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Abstract
The number of cores in a single chip multiprocessor is ex-
pected to grow in coming years. Likewise, aggregate on-chip
cache capacity is increasing fast and its effective utiliza-
tion is becoming ever more important. Furthermore, avail-
able cores are expected to be underutilized due to the power
wall and highly heterogeneous future workloads. This trend
makes existing L2 cache management techniques less effec-
tive for two problems: increased capacity interference be-
tween working cores and longer L2 access latency. We pro-
pose a novel scalable cache management framework called
CloudCache that creates dynamically expanding and shrink-
ing L2 caches for working threads with fine-grained hard-
ware monitoring and control. The key architectural com-
ponents of CloudCache are L2 cache chaining, inter- and
intra-bank cache partitioning, and a performance-optimized
coherence protocol. Our extensive experimental evaluation
demonstrates that CloudCache significantly improves per-
formance of a wide range of workloads when all or a subset
of cores are occupied.

1. Introduction
Many-core chip multiprocessors (CMPs) are near—major
processor vendors already ship CMPs with four to twelve
cores and have roadmaps to hundreds of cores [1, 2]. Some
manufacturers even produce many-core chips today, such as
Tilera’s 100-core CMP [3] and Cisco’s CRS-1 with 192 Ten-
silica cores [4]. For current and future CMPs, tile-based ar-
chitectures are the most viable. A tile-based CMP is com-
prised of multiple identical tiles each with a compute core,
L1/L2 caches, and a network router. In this kind of design,
the tile organization is not dramatically changed successive
processor generations. This trend implies that more tiles will
lead to more aggregate L2 cache capacity.

Effectively managing a large L2 cache in a many-core
CMP has three critical challenges: how to manage capac-
ity (cache partitioning), how to avoid inter-thread interfer-
ence (performance isolation), and how to place data (min-
imizing access latency). These challenges are more acute
at a large core count, and current approaches for a small
number of cores are insufficient. A shared cache suffers
from uncontrolled capacity interference and increased aver-
age data access latency. A private cache does not utilize to-
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tal L2 cache capacity efficiently. Although many hybrid L2
cache management techniques try to overcome the deficien-
cies of shared and private caches [5–11], their applicability
to many-core CMPs at scale is uncertain.

While much effort is paid on how to program and utilize
the parallelism from future CMPs, the accelerating trend of
extreme system integration, clearly exemplified by data cen-
ter servers with cloud computing, will make future work-
loads more heterogeneous and dynamic. Specifically, a
cloud computing environment will have many-core CMPs
that execute applications (and virtual machines) which be-
long to different clients. Moreover, the average processor
usage of a data center server is reportedly around 15–30%.
However, peak-time usage often faces a shortage of comput-
ing resources [12,13]. These characteristics and the need to
run heterogeneous workloads will become more pronounced
in the near future, even for desktops and laptops.

Future heterogeneous workloads will need scalable and
malleable L2 cache management given the hundreds of cores
likely in a CMP. Scalability must become the primary design
consideration. Moreover, a new cache management scheme
must consider both low and high CPU utilization situations.
With low utilization, the excess L2 cache capacity in idle
cores should be opportunistically used. Even when all cores
are busy, the cache may still be underutilized and could be
effectively shared.

This paper proposesCloudCache, a novel distributed
L2 cache substrate for many-core CMPs. CloudCache
has three main components:dynamic global partitioning,
distance-aware data placement, and limited target broad-
cast. Dynamic global partitioning tries to minimize detri-
mental cache capacity interference with information about
each thread’s capacity usage. Distance-aware data place-
ment tackles the large NUCA effect on a switched network.
Finally, limited target broadcast aims to quickly locate a
locally missing cache block by simultaneously inspecting
nearby non-local cache banks. This broadcast is limited by
the distance-aware data placement algorithm. Effectively,
CloudCache overcomes the latency overheads of accessing
the on-chip directory. Our main contributions are:

• Dynamic global partitioning. We introduce and ex-
plore distributed dynamic global partitioning. Cloud-
Cache coordinates bank and way-level capacity parti-
tions based on cache utilization. We find that dynamic
global partitioning is especially beneficial for highly
heterogeneous workloads (e.g., cloud computing).



