sun’s UltraSPARC T1 “Niagara” [11], favor larger num-

bers of smaller in-order cores over fewer, larger out-

of-order cores. More recently, even high-performance

chips like IBM’s POWER6 [12] have abandoned out-

of-order execution. In-order pipelines have area and

power efficiency advantages, but sacrifice single-thread

performance to achieve them. Specifically, they allow

only limited execution around data cache misses—the

pipeline stalls at the first miss-dependent instruction—

and have difficulties overlapping independent misses

with each other. Ironically, this relative disadvantage

diminishes in the presence of last-level cache misses.

Here, both types of processors are similarly ineffective.

Continual Flow Pipelining (CFP) [24] exposes

instruction- and memory- level parallelism (ILP and

MLP) in the presence of last-level cache misses. On a

miss, the scheduler drains the load and its dependent

instructions from the window and into a slice buffer.

These instructions release their physical registers and

issue queue entries, freeing them for younger instruc-

tions. This “non-blocking” behavior allows the window

to scale virtually to large sizes. When the miss returns,

the contents of the slice buffer re-dispatch into the win-

dow, re-acquire issue queue entries and physical regis-

ters, and execute. The key to this enterprise is decou-

pling deferred slices from the rest of the program by

buffering miss-independent inputs along with the slice.

CFP was introduced in the context of out-of-order

checkpoint-based (CPR) processors [1], but its authors

observed that it is a general concept that is applica-

ble to many micro-architectures [17, 20]. In this pa-

per, we adapt CFP to an in-order pipeline. An in-order

pipeline does not have an issue queue or a physical reg-

ister file—here CFP unblocks the pipeline latches them-

selves. Our design is called iCFP (in-order Continual

Flow Pipeline) and it tolerates misses in the data cache,

the last-level cache and every cache in between.

iCFP is not the first implementation of CFP in an in-

order pipeline. SLTP (Simple Latency Tolerant Proces-

sor) [17] is a similar contemporaneous proposal. Like

SLTP, iCFP un-blocks the pipeline on cache misses,

drains miss-dependent instructions—along with their

miss-independent side inputs—into a slice buffer and

then re-executes only the slice when the miss returns.

Re-executing only the miss-dependent slice gives SLTP

and iCFP a performance advantage over techniques like

Runahead execution [8] and “flea-flicker” Multipass

pipelining [3], which un-block the pipeline on a miss but

then re-process all post-miss instructions. iCFP has an

additional advantage over SLTP. In SLTP, the pipeline is
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non-blocking only in the shadow of misses; miss slice

re-execution is blocking. This limits performance in

dependent miss scenarios. In contrast, iCFP is non-

blocking under all misses. iCFP may make multiple

passes over the contents of the slice buffer, with each

pass executing fewer instructions. Non-blocking also

enables interleaving of slice re-execution with the exe-

cution of new instructions at the “tail” of the program.

Our experiments show that these features contribute sig-

nificantly to performance.

Supporting non-blocking slice execution requires two

innovative mechanisms. The first is a register depen-

dence tracking scheme that supports both multiple slice

re-executions and incremental updates to primary reg-

ister state. The second is a scheme that supports non-

speculative store-load forwarding for miss independent

stores and loads under a cache miss and for miss-

dependent stores and loads during multiple slice re-

executions. For the first, we use a second register file—

which is available on a multi-threaded processor—as

scratch space for re-executing slices. We use instruction

sequence numbering to gate updates to primary regis-

ter state. For the second, we describe a novel but sim-

ple store buffer design that supports forwarding using

“chained” iterative access rather than associative search.

2. Motivation and Some Examples

iCFP implements an in-order pipeline that combines

two important features. First, it supports non-blocking

uniformly under all misses. This allows it to “advance”

past primary misses (encountered while no other miss

is pending), secondary misses (encountered while the

primary miss is pending), and dependent misses (en-

countered while re-executing the forward slice of a pri-

mary or secondary miss). Second, while advancing un-

der any miss, iCFP can “commit” miss-independent in-

structions. When any miss returns, iCFP “rallies” by

re-executing only the instructions that depend on it.

This combination of features allows iCFP to effec-

tively deal with different patterns of misses, whereas

micro-architectures that implement only one of these

features have limited effectiveness when encountering

certain miss patterns. For instance, SLTP [17] com-

mits miss-independent instructions but blocks when re-

executing miss slices. As a result, it provides limited

benefit in dependent-miss scenarios. Runahead execu-

tion [8] implements general non-blocking but must re-

execute miss-independent instructions. This limits its

effectiveness in general, but especially in scenarios in

which long-latency primary L2 misses are followed by

shorter secondary data cache misses.

Figure 1 uses abstract instruction sequences to illus-

trate the actions of a vanilla in-order pipeline, Runahead

execution (RA), SLTP, and iCFP in different scenarios.

In the examples, instructions are boxed letters, cache

misses are shaded, and data dependences are arrows.

In a vanilla pipeline, misses result in pipeline stalls

(thick horizontal lines). In RA, SLTP, and iCFP, they

trigger advance execution. Miss-dependent advance

instructions—also known as “poisoned” instructions—

are shown as lower-case letters. For RA, SLTP, and

iCFP, advance and rally execution are split, with advance

execution on top.

Lone L2 miss. Figure 1a shows a lone L2 miss (A)

with a single dependent instruction (B). In this situation,

RA provides no benefit. SLTP and iCFP do because they

can commit miss-independent advance instructions C–F,

and re-execute only the miss forward slice (A–B).

