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Abstract tal L2 cache capacity efficiently. Although many hybrid L2
cache management techniques try to overcome the deficien-
cies of shared and private caches [5-11], their applidgbili

to many-core CMPs at scale is uncertain.

The number of cores in a single chip multiprocessor is ex-
pected to grow in coming years. Likewise, aggregate on-chip

cache capacity is increasing fast and its effective utiliza While much effort is paid on how to program and utilize

tion is becoming ever more |mp0rtant: _Furthermore, avail- the parallelism from future CMPs, the accelerating trend of
able cores are expected to be underutilized due to the power

: . extreme system integration, clearly exemplified by data cen
mingi;;%my thifcgheen;%unsafu;lrjr:zr\llrct)(;lc(:lr?r?idie?l];gee?fi ter servers with cloud computing, will make future work-
tive for two r%blemS' increase% capacit intgrference be- f6ads more heterogeneous and dynamic. Specifically, a

P ' pacity cloud computing environment will have many-core CMPs
tween working cores and longer L2 access latency. We pro- N : . .
hat execute applications (and virtual machines) which be-
pose a novel scalable cache management framework calle

CloudCache that creates dynamically expanding and shrink- ong to different clients. Morepver, the average processor
. ; o , usage of a data center server is reportedly around 15-30%.
ing L2 caches for working threads with fine-grained hard-

ware monitoring and control. The key architectural com- However, peak-time usage often faces a shortage of comput-
g ' y architectu ing resources [12,13]. These characteristics and the meed t

ponents of CloudCache are L2 cache chaining, inter- and :

: L . run heterogeneous workloads will become more pronounced

intra-bank cache partitioning, and a performance-optieaiz

) . . in the near future, even for desktops and laptops.
coherence protocol. Our extensive experimental evalnatio

demonstrates that CloudCache significantly improves per- Future heterogeneous workloads will need scalable and
. g y Imp PeT nalleable L2 cache management given the hundreds of cores
formance of a wide range of workloads when all or a subset

of cores are occupied Iikely.in a QMP. Scalability must become the primary design
' consideration. Moreover, a new cache management scheme

must consider both low and high CPU utilization situations.
1. Introduction With low utilization, the excess L2 cache capacity in idle
cores should be opportunistically used. Even when all cores
are busy, the cache may still be underutilized and could be
gffectively shared.
This paper propose€loudCache a novel distributed
cache substrate for many-core CMPs. CloudCache
has three main componentdynamic global partitioning
distance-aware data placemerand limited target broad-
cast Dynamic global partitioning tries to minimize detri-
mental cache capacity interference with information about
each thread’s capacity usage. Distance-aware data place-
ment tackles the large NUCA effect on a switched network.
Finally, limited target broadcast aims to quickly locate a
locally missing cache block by simultaneously inspecting
_nearby non-local cache banks. This broadcast is limited by
the distance-aware data placement algorithm. Effectively
CloudCache overcomes the latency overheads of accessing
éhe on-chip directory. Our main contributions are:

Many-core chip multiprocessors (CMPs) are near—major
processor vendors already ship CMPs with four to twelve
cores and have roadmaps to hundreds of cores [1, 2]. Som
manufacturers even produce many-core chips today, such aﬁz
Tilera’s 100-core CMP [3] and Cisco’s CRS-1 with 192 Ten-
silica cores [4]. For current and future CMPs, tile-based ar
chitectures are the most viable. A tile-based CMP is com-
prised of multiple identical tiles each with a compute core,
L1/L2 caches, and a network router. In this kind of design,
the tile organization is not dramatically changed suceessi
processor generations. This trend implies that more tilés w
lead to more aggregate L2 cache capacity.

Effectively managing a large L2 cache in a many-core
CMP has three critical challenges: how to manage capac
ity (cache partitioning), how to avoid inter-thread intarf
ence (performance isolation), and how to place data (min-
imizing access latency). These challenges are more acut

at a large core count, and current approaches for a small « Dynamic global partitioning. We introduce and ex-
number of cores are insufficient. A shared cache suffers plore distributed dynamic global partitioning. Cloud-

from uncontrolled capacity interference and increased-ave Cache coordinates bank and way-level capacity parti-
age data access latency. A private cache does not utilize to-  tjons based on cache utilization. We find that dynamic
This work was supported in part by NSF grants CCF-0811295F-CC global partitioning is especially beneficial for highly

0811352, CCF-0702236, CCF-0952273, and CCF-1059283. heterogeneous workloads (e.g., cloud computing).



Scheme Org. | Type Key idea Dynamic | Explicit Dist. Tiled | QoS | Coherence
Partition alloc. aware. | CMP
CMP-DNUCA [14] | Dist. S Private data migration v Dir
VR [5] Dist. S Victim replication v v Dir
CMP-NuRAPID [6] | Dist. P Decoupled tag v v BC
CMP-SNUCA [15] | Dist. S Dynamic sharing degree v v Dir
CC[7] Dist. P Selective copy Dir
ASR [8] Dist. P Selective copy w/ cost estimation BC
UMON [16] One S Utility-based partitioning v BC
V-Hierarchy [17] Dist. S Partitioning for VMs v v Dir
VPC [18] One S Bandwidth management v BC
DSR [9] Dist. P Spill, receive v BC
R-NUCA [10] Dist. S Placement w/ P-table v v Dir
BDCP [11] Dist. P Bank-aware partitioning v v v BC
StimulusCache [19]| Dist. P Dynamic sharing of excess caches v v Dir
Elastic CC [20] Dist. P Local bank partitioning w/ global sharing v v Dir
CloudCache Dist P Distance-aware global partitioning v v v v v Dir+BC

Table 1. Related cache management proposals and CloudC&styanization: “One” (one logical bank) or “Dist.” (distributed banks).
Type: “S” (shared) or “P” (private) Dynamic partitioning: cache capacity can be dynamically allocatBdplicit allocation: non-shared
cache capacity is explicitly allocatediled CM P: applicability to tiled CMP (even if the original proposabe not for tiled CMP)QoS:
quality of service supportCoherence: “BC” (broadcasting-based) or “Dir” (directory-based).