Scheme Org. Type Key idea Dynamic Explicit Dist. Tiled QoS Coherence
Partition alloc. aware. CMP

CMP-DNUCA [14] Dist. S Private data migration X Dir
VR [5] Dist. S Victim replication X X Dir

CMP-NuRAPID [6] Dist. P Decoupled tag X X BC
CMP-SNUCA [15] Dist. S Dynamic sharing degree X X Dir

CC [7] Dist. P Selective copy Dir
ASR [8] Dist. P Selective copy w/ cost estimation BC

UMON [16] One S Utility-based partitioning X BC
V-Hierarchy [17] Dist. S Partitioning for VMs X X Dir

VPC [18] One S Bandwidth management X BC
DSR [9] Dist. P Spill, receive X BC

R-NUCA [10] Dist. S Placement w/ P-table X X Dir
BDCP [11] Dist. P Bank-aware partitioning X X X BC

StimulusCache [19] Dist. P Dynamic sharing of excess caches X X Dir
Elastic CC [20] Dist. P Local bank partitioning w/ global sharing X X Dir
CloudCache Dist P Distance-aware global partitioning X X X X X Dir+BC

Table 1. Related cache management proposals and CloudCache.Organization: “One” (one logical bank) or “Dist.” (distributed banks).
Type: “S” (shared) or “P” (private).Dynamic partitioning: cache capacity can be dynamically allocated.Explicit allocation: non-shared
cache capacity is explicitly allocated.Tiled CMP: applicability to tiled CMP (even if the original proposal was not for tiled CMP).QoS:
quality of service support.Coherence: “BC” (broadcasting-based) or “Dir” (directory-based).

• Distance-aware data placement and limited target
broadcast. We show the benefit of distance-aware ca-
pacity allocation in CloudCache; it is particularly use-
ful for many-core CMPs with a noticeable NUCA ef-
fect. The full benefit of distance-aware data placement
is realized with limited target broadcast. The perfor-
mance improvement is up to 16% over no broadcast.

• CloudCache design. We detail an efficient Cloud-
Cache design encompassing our techniques. The key
architectural components are: L2 cache chaining, inter-
and intra-bank cache partitioning, and a performance-
correctness decoupled coherence protocol.

• An evaluation of CloudCache. We comprehensively
evaluate our proposed architecture and techniques. We
compare CloudCache to a shared cache, a private
cache, and two relevant state-of-the-art proposals, Dy-
namic Spill-Receive (DSR) [9] and Elastic Cooperative
Caching (ECC) [20]. We examine various workloads
for 16- and 64-core CMP configurations. CloudCache
consistently boosts performance of co-scheduled pro-
grams by 7.5%–18.5% on average (up to 34% gain). It
outperforms both DSR and ECC.

In the remainder of this paper, we first summarize related
work in Section 2. Section 3 presents a detailed description
of CloudCache and its hardware support. Section 4 gives our
experimental setup and results. The paper’s conclusions are
summarized in Section 5.

2. Related Work
Much work has been done to improve and/or solve the defi-
ciencies of the common shared and private cache schemes.
While there are many cache management schemes available,
Table 1 summarizes the key ideas and capabilities among the
schemes most related to CloudCache. The table compares

the schemes according to six parameters. Compared with
other techniques, CloudCache (the last row) has notable dif-
ferences in the context of supporting many-core CMPs: dy-
namic partitioning that involves many caches, explicit, non-
shared cache allocation to each program, awareness of dis-
tance to cached data, and quality of service (QoS) support.

CMP-DNUCA [14], victim replication [5], and CMP-
NuRAPID [6] place private or read-only data in local banks
to reduce access latency. CMP-SNUCA [15] allows each
thread to have different shared cache capacity. Coopera-
tive Caching (CC) [7] and Adaptive Selective Replication
(ASR) [8] selectively evict or replicate data blocks such
that effective capacity can be increased. The utility moni-
tor (UMON) [16] allocates the capacity of a single L2 cache
based on utilization. Marty and Hill proposed the Virtual
Hierarchy (VH) [17] to minimize data access latency of a
distributed shared cache with a two-level cache coherency
mechanism. The Virtual Private Cache (VPC) [18] uses a
hardware arbiter to allocate cache resources exclusively to
each core in a shared cache. These proposals do not support
explicit cache partitioning (i.e., capacity interferencecannot
be avoided), or they are unable to efficiently and dynami-
cally allocate the distributed cache resources.