Independent L2 misses. Figure 1b shows indepen-

dent L2 misses, A and E. In a vanilla pipeline, these

misses are serialized. However, RA, SLTP, and iCFP

can all overlap these misses by advancing under miss A.

Note, SLTP slice re-execution is blocking and so it must

wait until E completes before finishing the rally. In con-

trast, iCFP can interleave execution at the “tail” of the

program (G–H) with slice re-execution.

Dependent L2 misses. Figure 1c shows a dependent-

miss scenario—E depends on A. RA is ineffective here.

SLTP provides a small benefit because it can commit in-

structions C and D in the shadow of miss A. However,

the fact that it has blocking rallies prevents it from com-

mitting additional instructions under miss E. iCFP is not

limited in this way.

Independent chains of dependent L2 misses. Fig-

ure 1d shows four misses, A, B, E and F with pairwise

dependences between them—B depends on A and F on

E. Assume L2 miss latency is long enough such that ad-

vance execution under miss A can execute E before A

returns. RA is effective, overlapping E with A and F

with B, respectively. Despite being able to commit miss-

independent advance instructions, SLTP is less effective

than RA. Although it can overlap A with E during ad-

vance mode, its blocking rallies force it to serialize B

and F. Again, iCFP does not have this limitation.

Secondary data cache misses. Earlier, we men-

tioned that the inability to reuse miss-independent in-

structions limits RA in certain miss scenarios. Fig-

ures 1e and 1f illustrate. The scenarios of interest in-

volve secondary data cache misses under a primary L2

miss. In these situations, RA advance execution is faced

with a choice. On one hand, it can wait for the miss

to return. We call this option D$-blocking (D$-b), and

it is the right choice if there are future misses that de-
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Figure 1. In-order, RA (Runahead), SLTP, and iCFP under different miss scenarios

pend on the data cache miss (as in Figure 1f, with D

depending on C). Blocking is a poor choice if there

are future misses that are independent of the data cache

miss because waiting for the data cache miss will de-

lay those misses. This is the case in Figure 1e, where

waiting for C prevents overlapping D with A. Alter-

natively, RA can “poison” the output data cache miss

and proceed immediately, this is the D$-non-blocking

(D$-nb) option. Non-blocking is right if there are fu-

ture independent misses (Figure 1e) and wrong if there

are future dependent misses (Figure 1f). We note that

only RA is faced with this particular dilemma. iCFP

can confidently poison the secondary data cache miss

because it can return to it immediately when the miss

returns. With some caveats, SLTP can do the same.

But RA—because it doesn’t buffer and decouple miss-

dependent instructions—can only return to the primary

“outer” miss. Our experiments show that most bench-

marks prefer D$-blocking.

3. iCFP: In-order Continual Flow Pipeline

iCFP requires a set of simple extensions to an in-

order processor. These include: i) a mechanism for

checkpointing and restoring the contents of the register

file, ii) per register “poison” bits and sequence numbers

for tracking miss-dependent instructions, iii) a FIFO for

buffering miss-dependent instructions and their side in-

puts, iv) a “scratch” register file for re-executing miss-

dependent slices, v) a mechanism that supports cor-

rect store-load forwarding during both advance and rally

execution, and vi) a mechanism for detecting shared-

memory conflicts at checkpoint granularity.

Figure 2 shows a simplified structural diagram of

an iCFP pipeline (parts c and d) and similar diagrams

for a vanilla in-order pipeline (part a) and a Runahead
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Figure 2. In-order, Runahead, and iCFP structural diagrams

pipeline (part b) [6, 8]. Some of the mechanisms re-

quired by iCFP are also required by Runahead. These in-

clude the register checkpointing mechanism and the poi-

son bits. The kind of checkpointing Runahead and iCFP

require—a single checkpoint that supports only create

and restore operations—can be implemented efficiently

using “shadow” bitcells [9].

iCFP needs an additional FIFO to buffer miss-

dependent instruction slices (SLICE in parts c and d),

and an additional register file for implementing regis-

ter communication during slice re-execution. Many in-

order processors support multi-threading and so effec-

tively contain multiple register files [11, 12]. iCFP sim-

ply borrows a register file for this purpose when single-

thread performance trumps multi-thread throughput.

iCFP uses simple yet novel components to provide

store-load forwarding and inter-thread memory ordering

violation detection. For forwarding, it uses an indexed

store buffer with a novel access method called address-

hash chaining (Section 3.2). For multi-processor safety,

it uses a signature scheme (Section 3.3).

3.1. Advance and Rally

Figures 2c and 2d show iCFP’s active components

during advance and rally execution, respectively. Com-

ponents with thick outlines are active. Shaded compo-

nents are actively updated.

Advance execution. iCFP advance execution resem-

bles that of Runahead. On a cache miss, the proces-

sor checkpoints the register file and “poisons” the output

register of the load. Advance execution propagates this

poison through data dependences using poison bits as-

sociated with each register and each store buffer entry

(Section 3.2). Miss-independent instructions (instruc-

tions with no poisoned inputs) write their values into

the register file. Non-poisoned branches are resolved

as usual, triggering pipeline flushes on mis-predictions.

Miss-dependent instructions (instructions with at least

one poisoned input) do not execute. They drain to the

slice buffer along with their non-poisoned input (if any).

In iCFP, each register is associated not only with a

poison bit, but also with a last-writer sequence number.

An instruction’s sequence number is its distance from

the checkpoint and sequence numbers determine relative

instruction age. At writeback, all advance instructions—

poisoned or not—update last-writer field of their desti-

nation register with their own sequence number. The se-

quence number field is used to prevent write-after-write

hazards during rallies.