» Distance-aware data placement and limited target the schemes according to six parameters. Compared with
broadcast. We show the benefit of distance-aware ca- other techniques, CloudCache (the last row) has notable dif
pacity allocation in CloudCache; it is particularly use- ferences in the context of supporting many-core CMPs: dy-
ful for many-core CMPs with a noticeable NUCA ef- namic partitioning that involves many caches, explicithpno
fect. The full benefit of distance-aware data placement shared cache allocation to each program, awareness of dis-
is realized with limited target broadcast. The perfor- tance to cached data, and quality of service (QoS) support.
mance improvement is up to 16% over no broadcast. CMP-DNUCA [14], victim replication [5], and CMP-

« CloudCache design. We detail an efficient Cloud- NURAPID [6] place private or read-only data in local banks
Cache design encompassing our techniques. The keyf© reduce access latency. CMP-SNUCA [15] allows each
architectural components are: L2 cache chaining, inter- thread to have different shared cache capacity. Coopera-
and intra-bank cache partitioning, and a performance-tive Caching (CC) [7] and Adaptive Selective Replication

correctness decoup|ed coherence protocol' (ASR) [8] SeleCtiVely evict or replicate data blocks such
that effective capacity can be increased. The utility moni-

tor (UMON) [16] allocates the capacity of a single L2 cache
ased on utilization. Marty and Hill proposed the Virtual
Hierarchy (VH) [17] to minimize data access latency of a
distributed shared cache with a two-level cache coherency
mechanism. The Virtual Private Cache (VPC) [18] uses a
hardware arbiter to allocate cache resources exclusieely t

consistently boosts performance of co-scheduled pro_each core in a shared cache. These proposals do not support

grams by 7.5%—18.5% on average (up to 34% gain). It explicit cache partitioning (i.e., capacity interfereramnot
outperforms both DSR and ECC be avoided), or they are unable to efficiently and dynami-

cally allocate the distributed cache resources.

In the remainder of this paper, we first summarize related  More recently, Dynamic Spill-Receive (DSR) [9] sup-
work in Section 2. Section 3 presents a detailt_ed des_criptionports capacity borrowing based on a private cache design.
of CloudCache and its hardware support. Section 4 gives OUIR-NUCA [10] differentiates instruction, private data and
experimental setup and results. The paper’s conclusi@ns ar shared data and places them in a specialized manner at page
summarized in Section 5. granularity with OS support. BDCP [11] explicitly allocate
2 Related Work cache_ capacity tp threagls Wlth local banks and Center.banks.
It avoids excessive replication of shared data and plades pr

MUCh. work has been done to improve "’F“d’or solve the dGﬁ_vate data in local L2 banks. StimulusCache [19] introduced
ciencies of the common shared and private cache schemeﬁ. . . n
echnigues to utilize “excess caches” when some cores are

While there are many cache management schemes available,; . o .
Table 1 summarizes the key ideas and capabilities among th disabled to improve the chip yield. Lastly, Elastic Coopera

schemes most related to CloudCache. The table compare(-éve Caching (ECC) [20] uses a distributed coherence engine

* An evaluation of CloudCache. We comprehensively
evaluate our proposed architecture and techniques. W
compare CloudCache to a shared cache, a private
cache, and two relevant state-of-the-art proposals, Dy-
namic Spill-Receive (DSR) [9] and Elastic Cooperative
Caching (ECC) [20]. We examine various workloads
for 16- and 64-core CMP configurations. CloudCache
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Figure 1. (a) Overview of CloudCache with nine home cores. (b) An exangptwo home cores; core 4 has a larger cachelet than core
2. (c) An example virtual private L2 cache description of. (Jore ID” refers to the list of cores contributing to a cafgte Core IDs are
sorted in increasing distance from the home core. “Tokemtas the number of cache capacity units contributed to #ehelet. “cachelet
capacity” is the sum of all token counts.

for scalability. It allows sharing of the “local partitiorof hop away (core 1, 5, 7, and 3). These cores provide a capac-
each core if the core does not require all the capacity of itsity of 20 to the thread on core 4. The final positions in the
local partition. None of these recent proposals can avoid ca stack are the farthest away (core 6, 8, and 2); they dedicate
pacity interference and long access latency at scale. an additional aggregate capacity of 7. The figure also shows

Compared to these proposals, CloudCache does moreore 2. The thread on this core needs a capacity of 6, which
effective globally-coordinated dynamic partitioning. déa  can be provided locally. Lastly, the cores in the core ID list
thread has non-shared exclusive cache capacity, which inform a “virtual L2 cache chain,” somewhat similar to [19].
herently avoids capacity interference. It also addredsest For example, when core 4 has a miss, the access is directed
NUCA problem for a large CMP, caused by distributed cache to core 1, then to core 5, and so on (from the MRU position
banks, directory, and memory controllers. to later positions).