More recently, Dynamic Spill-Receive (DSR) [9] sup-
ports capacity borrowing based on a private cache design.
R-NUCA [10] differentiates instruction, private data and
shared data and places them in a specialized manner at page
granularity with OS support. BDCP [11] explicitly allocates
cache capacity to threads with local banks and center banks.
It avoids excessive replication of shared data and places pri-
vate data in local L2 banks. StimulusCache [19] introduced
techniques to utilize “excess caches” when some cores are
disabled to improve the chip yield. Lastly, Elastic Coopera-
tive Caching (ECC) [20] uses a distributed coherence engine
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Figure 1. (a) Overview of CloudCache with nine home cores. (b) An example of two home cores; core 4 has a larger cachelet than core
2. (c) An example virtual private L2 cache description of (b). “Core ID” refers to the list of cores contributing to a cachelet. Core IDs are
sorted in increasing distance from the home core. “Token count” is the number of cache capacity units contributed to the cachelet. “cachelet
capacity” is the sum of all token counts.

for scalability. It allows sharing of the “local partition”of
each core if the core does not require all the capacity of its
local partition. None of these recent proposals can avoid ca-
pacity interference and long access latency at scale.

Compared to these proposals, CloudCache does more
effective globally-coordinated dynamic partitioning. Each
thread has non-shared exclusive cache capacity, which in-
herently avoids capacity interference. It also addresses the
NUCA problem for a large CMP, caused by distributed cache
banks, directory, and memory controllers.

3. CloudCache
We begin with a high-level description of CloudCache. Fig-
ure 1(a) depicts nine “home cores” where nine active threads
are executed. Home cores have a virtual private L2 cache
(which we call a “cachelet”) that combines cache capacity
from a thread’s home core and neighboring cores. While
cache banks might be shared among different cachelets, each
core is given its own exclusive cachelet to avoid interference
with other cachelets. The capacity of a cachelet is dynam-
ically allocated based on the varying demand of the thread
on the home core and the demands of threads on neighbor-
ing cores (which have their own cachelets). For example, in
Figure 1(a), core 3 has been given the largest cache capacity.
If core 6 needs to grow its cachelet, the adjacent cachelets
(cachelet 3, 5, 8, and 9) adjust their size to give some capac-
ity to core 6. Cachelets are naturally formed in a cluster to
minimize the average access latency to data.

Cachelets can be compactly represented. Figure 1(b)
gives a second example with only two home cores. Core
4 has a larger cachelet than core 2. Figure 1(c) further shows
the LRU stack for core 4 and core 2’s cache cachelets. The
stack incorporates the cache slices of all neighbor cores that
participate in a cachelet. The stack is formed based on the
hop distance to a neighbor. The highest priority position
(MRU) is the local slice. In core 4, the MRU position has
an 8 in this example. The value in a position indicates how
many ways out of cache slice are allocated to the thread.
The 8 in this case specifies that all 8 ways of the local cache
slice have been allocated to the thread on core 4. The next
several positions record the capacity from cores that are one

hop away (core 1, 5, 7, and 3). These cores provide a capac-
ity of 20 to the thread on core 4. The final positions in the
stack are the farthest away (core 6, 8, and 2); they dedicate
an additional aggregate capacity of 7. The figure also shows
core 2. The thread on this core needs a capacity of 6, which
can be provided locally. Lastly, the cores in the core ID list
form a “virtual L2 cache chain,” somewhat similar to [19].
For example, when core 4 has a miss, the access is directed
to core 1, then to core 5, and so on (from the MRU position
to later positions).