Rally execution. iCFP advance mode resembles

that of Runahead, but its rally mode is different. In

rally mode, iCFP re-injects the miss-dependent instruc-

tions from the slice buffer into the pipeline. These

instructions obtain their miss-independent inputs from

their slice buffer entries. They obtain inputs gener-

ated by older miss-dependent instructions either via the

bypass network or the “scratch” register file which is

used as temporary storage during rallies. A re-executing

miss-dependent instruction updates the main register file

only if the main register’s last-writer sequence number

matches its own. If the register is tagged with a larger

sequence number (i.e., one from a younger instruction),

the write is suppressed to avoid a write-after-write vio-

lation.

Like Multipass [3], iCFP may make multiple rally

passes over the slice buffer, initiating a pass every time a

pending miss returns. Each rally pass processes fewer

instructions, until the slice is completely processed.

During a rally, not all loads in the slice buffer may have

returned—in fact, dependent loads may just have issued

for the first time and initiated misses. iCFP does not stall

the rally to wait for these loads to complete. The scratch

register file also has associated poison bits and when a

rally begins, these are cleared. During a rally, any still-
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RF0 val seq p
r1 x44 4 0

r2 xC4 5 0

r3 3 6 0

r4 - 8 1

RF1 val seq p
r1 - - 0

r2 - - 0

r3 - - 0

r4 - - 0

Instructions (from fetch) seq p
ld [r1{x40}]→ r3{-} 0 1

ld [r2{xC0}]→ r4{2} 1 0

mul r3{-},r4{2}→ r4{-} 2 1

st r4{-}→ [r1{x40}] 3 1

addi r1{x40},4→ r1{x44} 4 0

addi r2{xC0},4→ r2{xC4} 5 0

ld [r1{x44}]→ r3{3} 6 0

ld [r2{xC4}]→ r4{-} 7 1

mul r3{3},r4{-}→ r4{-} 8 1

st r4{-}→ [r1{x44}] 9 1

Instructions (from slice buffer) seq p
ld [SL{x40}]→ r3{9} 0 0

mul r3{9},SL{2}→ r4{18} 2 0

st r4{18}→ [SL{x40}] 3 0

ld [SL{xC4}]→ r4{-} 7 1

mul SL{3},r4{-}→ r4{-} 8 1

st r4{-}→ [SL{x44}] 9 1

RF0 val seq p
r1 x44 4 0

r2 xC4 5 0

r3 3 6 0

r4 - 8 1

RF1 val seq p
r1 - - 0

r2 - - 0

r3 9 0 0

r4 - 8 1

a) advance execution

b) first rally

Instructions (from slice buffer) seq p
ld [SL{xC4}]→ r4{4} 7 0

mul SL{3},r4{4}→ r4{12} 8 0

st r4{12}→ [SL{x44}] 9 0

RF0 val seq p
r1 x44 4 0

r2 xC4 5 0

r3 3 6 0

r4 12 8 0

RF1 val seq p
r1 - - 0

r2 - - 0

r3 - - 0

r4 12 8 0c) second rally

Figure 3. iCFP working example

pending loads are poisoned in the scratch register file

and “re-activated” in their existing slice buffer slots. Ef-

fectively, rallies themselves perform advance execution.

Working example. Figure 3 shows an example of

advance and rally execution in a parallel miss scenario.

There is one advance pass (part a) and two subsequent

rallies (parts b and c). Each pass shows the instruction

stream, which comes from fetch during advance execu-

tion and from the slice buffer during rallies. Each in-

struction is tagged with a poison bit (p) and a sequence

number from the checkpoint (seq). Each pass also shows

the contents of the main and slice register files (RF0 and

RF1, respectively). Each register is tagged with a poison

bit and a last-writer sequence number.

The advance pass slices out the six shaded instruc-

tions, which form two dependence chains. At the end

of the advance pass, main register r4 is poisoned and

tagged with the sequence number of its last writer (8).

The first rally is triggered when the first load miss (se-

quence number 0) returns. The second load (sequence

number 7) has not returned and so the instructions that

depend on it (shaded) are re-poisoned and re-activated in

the slice buffer. The slice executes using RF1 as scratch

space. Notice, miss-independent inputs come from the

slice buffer (SL) rather than the register file (RF0). This

example demonstrates the need for a scratch register file

to execute slices. Rally instructions (sequence numbers

0 and 2) cannot write r3 and r4 into the main register

file because these are already over-written by logically

younger instructions (sequence numbers 6 and 8). The

sequence numbering scheme helps avoid these write-

after-write hazards.

The return of the second load miss (sequence number

7) triggers the second rally. This time, main register r4

is tagged with the sequence number of a rally instruction

(8), and so the rally updates the main register file and un-

poisons the register.

When the second rally completes, the slice buffer is

empty and the main register file (RF0) is poison-free.

Conventional in-order execution resumes. The next miss

will trigger a transition to advance mode.

Multithreaded rally. Slices are dependence chains

and unlikely to have an internal parallelism of greater

than one. Even if they did, it is not likely that an in-order

processor could exploit this parallelism. As a result,

it makes little sense to allocate rally bandwidth greater

than one instruction per cycle, even if the processor is

capable of more.

For maximum throughput, iCFP executes rally in-

structions and tail instructions in multithreaded fashion,

with rally instructions given priority. Such multithread-

ing is possible because rally instructions are effectively

decoupled from the rest of the program by virtue of hav-

ing captured their miss-independent inputs during entry

into the slice buffer. Slice instructions are identified ex-

plicitly so the pipeline can ignore dependences between

slice and tail instructions. Multithreaded rallying re-

quires the guarantee that as slices are being processed

from the head of the slice buffer, they can continue to

be properly extended at the tail. iCFP’s gated updates of

main register file poison bits provide this guarantee.