3. CloudCache 3.1. Dynam?c global partmomng. _
The allocation of cachelets requires careful global cawadi

We begin with a high-level description of CloudCache. Fig- tion because cache capacity and proximity have to be consid-

ure 1(a) depicts nine *home cores” where nine active threadsered simultaneously to achieve a good decision. CloudCache

are;]_eﬁecuted.” H?mer::()lretf Tr?vte a V|tr)t_ual prlvar:e L2 Ca(?thehas aglobal capacity allocato(GCA) for this purpose. The
(which we call a “cachelet’) that combines cache capacity GCA collects information about cache demand changes of

frorr;] abthriadg T}??e (t:]ore ;\nd nelgg-?forlngt cor(;s.l :Nh'le Eome cores and performs global cache partitioning. It uses
cache banks might be shared among different cachelets, eac utility monitor similar to UMON [16], with an impor-

core is given its own exclusive cachelet to avoid interfeeen tant modification to support many-core CMPs. The origi-

Yg;nyoémgzzgflec dh?:;se' d Err']etﬁgegg%gf dae;?nhdefft t'ﬁedglhr}z:&nal UMON scheme evaluates all possible partition choices
on the home core and the demands of threads on neighbor\-NIth duplicated tags in a set-associative array. In UMON,

) ) i . th ber of for the duplicated t is th -
ing cores (which have their own cachelets). For example, in © humber ot ways ‘or fhe duplicated fag array 1s the num

. . .. ber of cores in the CMP multiplied by the associativity of a
Figure 1(a), core 3 has been given the largest cache capacity, » ohe slice. For a many-core CMP, the overhead of the du-

If core 6 needs to grow its cachelet, the adjacent cacheletsplicated tag array is high. The original UMON scheme re-

(cachelet 3, 5, 8, and 9) adjust their size to give some capac-_ . i ; . i
ity to core 6. Cachelets are naturally formed in a cluster to quires a 512-way duplicated tag array per tile for a 64-core

L CMP with an 8-way L2 cache per tile. To overcome this
minimize the average access latency to data.

. overhead, we limit the monitoring scope and evaluate each
Cachelets can be compactly represented. Figure 1(b) ; o . .

. . core’s additional cache capacity benefit of up to 32 ways,
gives a second example with only two home cores. Core

. which is four times the local cache capacity for an 8-way
4 has a larger cachelet than core 2. Figure 1(c) further shows_. . :
the LRU stack for core 4 and core 2’s cache cachelets. Theshce. For example, a thread with a capacity of 64 ways

tack i tes th he sli f all neiahb A th is able to have at most 96 ways at the next capacity allo-
stack incorporates the cache slices of all neighbor co cation. Our evaluation shows this modification works well
participate in a cachelet. The stack is formed based on the

hop distance to a neighbor. The highest priority position with lower hardware cost than the full UMON schefe.
(MRU) is the local slice. In core 4, the MRU position has To gather information for capacity allocation decisions,

an 8 in this example. The value in a position indicates how each core sends hit countinformation to the GCA once every
pie. . b monitoring period. We experimentally determine that 64M
many ways out of cache slice are allocated to the thread.

S . cycles works well for our benchmarks. The hit count infor-
The 8 in this case specifies that all 8 ways of the local cache y
slice have pe_en allocated to the thread on core 4. The nexty, general, this “monitoring range” is a design-time demisbased on
several positions record the capacity from cores that aee on cache capacity and target workload.
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Figure 2. (a) Hardware architecture support for CloudCache. (b)udirt.2 cache chain example.

mation includes the L2 cache and monitoring tag hit count to the last LRU stack of the cachelet. Finally, core 46 has a
for each LRU stack position. The network traffic for trans- table entry for core 54 with the next core ID set to 54, the
mission of this information is very small. Once the GCA home core for the cachelet. This denotes that this core 46's
receives the counter values from all home cores, the coun-cache slice is the last LRU stack position in the cachelet.
ters are saved in a buffer. The total number of counters is
N x (K + 32) whereN is the number of cores ani is the

L2 cache associativityNV x K counters are used for the hit
counts andV x 32 tag hit counters are used to estimate the

3.2. Distance-awar e data placement

The GCA uses the modified UMON scheme to determine
the capacity demand for each thread on the CMP. With this
benefit from additional cache capacity up to 32 ways. For information, the GCA decides which L2 cache(s) to use for

example, a 64-core CMP with an 8-way L2 cache slice has@ cachelet. It then uses a greedy distance-aware placement
2,560 16-bits counters in a small 5KB buffer. The GCA uses strategy on a cachelet for each thread. Cache capacity for

the counter buffer to derive near optimal capacity allamati each thread is allocated to the local L2 bank first to mini-
Figure 2(a) shows the per tile hardware architecture for mized access latency. If more capacity than L2 bank is al-
CloudCache. Each tile has monitor tags, hit counters angdlocated to a thread, remote L2 banks should be used for the
a “cachelet table”. CloudCache monitors cache capacityeXtra capacny allocation. Our strategy allocates capdoit
usage for each core with the hit counters. The potential "€ads in the order of larger capacity demand. Target L2

benefit of increasing capacity is estimated with the monitor Panks with shorter distance to the thread are selected.
tags. Whenever a cachelet evicts a data block, the address Once cache banks are selected for threads, chain link al-

of the evicted data block is sent to the home core so that/ocation is performed. .The Iocall L2 bank (i.e., the closest
it can be used to estimate hit counts if the capacity should L2 bank to the thread) is located in the top LRU stack of the

t chain link. The farthest L2 bank is used for the bottom LRU

be increased. The cachelet table describes a virtual priva ) ,
stack, and is connected to the main memory.

L2 cache as a linked list of the cache slices that form the
cachelet. Itis used to determine the data migration path on3 3. Fast data access with limited target broadcast

cache e\{ictions and to determine how much of a partif:UlarCIoudCache quickly locates nearby data on a local cache
cache slice can be used by a cachelet. Each entry in thenjss with limited target broadcast This technique effec-
cachelet table has three fields: the home core ID, th_e Nextjvely hides directory lookup latency. In a packet-based ne
core ID, and the token count. The home core ID indicates york, the directory manages the order of requests such that
the owner of the cachelet. When data is found in a particu- packets avoid race conditions. To access a remote L2 cache,
lar cache slice, that slice delivers it to the home core. The 5 gre needs to access the directory first even if the remote
next core ID indicates the target of an eviction from a cache | 3 cache is only one hop away. To avoid this inefficiency,
slice. If the next core ID and the home core ID are the same, e design dimited target broadcast protocgLTBP). LTBP

then the evicted data is sent to main memory (i.e., next coréy|iows fast access to private data while shared data is pro-
ID==home core ID is the list tail). The token countindicates cessed by a conventional directory protocol. To reduce net-
how many ways of a cache slice are dedicated to a cachelet§york traffic, LTBP sends broadcast requests only to remote
owner core. Ifthis value is ‘0’, then the table entry isindal | 5 cache slices that are allocated to the home core.