3.1. Dynamic global partitioning
The allocation of cachelets requires careful global coordina-
tion because cache capacity and proximity have to be consid-
ered simultaneously to achieve a good decision. CloudCache
has aglobal capacity allocator(GCA) for this purpose. The
GCA collects information about cache demand changes of
home cores and performs global cache partitioning. It uses
a utility monitor similar to UMON [16], with an impor-
tant modification to support many-core CMPs. The origi-
nal UMON scheme evaluates all possible partition choices
with duplicated tags in a set-associative array. In UMON,
the number of ways for the duplicated tag array is the num-
ber of cores in the CMP multiplied by the associativity of a
cache slice. For a many-core CMP, the overhead of the du-
plicated tag array is high. The original UMON scheme re-
quires a 512-way duplicated tag array per tile for a 64-core
CMP with an 8-way L2 cache per tile. To overcome this
overhead, we limit the monitoring scope and evaluate each
core’s additional cache capacity benefit of up to 32 ways,
which is four times the local cache capacity for an 8-way
slice. For example, a thread with a capacity of 64 ways
is able to have at most 96 ways at the next capacity allo-
cation. Our evaluation shows this modification works well
with lower hardware cost than the full UMON scheme.1

To gather information for capacity allocation decisions,
each core sends hit count information to the GCA once every
monitoring period. We experimentally determine that 64M
cycles works well for our benchmarks. The hit count infor-

1In general, this “monitoring range” is a design-time decision based on
cache capacity and target workload.
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Figure 2. (a) Hardware architecture support for CloudCache. (b) Virtual L2 cache chain example.

mation includes the L2 cache and monitoring tag hit count
for each LRU stack position. The network traffic for trans-
mission of this information is very small. Once the GCA
receives the counter values from all home cores, the coun-
ters are saved in a buffer. The total number of counters is
N×(K + 32) whereN is the number of cores andK is the
L2 cache associativity.N × K counters are used for the hit
counts andN × 32 tag hit counters are used to estimate the
benefit from additional cache capacity up to 32 ways. For
example, a 64-core CMP with an 8-way L2 cache slice has
2,560 16-bits counters in a small 5KB buffer. The GCA uses
the counter buffer to derive near optimal capacity allocation.

Figure 2(a) shows the per tile hardware architecture for
CloudCache. Each tile has monitor tags, hit counters, and
a “cachelet table”. CloudCache monitors cache capacity
usage for each core with the hit counters. The potential
benefit of increasing capacity is estimated with the monitor
tags. Whenever a cachelet evicts a data block, the address
of the evicted data block is sent to the home core so that
it can be used to estimate hit counts if the capacity should
be increased. The cachelet table describes a virtual private
L2 cache as a linked list of the cache slices that form the
cachelet. It is used to determine the data migration path on
cache evictions and to determine how much of a particular
cache slice can be used by a cachelet. Each entry in the
cachelet table has three fields: the home core ID, the next
core ID, and the token count. The home core ID indicates
the owner of the cachelet. When data is found in a particu-
lar cache slice, that slice delivers it to the home core. The
next core ID indicates the target of an eviction from a cache
slice. If the next core ID and the home core ID are the same,
then the evicted data is sent to main memory (i.e., next core
ID==home core ID is the list tail). The token count indicates
how many ways of a cache slice are dedicated to a cachelet’s
owner core. If this value is ‘0’, then the table entry is invalid.

Figure 2(b) shows an example of the cachelet table. Sup-
pose core 54 needs capacity of 19 ways and this capacity
comes from cores 54, 55, and 46. In core 54’s cachelet ta-
ble, the next core ID points to core 55, which provides the
next LRU stack of the cachelet. Core 55’s cachelet table has
an entry for core 54 with a token count of 6 (core 55 may
also have its own entry, if it is running a thread—this is not
shown). It also has the next core ID, core 46, which points

to the last LRU stack of the cachelet. Finally, core 46 has a
table entry for core 54 with the next core ID set to 54, the
home core for the cachelet. This denotes that this core 46’s
cache slice is the last LRU stack position in the cachelet.