3.2. Store-Load Forwarding

Advance instructions can write to the main register

file because it is backed by a checkpoint. The data cache

is not backed by a checkpoint and so advance stores can-

not write to it. We also don’t assume data cache support

for speculative “transactional” writes or write logging

and rollback [15]. iCFP needs a mechanism to buffer

advance stores so that they drain to the cache in pro-

gram order, forward to younger miss-independent loads

during advance execution, and forward to younger miss-

dependent loads during rallies.

Runahead execution uses a Runahead cache (R$ in

Figure 2b) to support forwarding from advance stores to

miss-independent advance loads in a scalable way [16].

But iCFP requires a more robust mechanism. A Runa-
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19 x3C 14 0 15

20 x40 - 1 16

21 x44 - 1 17

22

23

SSN addr val p SSNlink

Chain
 Table
0 20

4 21

8 19

C 18

SSN

SSNcomplete 19

SSNtail 21

Figure 4. Address-hash chaining

head cache supports only “best-effort” forwarding be-

cause relevant stores may have been evicted from it. It

also does not support program order data cache writes.

Runahead does not need these features because it re-

executes all advance instructions anyway. However,

iCFP re-executes only miss-dependent advance instruc-

tions. It does not re-execute miss-independent stores and

so its mechanism must not evict them. It also doesn’t re-

execute miss-independent loads and so its mechanism

must guarantee correct forwarding for them during ad-

vance execution.

A simple mechanism that provides these features is

an associatively-searched store buffer, a structure al-

ready found in many in-order processors (for ISAs

whose memory models permit). However, traditional

store buffers have relatively few entries as they are pri-

marily used to tolerate store miss latency and improve

data cache bandwidth utilization. iCFP advance mode

may last for many cycles, so the number of advance

stores may be large. Large associative structures are

slow, and area and power inefficient. iCFP uses a large

store buffer that supports forwarding without associative

search, using a technique we call address-hash chaining.

Address-hash chaining. Figure 4 illustrates address-

hash chaining using the code example from Figure 3.

The figure shows an 8-entry store buffer which contains

two valid stores (in thick outline). Address-hash chain-

ing uses the SSN (store sequence number) dynamic store

naming scheme [21]. SSNs are extended store buffer in-

dices that can also name stores that are already in the

cache. A store’s store buffer index is the low order bits

of its SSN. In the example, the two stores have SSNs 20

and 21 and are at store buffer indices 4 and 5, respec-

tively. A global counter SSNcomplete tracks the SSN of

the youngest store to write to the cache (here 19).

Each store buffer entry contains an address, value,

poison bit, and an explicit SSN (SSNlink) which is not its

own. The store buffer is coupled with a small, address-

indexed table called the chain table which maps hashed

addresses (e.g., low-order address bits) to SSNs. Each

chain-table entry contains the SSN of the youngest store

whose address hashes into that entry. For instance, the

entry for low-order address bits 4 points to the store to

address x44 (SSN 21). The SSNlink in each store buffer

entry points to the next youngest store that has the same

address-hash. For example, the SSNlink for SSN 21 (ad-

dress x44) is 17; the store at SSN 17 writes address x34.

Essentially, all entries in the store buffer are chained

by hashed address with the chain table providing the

“root set”. SSNs older than SSNcomplete correspond to

stores that are already in the cache, and act as chain-

terminating “null pointers”.

Loads forward from the store buffer by following the

chain that starts at the chain table entry corresponding to

their address. If a load finds a store with a matching ad-

dress, it forwards from it. If the store is marked as hav-

ing a poisoned data input, the poison propagates to the

load, which then drains to the slice buffer. If the chain

terminates before the load finds a store with a match-

ing address, then the load gets its value from the data

cache. With reasonable chain table sizes (e.g., 64 en-

tries), average chain length can be kept short and aver-

age load latency low. Our experiments show that the av-

erage number of excess store buffer hops per load—the

first store buffer access is “free” because it is performed

in parallel with data cache access—is less than 0.5 for all

benchmarks and less than 0.05 for most. Address-hash

chaining does produce variable load latency, but this is

easier to manage in in-order processors, which do not

use speculative wakeup.

Address-hash chaining supports forwarding to miss-

dependent loads during rallies. Because the chain table

corresponds to the tail of the instruction stream, it may

contain pointers to stores that are younger than miss-

dependent loads. This is not a problem. Re-executing

miss-dependent loads simply follow the chain until they

encounter stores that are older than they are.

Address-hash chaining must stall in one specific

situation—a miss-dependent store with a poisoned ad-

dress. Poison-address stores are relatively rare and are

typically associated with pointer chasing. An address-

poisoned store cannot be properly chained into the store

buffer and proceeding past it removes all forwarding

guarantees for younger advance loads. When iCFP en-

counters a poison-address store, it can either stall or tran-

sition to a “simple runahead” mode that does not commit

miss-independent results.

3.3. Multiprocessor Safety

iCFP uses non-speculative same-thread store-load

forwarding and does not suffer from same-thread mem-

ory ordering violations. However, being checkpoint-

based makes iCFP’s loads vulnerable to stores from
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other threads. iCFP must snoop these loads efficiently.

A large associatively-searched load queue is one op-

tion, but iCFP uses a cheaper scheme based on signa-

tures [4]. iCFP maintains a single local signature. Loads

which get their values from the cache—these are the

loads that are “vulnerable” to external stores—update

the signature with their address. External stores probe

the signature. On a hit, they trigger a squash to the

checkpoint. When a rally completes, the signature is

cleared and the process repeats. Unlike signatures used

to disambiguate speculative threads [4], enforce coarse-

grain sequential consistency [5], or streamline conflict

detection for transactions [22], iCFP signatures are not

communicated between processors.