Figure 2(b) shows an example of the cachelet table. Sup- | TBp consists of two parts for the directory and L2 cache.
pose core 54 needs capacity of 19 ways and this capacity TBp for the directory processes a request for private data
comes from cores 54, 55, and 46. In core 54's cachelet ta-rom g non-owner core. When the directory receives a non-
ble, the next core ID points to core 55, which provides the gyner request, it sends a broadcast lock request to the owner
next LRU stack of the cachelet. Core 55's cachelet table hascache. If the owner cache accepts the broadcast lock request
an entry for core 54 with a token count of 6 (Core 55 may the directory processes the non-owner's request. When the
also have its own entry, if it is running a thread—this is not gata plock is locked for broadcast, the owner cache does
shown). It also has the next core ID, core 46, which points not respond to a broadcast request for the data block. In



Core’s pipeline Intel's ATOM-like two-issue in-order pipeline with 16 stegat 4GHz
Branch predictor | Hybrid branch predictor (4K-entry gshare, 4K-entry pedi@ss w/ 4K-entry selector), 6-cycle mis-prediction pgnal
Hardware prefetch| Four stream prefetchers per core, 16 cache block prefesthrdie, 2 prefetch degree; implementation follows [21]

On-chip 4x4 and8x8 2D mesh for 16- and 64-core CMP, respectively; runs at halfctire’s clock frequency; 1-cycle
network router latency, 1-cycle inter-router wire latency; XY-Y¥uting (O1TURN [22])
On-chip 32KB 4-way L1 I-/D- caches with a 1-cycle latency; 512KB 8ywamified L2 cache with a 4-cycle tag latency

caches per core | and a 12-cycle data latency; all caches use LRU replacemémthe write-back policy and have a 64B block size
Cache coherence| Directory based MESI protocol, similar to SGI Origin 200@]2vith on-chip directory cache and cache-to-cache transfe

On-chip 8K sets (for 16-core CMP) / 32K sets (for 64-core CMP) and Hg~dist. sparse directory [24] with a 5-cycle
directory cache | latency for private L2 cache models, LRU replacement; Icheadirectory for the shared L2 cache model
DRAM DDR3-1600 timingitc,=13.75nst rcp=13.75ns¢ r p=13.75ns,BL /2=5ns; 8 banks, 2KB row-buffer per bank
L2 miss latency | Uncontended{row-buffer hit: 25ns (100 cycles), closed: 42.5ns (170egglconflict: 60ns (240 cyclesy network latency
DRAM Two/four independent controllers for 16-/64-core CMPpegively; each controller has 12.8GB/s bandwidth and fauts;
controller each port is connected to four adjacent cores (top four attdindour/eight cores in 16-/64-core CMP)

Table 2. Baseline CMP configuration for 16 cores and 64 cores.

this case, all coherence processing is done by the directory [ Type | Benchmark

When the owner cache denies a broadcast lock request (bef H [ 462.libquantum, 470.lbm, 459.GemsFDTD

cause the data block has been migrated to the owner corg. MH | 483.sphinx3, 429.mcf

by a previous broadcast), the directory waits for the rejues | M | 433.milc, 437.leslie3d, 471.omnetpp, 403.gcc,
. 436.cactusADM

from the owner core to synchronize the coherence state be

. ML 454 calculix, 401.bzip2
tween the directory and the owner cache. Note that the [ 473.astar,456.hmmer,435.gromacs, 464 .h264ref, 44B1gol

owner sends a coherence request (e.g., MESI protocol pack 400.perlbench,416.gamess,450.soplex,444.namd,465.to
ets) to the directory as well as a broadcast request to neigh- o
bor cores to maintain coherence. Once the coherence re- Table 3. Benchmark classification.

guest from the owner arrives at the directory, it processes

the owner's request first, then the other requests. To determine if the QoS of a thread is satisfied, Cloud-

3.4. Partitioning with Quality of Service (QoS) Cache needs to first estimate the thread’s “base execution

Some threads may lose performance if they yield capacityCYde”- T_hls tlme_ is the thread'’s ex_ecut|on t|_me if it were
(in their local L2 slice) to other threads. This subsectionc ~ 9Ven a single, private cache. Equation 1 estimates the base
siders how to augment the partitioning algorithm to honor execution cycle. Equat|.on 2 calcul_ates the esumgted execu
quality of servicgQoS) for each thread. We define QoS as {ion cycles after allocating a certain cache capagityThe
the maximum allowed performance degradation due to par-N€xt step is to allocate minimum cache capacity to satisfy
titioning, similar to [16,18]. The goal is to maximize ovéra the QoS constraint based on the estimated baseline execu-
performance and meet the QoS requirement for each threadtion time as achieved by Equation 3.
In the following equations, “BC” stands for base execu- 4. Evaluation

tion cycle, “CC” is current cycle (i.e., the monitoring pe- )
riod), H; is hit count inith way, ML is L2 miss latencyF is 4.1. Experimental setup
the monitoring set ratio# total sets/# monitoring sets), We evaluate CloudCache with a detailed trace-driven CMP
n is the number of cache ways allocated to a program in architecture simulator [25] The parameters of the machine
the current monitoring periods is the associativity of one ~ We model are given in Table 2. We simulate a current gener-
cache S"CE, anEC'j is expected Cyc|es with cache Capacity ation 16-core CMP and a futuristic 64-core CMP. For cache
j. Itis straightforward to modify our cache capacity allo- coherence, we employ a distributed on-chip directory orga-
cation algorithm to provide this minimum cache capacity to Nnization placed in all tiles. Directory accesses are hashed
each home core. Note that we aply,s only to those by the least significant address bits above the cache block
cores with less thai total tokens { < K). offset.This fully distributes directory accesses. The bem