3.2. Distance-aware data placement
The GCA uses the modified UMON scheme to determine
the capacity demand for each thread on the CMP. With this
information, the GCA decides which L2 cache(s) to use for
a cachelet. It then uses a greedy distance-aware placement
strategy on a cachelet for each thread. Cache capacity for
each thread is allocated to the local L2 bank first to mini-
mized access latency. If more capacity than L2 bank is al-
located to a thread, remote L2 banks should be used for the
extra capacity allocation. Our strategy allocates capacity to
threads in the order of larger capacity demand. Target L2
banks with shorter distance to the thread are selected.

Once cache banks are selected for threads, chain link al-
location is performed. The local L2 bank (i.e., the closest
L2 bank to the thread) is located in the top LRU stack of the
chain link. The farthest L2 bank is used for the bottom LRU
stack, and is connected to the main memory.

3.3. Fast data access with limited target broadcast
CloudCache quickly locates nearby data on a local cache
miss with limited target broadcast. This technique effec-
tively hides directory lookup latency. In a packet-based net-
work, the directory manages the order of requests such that
packets avoid race conditions. To access a remote L2 cache,
a core needs to access the directory first even if the remote
L2 cache is only one hop away. To avoid this inefficiency,
we design alimited target broadcast protocol(LTBP). LTBP
allows fast access to private data while shared data is pro-
cessed by a conventional directory protocol. To reduce net-
work traffic, LTBP sends broadcast requests only to remote
L2 cache slices that are allocated to the home core.

LTBP consists of two parts for the directory and L2 cache.
LTBP for the directory processes a request for private data
from a non-owner core. When the directory receives a non-
owner request, it sends a broadcast lock request to the owner
cache. If the owner cache accepts the broadcast lock request,
the directory processes the non-owner’s request. When the
data block is locked for broadcast, the owner cache does
not respond to a broadcast request for the data block. In



Core’s pipeline Intel’s ATOM-like two-issue in-order pipeline with 16 stages at 4GHz
Branch predictor Hybrid branch predictor (4K-entry gshare, 4K-entry per-address w/ 4K-entry selector), 6-cycle mis-prediction penalty

Hardware prefetch Four stream prefetchers per core, 16 cache block prefetch distance, 2 prefetch degree; implementation follows [21]
On-chip 4×4 and8×8 2D mesh for 16- and 64-core CMP, respectively; runs at half the core’s clock frequency; 1-cycle
network router latency, 1-cycle inter-router wire latency; XY-YX routing (O1TURN [22])
On-chip 32KB 4-way L1 I-/D- caches with a 1-cycle latency; 512KB 8-way unified L2 cache with a 4-cycle tag latency

caches per core and a 12-cycle data latency; all caches use LRU replacement with the write-back policy and have a 64B block size
Cache coherence Directory based MESI protocol, similar to SGI Origin 2000 [23] with on-chip directory cache and cache-to-cache transfer

On-chip 8K sets (for 16-core CMP) / 32K sets (for 64-core CMP) and 16-way dist. sparse directory [24] with a 5-cycle
directory cache latency for private L2 cache models, LRU replacement; In-cache directory for the shared L2 cache model

DRAM DDR3-1600 timing;tCL=13.75ns,tRCD=13.75ns,tRP =13.75ns,BL/2=5ns; 8 banks, 2KB row-buffer per bank
L2 miss latency Uncontended:{row-buffer hit: 25ns (100 cycles), closed: 42.5ns (170 cycles), conflict: 60ns (240 cycles)} + network latency

DRAM Two/four independent controllers for 16-/64-core CMP, respectively; each controller has 12.8GB/s bandwidth and fourports;
controller each port is connected to four adjacent cores (top four and bottom four/eight cores in 16-/64-core CMP)

Table 2. Baseline CMP configuration for 16 cores and 64 cores.

this case, all coherence processing is done by the directory.
When the owner cache denies a broadcast lock request (be-
cause the data block has been migrated to the owner core
by a previous broadcast), the directory waits for the request
from the owner core to synchronize the coherence state be-
tween the directory and the owner cache. Note that the
owner sends a coherence request (e.g., MESI protocol pack-
ets) to the directory as well as a broadcast request to neigh-
bor cores to maintain coherence. Once the coherence re-
quest from the owner arrives at the directory, it processes
the owner’s request first, then the other requests.