3.4. Other Implementation Issues

Simple runahead mode. As alluded to in Sec-

tion 3.2, iCFP supports a “simple runahead” mode in

which it uses the scratch register file to implement ad-

vance execution without miss-independent result com-

mit. iCFP transitions to this mode whenever it runs out

of slice buffer or store buffer entries or encounters a store

with a poisoned (i.e., unknown) address. When the cor-

responding condition resolves, iCFP resumes “full” ad-

vance execution.

Slice buffer management. iCFP requires that in-

structions in the slice buffer appear in program order.

When combined with multi-threaded advance/rally, this

implies that rally execution cannot dequeue instructions

from the head of the slice buffer and then re-inject them

at the tail as this would allow re-circulated slice instruc-

tions to interleave with new sliced instructions from the

tail. Instead, iCFP marks a processed slice instruction

as “un-poisoned”, and simply “re-poisons” its existing

entry if the instruction has to be re-circulated. Rally-

ing simply skips un-poisoned slice buffer entries. Bank-

ing the slice buffer with some degree that is higher than

re-injection bandwidth reduces the bandwidth cost of

skipping un-poisoned entries [13]. In iCFP, the slice

buffer isn’t incrementally compacted, rather successive

rally passes make it increasingly “sparse”, although en-

tries can be reclaimed incrementally from the head. This

makes the slice buffer somewhat more space inefficient

than it otherwise could be, but it does enable several

bandwidth optimizations including multi-threaded rally.

Exploiting additional poison bits. iCFP uses poi-

son bits to track load misses and their dependent-

instructions. When a miss returns, instructions that de-

pend on the miss are processed. But so are younger in-

structions that depend on any miss, whether or not that

miss has returned. iCFP can reduce this inefficiency by

replacing poison bits with poison bitvectors where they

occur—in the register files, in the store buffer, and in the

slice buffer.

Whenever a load miss is initially poisoned it is al-

located a bit in a bitvector. Load misses to the same

MSHR (i.e., cache line) are allocated the same bit,

whereas loads to different MSHRs may share a bit. The

precise assignment of poison bits to MSHRs is unimpor-

tant, a simple round-robin scheme is sufficient. A regis-

ter or store is considered poisoned if any poison bit in its

poison bitvector is set and instructions are sliced out ac-

cordingly. Rallies are initiated by miss returns and so the

processor knows which bits are being “un-poisoned”.

Instructions which do not have any of these particular

bits set are skipped—regardless of whether they have

any other poison bits set.

The maximum number of useful poison bits is the de-

gree of MLP iCFP can uncover—beyond software and

hardware prefetch. Experiments show that programs can

benefit from up to about 8 poison bits. 8 poison bits pro-

vide a 1.5% average performance gain over a single bit.

mcf sees a 6% benefit.

4. Some Comparisons

SLTP. SLTP (Simple Latency Tolerant Processor)

implements non-blocking advance with blocking ral-

lies and commit of miss-independent advance instruc-

tions [17]. SLTP’s blocking rally limitation comes from

its register file design and register dependence tracking

scheme. Specifically, SLTP uses a single register file and

two checkpoints rather than two register files and a sin-

gle checkpoint. It also tracks only poison information,

not last writer identity. As a result it does not support

partial updates to the main register file during slice re-

execution. The main register file is “reconciled” only

when the entire contents of the slice buffer have suc-

cessfully re-executed.

SLTP also has a different data memory system, one

based on the SRL (Store Redo Log) scheme [10]. Ad-

vance stores write their results into the SRL, a simple

FIFO. Miss-independent stores also speculatively write

to the data cache from where they can forward to miss-

independent loads. When a rally begins, the speculative

cache writes are discarded and the SRL is drained to the

cache. Slice re-execution and SRL draining are inter-

leaved in program order. The SRL design supports only

“best effort” poison bit propagation—dependence pre-

diction is used to propagate poison from miss-dependent

stores to loads that forward from them. This specula-

tion is verified by searching a large set-associative load

queue. When an STLP rally completes, the specula-

tive cache blocks are made non-speculative. iCFP’s data

memory system—address-hash chained store buffer and
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load signature—is both simpler and provides higher per-

formance. We compare the two memory systems exper-

imentally in Section 5.2.

Multipass Pipelining. “Flea-flicker” Multipass

pipelining [3] is a different extension to Runahead ex-

ecution. Whereas iCFP commits the results of miss-

independent advance instructions and skips them dur-

ing rallies, Multipass saves miss-independent results in

a buffer and uses them to accelerate rallies by breaking

data-dependences and increasing ILP. Section 5.1 com-

pares iCFP to Multipass.

Rock. We don’t have many details about Sun’s

Rock [26], but we know it implements a non-blocking

in-order pipeline. Rock uses checkpoints and a slice

buffer to defer miss-dependent instructions. Its imple-

mentation is described as two threads that leapfrog each

other, passing the designation of architectural thread

back and forth. It is not clear whether Rock makes mul-

tiple passes over the slice buffer or whether the architec-

tural thread stalls when it encounters dependent misses.

There is no description of Rock’s data memory system.

CPR/CFP, D-KIP, and TCI. iCFP is inspired by

(out-of-order) CFP. CFP uses the out-of-order sched-

uler to capture and isolate the forward slices of L2

misses, preventing those instructions from tying up reg-

isters [13] and issue queue entries [24]. CFP targets L2

misses exclusively because the out-of-order engine can

tolerate L2 hits.