of directory entries is the same as the aggregated L2 cache

blocks and the associativity of the directory is twice that

CC+ > HixFsxML ifn>K of the L2 cache. This directory configuration is cost- and
i=K+1 - i
Be - cc K () performance-effective for_the Workload_s_ thgt we study.
K Workloads. We characterized cache utilization of the SPEC
CC— Y HyxFsx ML ifn <K CPU2006 benchmarksthe results are summarized in Ta-
i=ntl ble 3. Based on misses per 1K instructions (MPKI), we clas-
K g . . . . _
BC, = BO+ S HixFuxML @ sified the benchmarks into five types: Heavy (H), Medium
i=j+1 2A few benchmarks are not included because we were unablenerafe

Coos = MIN(j) whereEC; x (1 — QoS) < BC 3) meaningful traces due to limitations in the experimentélse



| Workload | Composition |

Benchmarks

Lightl all Ls astar(2), hmmer(2), gromacs(2), h264ref(2), perlbengiy@mess(2), soplex, namd, gobmk, tonto
Light2 ML + L calculix(2), gce(2), bzip2(2), astar(2), hmmer(2), gras@), h264ref(2), perlbench(2)

Light3 M+ L milc(2), omnetpp(2), astar(2), hmmer(2), gromacs(2),412f2), perlbench(2), namd, tonto
Medium1 M + ML milc(3), leslie3d(3), omnetpp(2), gcc(2), cactusADM(@culix(2), bzip2(2)
Medium2 MH + M sphinx3(2), mcf(2), milc(3), leslie3d(2), omnetpp(3)c(R), cactusADM(2)
Medium3 | MH+M+ML | sphinx3(2), mcf(2), milc(2), leslie3d, omnetpp, gcc(QctusADM(2), calculix(2), bzip2(2)

Heavyl H+ MH libquantum(3), Ibm(3), GemsFDTD(3), sphinx3(3), mcf(4)

Heavy2 H+MH+M libquantum(2), Ibm(2), GemsFDTD(2), sphinx3(2), mcf(@jlc(2), leslie3d(2), omnetpp(2)

Heavy3 all Hs libquantum(6), Ibm(5), GemsFDTD(5)

Comb1 H+L libquantum(2), Ibm(2), GemsFDTD(2), astar(2), hmmer{264ref(2), gamess, namd, gobmk,tonto
Comb2 MH + L sphinx3(2), mcf(2), astar(2), hmmer(2), gromacs(2), meg4erlbench, gamess, soplex, gobmk, tonto
Comb3 MH + L sphinx3, mcf, astar, hmmer, gromacs, h264ref, gamess(@)g2), namd(2), gobmk(2), tonto(2)

Table 4. Multiprogrammed workloads (number in parentheses is timebar of instances).

Heavy (MH), Medium (M), Medium-Light (ML), and Light

[ Workload | Benchmarks |

(L). From this classification, we generated a range of work- [ Combl | Blackscholes(*),Bodytrack(14),Facesim(¥),Ferret(15)

loads (combinations of 16 benchmarks), as summarized in| Comb2 | Blackscholes(*),Bodytrack(14),Canneal(15),Swaptipn(

Table 4. Light, Medium, and Heavy workloads represent | _comb3 | Blackscholes(*) Canneal(15), Facesim(*), Swaption(*)
. Comb4 | Bodytrack(14),Facesim(*),Ferret(15),Swaption(*)

the amount of cache pressure imposed by a group of bench+—=-—-= Canneal(15) Facesim (") Ferrei(15) Swaption()

marks. The combination workloads (Comb1-3) are used
to evaluate CloudCache’s benefits for highly heterogeneoustable 5. Multithreaded workloads evaluated (number in paren-
workloads. Table 5 summarizes the multithreaded workload theses is the number of threads in the parallel region, 8)1

based on PARSEC [26]. We focus on 16-thread parallel re-

gions with the large input sets.

We randomly map programs in a given workload to cores efit of DSR versus CloudCache. Similar to other private
to avoid being limited by a specific OS policy. All exper- techniques in our evaluation, DSR is assumed to use the on-
iments use the same mapping. For the 16-core CMP con—hip directory. DSR needs to transfer miss information to a
figuration, one instance of each workload is evaluated. Forspiller/receiver set’'s home tile whenever a miss occurkén t
the 64-core CMP configuration, we use multiple workload spiller/receiver set. Although this may incur network over
instances (1, 2, and 4) to mimic various processor utiliza- head, we do not model it. For the 64-core CMP, we reduced
tion scenarios. We evaluate 25%, 50% and 100% utilization, the number of spiller/receiver sets so that there are no-over
where N% utilization means only N% of the total cores are |apped monitoring sets.
active. We run each simulation for 1B cycles. We mea-
sure the performance wittveighted speeduf27] to cap-
ture throughput against a private cache baseline. Weighted?2.1. 16-core CMP
speedup i§", (1 PC,cche-tvpe  ppo private-cachey Figure 3 shows the results for the evaluation of CloudCache
Schemes for comparison. Our experiments compare per- Wwith the 16-core configuration. Figure 3(a) shows the av-
formance of the five cache schemes: Shared cache, privaterage speedup of the shared cache, DSR, ECC, and Cloud-
cache, Dynamic Spill-Receive (DSR) [16], Elastic Cooper- Cache normalized to the baseline. CloudCache consistently
ative Caching (ECC) [20] and CloudCacheFor intuitive outperforms the other techniques. The average speedup over
presentation, results are given relative to a private cathe the baseline is 1% (Heavy3) to 11% (Medium1). Some pro-
shared cache has a distributed in-cache directory that-maingrams have a benefit at the expense of others. We call a pro-
tains coherence between the shared L2 cache and the tilgram that gets more cache capacity than a single cache slice
L1 caches. The other schemes are based on a private cach® “beneficiary program.” A program that is given capacity
organization; thus, an on-chip distributed directory iedis  smaller than a cache slice is a “benefactor.”
for coherence between main memory and the L2 caches (L1  Figure 3(b) and (c) illustrate the speedup of the beneficia-
caches are locally inclusive). ries and the slowdown of the benefactors. The error bars in