3.4. Partitioning with Quality of Service (QoS)
Some threads may lose performance if they yield capacity
(in their local L2 slice) to other threads. This subsection con-
siders how to augment the partitioning algorithm to honor
quality of service(QoS) for each thread. We define QoS as
the maximum allowed performance degradation due to par-
titioning, similar to [16,18]. The goal is to maximize overall
performance and meet the QoS requirement for each thread.

In the following equations, “BC” stands for base execu-
tion cycle, “CC” is current cycle (i.e., the monitoring pe-
riod),Hi is hit count inith way, ML is L2 miss latency,Fs is
the monitoring set ratio (# total sets/# monitoring sets),
n is the number of cache ways allocated to a program in
the current monitoring period,K is the associativity of one
cache slice, andECj is expected cycles with cache capacity
j. It is straightforward to modify our cache capacity allo-
cation algorithm to provide this minimum cache capacity to
each home core. Note that we applyCQoS only to those
cores with less thanK total tokens (j < K).

BC =
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>

>
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>

:
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n

X
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Hi × Fs × ML if n > K

CC if n = K

CC −
K

X

i=n+1

Hi × Fs × ML if n < K

(1)

ECj = BC +
K

X

i=j+1

Hi × Fs × ML (2)

CQoS = MIN(j) whereECj × (1 − QoS) < BC (3)

Type Benchmark

H 462.libquantum, 470.lbm, 459.GemsFDTD
MH 483.sphinx3, 429.mcf
M 433.milc, 437.leslie3d, 471.omnetpp, 403.gcc,

436.cactusADM
ML 454.calculix, 401.bzip2
L 473.astar,456.hmmer,435.gromacs,464.h264ref, 445.gobmk,

400.perlbench,416.gamess,450.soplex,444.namd,465.tonto

Table 3. Benchmark classification.

To determine if the QoS of a thread is satisfied, Cloud-
Cache needs to first estimate the thread’s “base execution
cycle”. This time is the thread’s execution time if it were
given a single, private cache. Equation 1 estimates the base
execution cycle. Equation 2 calculates the estimated execu-
tion cycles after allocating a certain cache capacity,j. The
next step is to allocate minimum cache capacity to satisfy
the QoS constraint based on the estimated baseline execu-
tion time as achieved by Equation 3.

4. Evaluation

4.1. Experimental setup
We evaluate CloudCache with a detailed trace-driven CMP
architecture simulator [25]. The parameters of the machine
we model are given in Table 2. We simulate a current gener-
ation 16-core CMP and a futuristic 64-core CMP. For cache
coherence, we employ a distributed on-chip directory orga-
nization placed in all tiles. Directory accesses are hashed
by the least significant address bits above the cache block
offset.This fully distributes directory accesses. The number
of directory entries is the same as the aggregated L2 cache
blocks and the associativity of the directory is twice that
of the L2 cache. This directory configuration is cost- and
performance-effective for the workloads that we study.
Workloads. We characterized cache utilization of the SPEC
CPU2006 benchmarks2; the results are summarized in Ta-
ble 3. Based on misses per 1K instructions (MPKI), we clas-
sified the benchmarks into five types: Heavy (H), Medium-

2A few benchmarks are not included because we were unable to generate
meaningful traces due to limitations in the experimental setup.



Workload Composition Benchmarks

Light1 all Ls astar(2), hmmer(2), gromacs(2), h264ref(2), perlbench(2), gamess(2), soplex, namd, gobmk, tonto
Light2 ML + L calculix(2), gcc(2), bzip2(2), astar(2), hmmer(2), gromacs(2), h264ref(2), perlbench(2)
Light3 M + L milc(2), omnetpp(2), astar(2), hmmer(2), gromacs(2), h264ref(2), perlbench(2), namd, tonto