CFP was initially implemented on top of a register-

efficient checkpoint-based substrate (CPR) [1], but the

CFP principle is easily applied to ROB-based sub-

strates [7]. One ROB-based CFP implementation, D-

KIP (Decoupled KILO-Instruction Processor) [20], re-

executes L2-miss slices on a scalar in-order pipeline.

Another, MSP (Multi-Scan Processor) [18] leverages

multiple in-order pipelines to make multiple passes over

the slice buffer. iCFP implements this functionality in a

single in-order pipeline and uses it to tolerate misses at

all cache levels. Its use of a single in-order pipeline also

allows it to use a simple chained store buffer as opposed

to a distributed load store queue [19].

TCI (Transparent Control Independence) [2] is a CFP

derivative that uses in-order rename-stage slicing to re-

duce the branch mis-prediction penalty in an out-of-

order processor. iCFP borrows the poison bitvector op-

timization from TCI.

ReSlice. ReSlice uses slice re-execution to reduce the

cost of thread live-in mis-speculation in a speculatively

multi-threaded architecture [23]. Re-slice tracks slices

originating in different thread live-in seperately, but can

handle some slice overlaps. It can deal with some mem-

ory data hazards by recording values read by slice loads

and over-written by slice stores. iCFP interleaves all

slices in a single slice buffer. iCFP can deal with all

slice overlaps and its use of a chained store buffer iso-

lates slice re-execution from memory data hazards.

5. Experimental Evaluation

We evaluate iCFP using cycle-level simulation on

the SPEC2000 benchmarks. The benchmarks are com-

piled for the Alpha AXP ISA at optimization level -O4.

Benchmarks run to completion with 2% periodic sam-

pling. Each 1 million instruction sample is preceded by

a 4 million instruction cache and predictor warmup pe-

riod. Our simulator cannot execute fma3d and sixtrack.

The timing simulator is based on the SimpleScalar

3.0 machine definition and system call modules. It sim-

ulates advanced branch prediction, an event-driven non-

blocking cache hierarchy with realistic buses and miss-

status holding registers (MSHRs), as well as hardware

stream buffer prefetching. Table 1 describes our config-

uration in detail.

5.1. Comparative Performance

Figure 5 shows percent speedup over an in-order

pipeline for Runahead, Multipass, SLTP, and iCFP. The

different micro-architectures are configured similarly,

but differ in the types of misses under which they block

or advance. Runahead and SLTP advance under all

L2 misses, but block on all—i.e., both primary and

secondary—data cache misses. Multipass advances un-

der all L2 misses and primary data cache misses, but

blocks on secondary data cache misses. iCFP advances

under all primary and secondary misses. These settings

produce the best results for each micro-architecture un-

der our default configuration, specifically a 20-cycle L2

hit latency. Runahead and SLTP don’t advance under

primary data cache misses because in both, there is a

small cost relative to the baseline in-order pipeline—

which stalls on the first miss-dependent instruction, not

the miss itself—for advancing under a miss that doesn’t

expose additional misses. In Runahead, this cost is in-

curred because the transition to advance mode happens

immediately, causing instructions younger than the miss

to be effectively discarded. In SLTP, the cost is asso-

ciated with draining the SRL. With a 20-cycle L2 hit

latency and a 10 stage pipeline, advance execution ef-

fectively has only 10 cycles to uncover an independent

miss under a data cache miss. The chances of doing so

are too low to overcome the small “startup” penalties as-

sociated with Runahead and SLTP.

On average (geometric mean over all of SPEC2000),

iCFP improves performance by 16%, Multipass by 11%,
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Bpred 24 Kbyte 3-table PPM direction predictor [14]. 2K-entry target buffer. 32-entry RAS.

Pipeline 10 stages: 3 I$, 1 decode, 1 reg-read, 1 ALU, 3 D$, 1 reg-write. 2-cycle fp-add, 4-cycle int/fp multiply

Execution 2-way superscalar, 2 integer, 1 fp/load/store/branch

I$/D$ 32 Kbyte, 4-way set-associative, 64 byte line, with 8-entry victim buffer, 32-entry associative store buffer

L2 1 Mbyte, 8-way set-associative, 128-byte line, with 4-entry victim buffer, 20-cycle L2

Prefetchers 8 stream buffers with 8 128-byte blocks each

Memory 400 cycle latency to the first 16 bytes, 4 cycles to each additional 16 byte chunk. 64 outstanding misses

Runahead 256-entry runahead cache

Multipass 256-entry runahead cache, 128-entry instruction buffer, no compiler RESTART directives

SLTP 128-entry SRL, 128-entry slice buffer, idealized memory dependence prediction and load queue

iCFP 128-entry chained store buffer, 512-entry chain table, 128-entry slice buffer, 8-bit poison vectors

Table 1. Simulated processor configurations
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Figure 5. Runahead, Multipass, SLTP, and iCFP speedup over in-order

Runahead by 11%, and SLTP by 9%. For SPECfp,

the four provide improvements of 21%, 15%, 15%, and

12%, respectively. SPECint improvements are 12%,

7%, 7%, and 5%. It is important to remember that

the baseline processor includes stream buffer prefetch-

ing. It is also important to remember that the geometric

means include several programs, mesa, eon and vortex to

name three, which have few cache misses and essentially

never enter advance mode—Table 2 contains a bench-

mark characterization which includes data cache and L2

misses per 1000 instructions. Programs with many data

cache and L2 misses like ammp, applu, art, mcf, and vpr

all see speedups of 40% or greater.