DSR was designed for a small-scale CMP with 4 to 16 these figures give the maximum value. The number above
cores [9]. A crossbar and a broadcast-based coherence prahe bars in Figure 3(b) is the number of beneficiary bench-
tocol were used in the original proposal. We extended their marks. For example, in Light2, there were one, five, three,
work to a many-core CMP to objectively evaluate the ben- and six benchmarks that experienced a speedup of 4%, 15%,
12%, and 23%, for the shared cache, DSR, ECC, and Cloud-
Cache, respectively. While CloudCache has better perfor-
mance in terms of average speedup, the performance im-
provement for the beneficiary benchmarks is much higher

4.2. Resultsand Analysis

3We also evaluated another recent proposal R-NUCA [10] butndb
present its result for brevity. R-NUCA performance was famto that
of private cache for multiprogrammed workloads and thathaired cache
for multithreaded workloads.
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than the other techniques. workloads (Heavyl, 2, and 3), the shared cache achieves
Furthermore, CloudCache does not significantly hurt the 85% to 95% of the private cache’s performance. The private
benefactors to improve performance of the beneficiary pro- based techniques do not have much performance improve-
grams. CloudCache’s average and worst case slowdown isnent over the shared cache for these workloads due to many
limited to 5% and 9%, respectively (Light2). DSR and ECC off-chip references. These references require an expensiv
have 9% and 45% slowdown in the worst case. Calculix three step access (i.e., to the local L2 cache, the directory
in Light2, Mediuml, and Medium3 performed worse with and then the memory controller).
ECC, whose slowdown in each workload was 35%, 30%, In summary, we conclude that CloudCache maximizes
and 43%. We found that calculix uses only 4 to 5 ways out the performance of beneficiaries as well as the number of
of 8 ways. Because ECC does not allow programs with lessbeneficiaries. At the same time, CloudCache minimizes the
than 6 ways to spill their evicted data [20], calculix's cepa  performance slowdown of benefactors.
ity was reduced too much. ECC's private cache capacity for
each benchmark is determined by the hit counts in the LRU 4.2.2. 64-core CMP
blocks of the private and shared areas. If the private area’s25% utilization scenario. Figure 4 shows the performance
LRU hit count for a given time (100K cycles as in [20]) is of each technique with 25% utilization (i.e., 16 threads are
bigger than the shared area’s LRU hit count, the private arearun on a 64-core CMP). Three performance evaluations—
is enlarged. However, benchmarks like calculix have a high relative performance, speedup of beneficiary benchmarks
hit count only for cache capacities that are above a specificand slowdown of benefactor benchmarks—are illustrated in
large threshold. Once the cache capacity is reduced belowFigure 4(a), (b), and (c). CloudCache consistently outper-
the threshold capacity, a large LRU hit count will not be de- forms the other techniques by 1% to 33%. For the benefi-
tected. Therefore, such programs never have a chance teiary benchmarks, CloudCache achieves a 20% to 50% av-
gain more capacity. This is the limitation of local partitto ~ erage speedup, except for Heavy3.
ing which fails to provide QoS. Global partitioning in Cloud The larger capacity from the 64-core CMP gives more
Cache avoids this situation and gets better performance.  chance to improve the performance of each benchmark. The
Interestingly, the shared cache has poor performance fomumber of beneficiaries in each workload is much higher
all workloads and the degradation is magnified in three Light in the 64-core CMP case. While the number of beneficia-
workloads because these workloads do not need much caries is similar for DSR, ECC, and CloudCache as shown
pacity. Instead, they prefer fast cache access. For heavyn Figure 4(b), CloudCache has a much higher average
performance improvement for the beneficiaries than DSR
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and ECC. Furthermore, all workloads, except Comb3 and network contention and overhead that harms performance
Heavy2, have the best maximum performance improvementwhen there are many off-chip accesses. Nevertheless, among
on the beneficiaries with CloudCache (error bars, Heavy2's DSR, ECC, and CloudCache, CloudCache has the best per-
maximum speedup of CloudCache is close to that of DSR).formance in this severe condition.
CloudCache offers a large capacity benefit as well as effec- The speedup of beneficiaries (Figure 5(c) and (d)) re-
tive capacity isolation, such that it can provide optimized veals more about how these techniques perform. On average,
capacity to each benchmark. CloudCache has a 21% and 14.7% performance improve-

Similar to the 16-core CMP experiments, ECC has se- ment for beneficiaries while DSR and ECC have less than
vere problems with QoS. Figure 4(c) reveals this behavior. 10%. This result shows that CloudCache’s global partition-
calculix in Light2, Medium1, and Medium3 has a large per- ing strategy gives more capacity to beneficiaries, which in
formance degradation of up to 35%. CloudCache limits the turn boosts performance more than simple sharing (DSR) or
performance slowdown to only 2%. local partitioning (ECC). Interestingly, the shared cabhs

The shared cache does better for some workloads (e.g.a large improvement for Comb3’s beneficiaries at 50% uti-
Comb2, Comb3, Light2 and Medium3) due to its large cache lization, while there are no beneficiaries at 100% utilizati
capacity. However, the number of beneficiaries is limited by This resultimplies that simple capacity sharing is vulixga
capacity interference and a longer L2 access latency. Noteto capacity interference in heavily loaded situations.
that the performance of the shared cache is lower than theMultithreaded workloads. Figure 6 plots the performance
private cache. of the multithreaded workloads on the 64-core CMP (four
50% and 100% utilization scenario. Figure 5 shows the  16-threaded PARSEC benchmarks). The average speedup
performance of each technique with 50% and 100% utiliza- of the five workloads in Figure 6(a) shows that CloudCache
tion. While the average speedup is lower for 50% and 100%does better than the other cache management techniques.
utilization than 25%, CloudCache clearly outperforms the The performance improvementover the private cache is 18%
other techniques. For Light, Medium, and Comb, Cloud- (Comb2) to 45% (Comb4).
Cache has 4% to 20% performance improvement over the Unlike multiprogrammed workloads, the shared cache
private cache for 50% utilization (Figure 5(a)) and 4% to does well for some cases (Combl and Comb4). It does not
17% improvement for 100% utilization (Figure 5(b)). duplicate shared data blocks, and thus, the overall effecti

For the Heavy workloads, CloudCache has a 2% to 5% capacity is larger than the private cache. Figure 6(b)Allus
performance improvement over the private cache, excepttrates the speedup of individual PARSEC benchmarks for
Heavy3 at 100% utilization. This benchmark has the bestComb2 and Comb5. In Comb2, blackscholes and canneal
performance with the private cache due to two character-compete to get more capacity. DSR and ECC fail to im-
istics: a small gain in hit count from more capacity and prove canneal’s performance. Shared and CloudCache get
many off-chip accesses. A small capacity benefit minimizes a benefit because they can better exploit the cache capacity.
the potential improvement from partitioning in DSR, ECC, CloudCache’s performance follows the shared cache for can-
and CloudCache. Furthermore, DSR, ECC, and CloudCacheneal in Comb2. Although DSR and ECC achieve speedup
generate more cache coherence traffic. This causes moréor blackscholes, CloudCache’s performance improvement
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is close to these techniques. QoS, and 2% QoS. 5% (2%) QoS means the maximum al-
Comb5 has a different scenario. For facesim, Cloud- lowed performance degradation is 5% (2%) of the private
Cache has a slight performance degradation while DSR andcache. The figure shows the QoS support does not signifi-
ECC have significant performance improvements. How- cantly decrease overall performance.
ever, ferret and canneal have a greater benefit with Cloud- Figure 7(b) and (c) are S-curves of each application’s
Cache. Comparing Comb2 and Comb5 in Figure 6(b), performance with the three QoS levels. As shown in Fig-
CloudCache’s characteristic is clear: it always maximizes ure 7(b), the QoS support does not significantly decrease the
the cache capacity for the most beneficiaries, and each benegserformance of beneficiaries. Figure 7(c) plots only the per
factor's slowdown is minimized. Canneal has a 58% per- formance of the benefactors. In Figure 7(c), 5% QoS level
fomance improvement in Comb2 and a 12% speedup inmeets all applications’ performance requirement. For 2%
Combb5. CloudCache allocates much more capacity to ferretQoS level, two programs have 2.2% performance slowdown.
for Comb5, and thus, canneal cannot be improved as muchn these cases, the miss rate computation is somewhat inac-
as in Comb2. curate due to sampling. While the error is negligible, a more
We conclude that CloudCache’s global partitioning is conservative design (e.g., by using a larger average miss la
beneficial for a large aggregated cache capacity. Distancetency in Equation 3) might better guarantee the QoS level.
aware placement and limited target broadcast also effec-4_2.3' Impact of individual techniques

tively cooperate o boost performance, Impact of dynamic global partitioning. Figure 8 depicts

Quality of Service support. Let us examine the perfor- .
mance of multiprogrammed workloads on the 16-core CMP %Tr(; ifI(I)urs?g::ensxt,hr;rgrgoe/or’uzlrifaggr?Tgsgwtrmc;gzzréazzte
with the QoS support. Figure 7(a) presents the averagetive execution period. From Figure 8(a), CloudCache has a