The important observation from Figure 5 is that iCFP

matches or outperforms the three other schemes in ev-

ery case except one minor exception—on facerec, SLTP

out-performs iCFP by 0.3%. The effect in play here

is that, in SLTP, speculatively-written lines cannot be

evicted. This perturbs the replacement sequence in

a way that happens to reduce misses. Overall, how-

ever, SLTP’s use of an SRL-based data memory system

severely limits its performance, and occasionally yields

slow-downs over the baseline in-order pipeline (e.g. 9%

on galgel). An SRL-based design requires speculatively

written lines to be flushed from the data cache before

a rally, potentially increasing D$ misses and load la-

tency (on galgel, load latency increases by 7%). An

SRL-based scheme also requires that slice re-execution

be inter-leaved with SRL draining, and this counter-acts

most of the benefit of skipping miss-independent in-

structions. The SRL must also be completely drained

before “tail” execution can resume. Finally, the require-

ment of single-pass blocking rallies constrains SLTP on

programs with dependent misses, e.g., mcf and vpr.

439

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 8, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.



Bench

ammp

applu

apsi

art

equake

facerec

galgel

lucas

mesa

mgrid

swim

wupw

bzip2

crafty

eon

gap

gcc

gzip

mcf

parser

perl

twolf

vortex

vpr

Miss/KI

D$ L2

23 5

21 3

19 0

122 19

26 1

10 3

14 0

19 0

1 0

13 0

28 5

5 1

5 1

4 0

10 0

5 1

11 0

11 0

115 46

10 1

4 0

20 0

2 0

19 3

D$ MLP

iO RA iCFP

1.1 2.3 2.5

2.2 5.4 5.9

2.2 2.2 2.7

2.6 23.9 43.6

1.4 1.9 2.1

11 22.5 22.5

1.2 1.3 1.4

1.3 1.3 1.4

1.1 1.1 1.1

1.5 3.4 4.7

5 8.9 11.0

1.9 3.1 3.3

2.0 2.5 2.5

1.0 1.1 1.1

1.0 1.1 1.1

1.5 1.9 2.0

1.3 1.6 1.6

1.1 1.2 1.5

3.1 4.6 5.0

1.0 1.1 1.1

1.1 1.2 1.2

1.1 1.1 1.2

1.1 1.3 1.4

1.1 1.7 1.8

L2 MLP

iO RA iCFP

1 1.9 2

2 5.5 5.9

6.8 4.2 4.2

1.8 18.4 35.5

1.5 2.3 2.4

41.7 73.4 73.1

1.9 3.6 4.0

1.0 1.0 1.0

4.2 2.8 2.8

1.5 7.8 12.0

4.1 8.4 12.1

1.6 2.6 2.9

3.2 3.6 3.8

1.0 1.2 1.2

1.1 1.8 1.7

2.8 2.4 2.4

3.6 2.9 2.9

8.3 8.0 8.8

2.9 4.2 4.5

1.1 1.1 1.1

1.2 1.5 1.5

1.1 1.3 1.3

1.3 1.4 1.4

1.1 1.7 1.8

Rally/KI

iCFP

428

105

49

951

290

64

48

65

3

15

64

33

32

29

3

29

38

94

2876

238

26

224

15

187

Table 2. iCFP diagnostics

Rally overhead. iCFP outperforms Runahead and

Multipass because its rallies can skip miss-independent

advance instructions. Multipass has a limited form

of rally acceleration (dependence-breaking) and usually

slightly out-performs Runahead. Table 2 shows the

number of instructions iCFP re-executes in rally mode

per 1000 program instructions. This number can be

greater than 1000 because iCFP makes multiple rally

passes—for long chains of dependent misses (e.g., mcf )

iCFP makes as many rally passes as there are dependent

misses in the chain. Nevertheless, iCFP’s rally overhead

is lower than that of Runahead and Multipass.

MLP. Faster rallies and uniform non-blocking also

help increase MLP. Table 2 shows data cache and L2

MLP for in-order (iO), Runahead (RA), and iCFP. iCFP

boosts MLP over both in-order and Runahead in almost

all cases. Note, our simulated processor can only prac-

tically exploit an L2 MLP of 12, because of the ratio of

memory latency (400 cycles) to memory bus bandwidth

(one L2 cache line every 32 cycles).

Tolerating all-level cache misses. The main claim

of this paper (see title) is that iCFP’s combination of

features—minimal rallies and uniform non-blocking—

allow it to tolerate both short and long cache misses in an

in-order processor. Our results support this claim. The

examples in Figure 1 should provide some intution. To

gain further insight, we repeat our Runahead and iCFP

experiments with different L2 hit latencies. Figure 6

-20
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20

40

in-order

RA-L2

RA-L2/D$ primaryiCFP-L2

iCFP-all RA-all

% Speedup over In-Order, 20-cycle L2 hit
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-10

0

10

20
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Figure 6. L2 hit-latency sensitivity

shows results for benchmark equake and for geometric

mean over all of Spec. We experiment with two differ-

ent iCFP configurations, one that advances only on L2

misses and one that advances under all misses. We also

show three Runahead configurations, one that advances

under L2 misses only, one that also advances under pri-

mary data cache misses, and one that advances under all

misses, including secondary data cache misses.

The SPEC average results justify our choice of L2-

only advance as the Runahead configuration. They also

confirm the intuition that at higher L2 hit latencies, al-

lowing Runahead to advance on data cache misses be-

comes profitable. The equake results illustrate the sec-

ondary data cache miss dilemma faced by Runahead.