I 0
speedup of CloudCache with three QoS levels, no QoS, 5 A)significant partitioning benefit over the other techniquas f
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sphinx. The shared cache has a capacity benefit over Prithe performance of the cache management techniques when
vate and DSR. In this workload, DSR determines sphinx asonly one benchmark is run on a 64-core CMP. This high-
a receiver, which does not spill data to other cores. With lights the impact of additional capacity and distance-awar
limited spilled data, a DSR receiver performs similar to a placement. We disabled CloudCache’s broadcast function to
private cache. ECC has better performance because it cashow the pure effect of distance-aware placement. We make
spill sphinx’s evicted data to other shared cache regiohs. T a few interesting observations. First, the shared cache per
limited data spilling from other cores may increase the ben- forms the best for gcc, but it does the worst for many bench-
efit for sphinx. CloudCache’s MPKI is significantly smaller marks. For example, GemsFDTD might need the additional
than all other techniques because it dedicates a large cacheapacity benefit from shared cache. However, shared cache’s
capacity that is not subject to interference. capacity benefitis offset by a longer NUCA latency. Gece has
Figure 8(b) shows a case, hmmer, where CloudCachemany hits beyond the local L2 cache slice (i.e., 512KB), and
does not outperform the other techniques. The large MPKI thus, it is capacity demanding. In this situation, the stiare
for the shared cache shows that hmmer is greatly impactedcache can directly determine the data location and does not
from cache capacity interference while additional capacit need three-step communication involving the directory, un
might be helpful as shown in the ECC figure. CloudCache’s like DSR, ECC, and CloudCache.
MPKI is slightly higher than ECC for hmmer. This shows Sphinx3 is also an interesting example: the shared cache
that the effective cache capacity of CloudCache is somewhatoes better than DSR and ECC. However, it does worse than
smaller than that of ECC. However, the difference between CloudCache. Like gcc, sphinx is capacity demanding but it
the two schemes for hmmer is limited. has a sharp fall-off in the hit counts once a particular capac
Lastly, gobmk, shown in Figure 8(c), has the highest ity is reached. As a result, distance-aware placement is ben
MPKI with CloudCache. CloudCache aggressively reduceseficial because it can concentrate hits in nearby cachesslice
the cache capacity of gobmk to help other benchmarks.For gcc, it is more important to add additional capacity than
However, the maximum MPKI of this benchmark is only to keep the hits near the home core.
0.14, which is far smaller than that of sphinx (20) and hm-  The other benchmarks, except milc, have the best per-
mer (3.5). This illustrates that CloudCache’s performance formance with CloudCache. While milc does not achieve
loss is limited for this benchmark. In fact, with distance- performance improvement with all the techniques, Cloud-
aware placement and limited broadcast, CloudCache everCache’s additional network traffic causes a small perfor-
outperforms the other techniques for gobmk. mance slowdown. Note this is the case when milc is ex-
From this analysis, the benefit of CloudCache’s global ecuted alone in a 64-core CMP. In real conditions, when
partitioning is apparent. First, it judiciously grants raor milc is run with other benchmarks, milc has limited cache
cache capacity to benchmarks with more potential for capacity which naturally does not generate additional net-
performance improvement. The simple capacity sharing work traffic. Interestingly, ECC performs worse than DSR
schemes (DSR and ECC) can generate capacity interferencéor most benchmarks.
in the shared cache capacity, which in turn reduces the bendmpact of limited target broadcast. We also investigate the
efit of more capacity. Second, the effective use of cache ca-performance improvement from the limited target broadcast
pacity with CloudCache in moderate beneficiaries (e.g., hm-technique. This experiment is performed with one thread in
mer) is close to the best technique (ECC). This leads to sim-a 64-core CMP so that the full performance impact of broad-
ilar performance improvement with ECC and DSR. Third, cast can be revealed. This experimentuses varying brodcas
CloudCache aggressively grants cache capacity from lesslepth from 1 to 5 hops, which is the maximum distance of
sensitive benchmarks (e.g., gobmk) to more capacity sen-cores that are targets of a broadcast to the home core.
sitive ones. This achieves a better overall speedup without The benchmarks are roughly clustered in three categories.
harming other benchmarks. First, benchmarks such as bzip2, gromacs, calculix, hmmer,
Impact of distance-awar e data placement. We investigate ~ h264ref, omnetpp, astar, and sphinx3 benefit significantly
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from limited broadcast. They have up to 16% performance from a high cache miss rate. Many cache accesses are ser-
improvement. The peak performance benefit was usuallyviced by remote cache slices in DSR, ECC, and CloudCache.
achieved with a broadcast depth of two. A deeper depth in-While CloudCache’s distance-aware placement helps, its
curs more traffic, which reduces the benefit of broadcast. benefit is somewhat limited as many cache slices are in-
Second, there are benchmarks, like gcc, mcf, milc, volved. Nevertheless, limited target broadcast signitigan
leslie3d, libquantum, and Ibm, whose performance is hurt by improves performance by 8%.
broadcast. The performance loss is even more apparent at a .
3-hop depth. With a large depth, performance slowdown of 2- €onclusion
up to 11.5% was observed (milc). This illustrates that broad Future CMPs are expected to have many cores and cache re-
cast is not always good due to its additional network traffic. sources. We showed in this work that both efficient capacity
However, under realistic workloads, CloudCache would ac- partitioning and effective NUCA latency mitigation are re-
tively adjust the capacity of these benchmarks to be small,quired for scalable high-performance on a many-core CMP.
which would automatically limit this effect. We proposed CloudCache, a novel scalable cache manage-
Lastly, benchmarks such as perlbench, gamess, namdmnent substrate that achieves three main goals: minimiz-
gobmk, and soplex are relatively insensitive to broadcast.ing off-chip accesses, minimizing remote cache accesses,
These benchmarks have a small number of remote cache acand hiding the effect of remote directory accesses. Cloud-
cesses, and thus, the impact of the broadcast is limited. Cache encompasses dynamic global partitioning, distance-
aware data placement, and limited target broadcast. We ex-
tensively evaluate CloudCache’s performance with twodasi
techniques (shared and private caches) and two recent pro-
posals (DSR and ECC). CloudCache outperforms the other
1Iechniques by up to 18% in comparison to the best one. Our

4.2.4. Putting all techniquestogether

Figure 9 presents the L2 access latency profile of bzip2
(“ML” type, see Table 3) and sphinx3 (“MH” type). Com-

paring the shared and private cache, we observe the trdde-o

between on-chip cache miss rate (shared cache is better) anﬁeta.'fl_ed atr|1a!yS|s demontstrates tfhat our pro\[;)voseld teoﬁmlqud
on-chip cache access latency (private cache has many loca Igniicantly improve system performance. We aiso showe

hits). DSR, ECC, and CloudCache (without limited target that CloudCache naturally accommadates QoS support.
broadcast) share tr_le strength of a private cache and havg eferences

many local cache hits. Furthermore, many accesses are sat- o .

isfied from remote cache capacity. Note that the accesses in[H M- 'Tz'm' ‘;t al. Integratloln ch?‘llenges ngd t;adeéo‘cfs fera-
CloudCache have lower latency due to distance-aware place- scale architectures.Intel Tech. J. 11(3):173-184, August

L . 2007.
ment. Wlth limited target broadcast, the non-local cactie hi [2] L. Seiler et al. Larrabee: a many-core x86 architecture f
latency is even smaller.

visual computinglIntel Tech. J.27(3):1-15, August 2008.
The performance gap between the shared cache and the(s; Tilera. Tilera announces the world's first 100-core pEsc

other schemes is smaller with sphinx, which requires much sor with the new tile-gx familyht t p: / / www. ti | er a. cont
more capacity for high performance than bzip2 (i.e., data news_&event s/ press.r el ease_091026. php.
reuse distance is longer). Therefore, the private cacliersuf ~ [4] Tensilica. Tensilica - servers, storage, and commuitna
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