At short L2 hit latencies, equake prefers that Runahead

block on secondary data cache misses. At higher L2

hit latencies, it prefers that Runahead advance on those

misses. In iCFP, advancing on any data miss is profitable

at virtually any L2 hit latency.

5.2. Feature Contribution Analysis

iCFP feature “build”. We performed additional ex-

periments to isolate the performance contributions of

iCFP’s various features. Figure 7 shows these experi-

ments as a “build” from SLTP, the leftmost bar in the

graph. All bars in this build allow advance execution

on any miss, as iCFP does. The second bar replaces

SLTP’s SRL-based memory system with iCFP’s chained

store buffer. In itself, the chained store buffer provides

440

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 8, 2009 at 09:34 from IEEE Xplore.  Restrictions apply.



0

10

20

30

40

50

60

70

SRL memory system, single blocking rallies (SLTP)
+ Address-hash chaining
+ Multiple non-blocking rallies
+ 8-bit poison vectors 
+ Multithreaded rallies (iCFP)

0.24 0.73 0.26 0.57 1.10 0.80 0.71 0.90 0.05 0.37
ammp applu art equake swim SPECfp bzip2 gap gzip mcf vpr SPECint

% Speedup over In-Order

Figure 7. iCFP feature performance analysis
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Figure 8. Store buffer effects

an average performance gain of about 2%, although in-

dividual programs (e.g., applu and swim) benefit more

significantly. The bigger contribution of the chained

store buffer is that it enables non-blocking rallies, which

are added in the third bar. Non-blocking rallies add an

average of 7% to performance and greatly improve the

performance of programs with many dependent misses

(e.g., mcf and vpr). Using 8-bit poison vectors instead

of singleton poison bits allows rallies to skip instructions

that are independent of the particular miss that just re-

turned. The final feature—although it requires no ad-

ditional support over non-blocking rallies—is the ability

to multi-thread rallies with execution of new instructions

at the tail.

Store buffer alternatives. Figure 8 compares our

chained store buffer to two other designs: an idealized,

fully-associative store buffer, and an indexed store buffer

that supports limited forwarding. In the limited forward-

ing scheme, the pipeline stalls if a load “hits” in the

chain table but doesn’t match the address of the corre-

sponding store—this is the iCFP equivalent of out-of-

order CFP’s SRL/LCF scheme [10]. Intuitively, this

configuration performs poorly. In out-of-order CFP,

younger instructions can flow around a stalled load;

in iCFP, they cannot. More surprising is that chain-

ing closely tracks the performance of idealized fully-

associative search. The difference between these two

is less than 1% for every program. The reason is that

the average number of “excess” store buffer hops per

load is low. The only two benchmarks which average

more than 5 extra hops per hundred committed loads

are ammp (18) and art (47). Chaining performance is

a function of chain table size. A 64-entry chain table

reduces performance—relative to a 512-entry table—by

0.3% on average with a maximum of 4% (ammp).

5.3. Area Overheads

We use a modified version of CACTI-4.1 [25] to esti-

mate the area overheads of Runahead, Multipass, SLTP,

and iCFP in 45nm technology. Runahead overhead in-

cludes the poison bits and Runahead cache. Multipass

overhead includes poison bits, result buffer, forwarding

cache, and load disambiguation unit. STLP overhead

includes poison bits, SRL, and load queue (we do not

count the memory dependence predictor). iCFP over-

head comprises poison bits, sequence numbers, store

buffer, chain table, and signature. We do not count the

scratch register file as overhead because it also supports

multi-threading. We do count the cost of the shadow-

bitcell checkpoints which we estimate for a 6-port regis-

ter file using the proposed layout [9].

Assuming 128-entry slice/result buffers, a 512-entry

chain table, 8-bit poison vectors, 10-bit sequence num-

bers, a 256-entry forwarding cache, and a 256-entry

load queue, we estimate the area overheads of Runa-

head, Multipass, SLTP, and iCFP as 0.12, 0.22, 0.36,

and 0.26 mm2, respectively. These footprints are small

relative to the area of a 2-way issue in-order processor

(with floating-point) which we estimate to be between 4

and 8 mm2 in this technology. Certainly, iCFP’s perfor-

mance advantages over Runahead and Multipass justify

its marginal area cost. iCFP out-performs SLTP despite

a smaller area footprint.

Additional experiments show that a 2-way issue out-
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of-order processor has a 68% performance advantage

over our 2-way in-order pipeline, while a 2-way issue

(out-of-order) CFP pipeline has an 83% advantage. Cer-

tainly these are greater than the 16% advantage that

iCFP provides. However, these designs need somewhat

more than 0.26 mm2 to provide their respective gains.

6. Conclusions

Due to power concerns, multi-threaded in-order pro-

cessors are beginning to replace out-of-order processors

even in high-performance chips. In this paper, we show

how to use an additional thread context to recoup some

of the single-thread performance lost in this transition.

We describe iCFP, an in-order implementation of con-

tinual flow pipelining which uses an additional register

file to execute deferred miss-dependent instructions.

iCFP is related to previous proposals like Runahead

execution, Multipass pipelining, and SLTP (Simple La-

tency Tolerant Processor). But it contains a unique com-

bination of features not found in any single previous pro-

posal. First, it supports non-blocking under all types of

cache misses, primary, secondary, and dependent. Sec-

ond, when advancing under any miss, it can “commit”

all miss-independent instructions and skip them during

subsequent passes of the same code region. This feature

combination is enabled by an enhanced register depen-

dence tracking mechanism and a novel store buffer de-

sign, and it allows iCFP to effectively tolerate misses at

any cache level.
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