Medium1 M + ML milc(3), leslie3d(3), omnetpp(2), gcc(2), cactusADM(2),calculix(2), bzip2(2)
Medium2 MH + M sphinx3(2), mcf(2), milc(3), leslie3d(2), omnetpp(3), gcc(2), cactusADM(2)
Medium3 MH+M+ML sphinx3(2), mcf(2), milc(2), leslie3d, omnetpp, gcc(2), cactusADM(2), calculix(2), bzip2(2)
Heavy1 H + MH libquantum(3), lbm(3), GemsFDTD(3), sphinx3(3), mcf(4)
Heavy2 H+MH+M libquantum(2), lbm(2), GemsFDTD(2), sphinx3(2), mcf(2),milc(2), leslie3d(2), omnetpp(2)
Heavy3 all Hs libquantum(6), lbm(5), GemsFDTD(5)
Comb1 H + L libquantum(2), lbm(2), GemsFDTD(2), astar(2), hmmer(2),h264ref(2), gamess, namd, gobmk,tonto
Comb2 MH + L sphinx3(2), mcf(2), astar(2), hmmer(2), gromacs(2), h264ref, perlbench, gamess, soplex, gobmk, tonto
Comb3 MH + L sphinx3, mcf, astar, hmmer, gromacs, h264ref, gamess(2), soplex(2), namd(2), gobmk(2), tonto(2)

Table 4. Multiprogrammed workloads (number in parentheses is the number of instances).

Heavy (MH), Medium (M), Medium-Light (ML), and Light
(L). From this classification, we generated a range of work-
loads (combinations of 16 benchmarks), as summarized in
Table 4. Light, Medium, and Heavy workloads represent
the amount of cache pressure imposed by a group of bench-
marks. The combination workloads (Comb1–3) are used
to evaluate CloudCache’s benefits for highly heterogeneous
workloads. Table 5 summarizes the multithreaded workload
based on PARSEC [26]. We focus on 16-thread parallel re-
gions with the large input sets.

We randomly map programs in a given workload to cores
to avoid being limited by a specific OS policy. All exper-
iments use the same mapping. For the 16-core CMP con-
figuration, one instance of each workload is evaluated. For
the 64-core CMP configuration, we use multiple workload
instances (1, 2, and 4) to mimic various processor utiliza-
tion scenarios. We evaluate 25%, 50% and 100% utilization,
where N% utilization means only N% of the total cores are
active. We run each simulation for 1B cycles. We mea-
sure the performance withweighted speedup[27] to cap-
ture throughput against a private cache baseline. Weighted
speedup is

∑
i(IPC cache type

i /IPC private cache
i ).

Schemes for comparison. Our experiments compare per-
formance of the five cache schemes: Shared cache, private
cache, Dynamic Spill-Receive (DSR) [16], Elastic Cooper-
ative Caching (ECC) [20] and CloudCache.3 For intuitive
presentation, results are given relative to a private cache. The
shared cache has a distributed in-cache directory that main-
tains coherence between the shared L2 cache and the tile
L1 caches. The other schemes are based on a private cache
organization; thus, an on-chip distributed directory is used
for coherence between main memory and the L2 caches (L1
caches are locally inclusive).

DSR was designed for a small-scale CMP with 4 to 16
cores [9]. A crossbar and a broadcast-based coherence pro-
tocol were used in the original proposal. We extended their
work to a many-core CMP to objectively evaluate the ben-

3We also evaluated another recent proposal R-NUCA [10] but donot
present its result for brevity. R-NUCA performance was similar to that
of private cache for multiprogrammed workloads and that of shared cache
for multithreaded workloads.

Workload Benchmarks

Comb1 Blackscholes(*),Bodytrack(14),Facesim(*),Ferret(15)
Comb2 Blackscholes(*),Bodytrack(14),Canneal(15),Swaption(*)
Comb3 Blackscholes(*),Canneal(15),Facesim(*),Swaption(*)
Comb4 Bodytrack(14),Facesim(*),Ferret(15),Swaption(*)
Comb5 Canneal(15),Facesim(*),Ferret(15),Swaption(*)

Table 5. Multithreaded workloads evaluated (number in paren-
theses is the number of threads in the parallel region, ‘*’=16).

efit of DSR versus CloudCache. Similar to other private
techniques in our evaluation, DSR is assumed to use the on-
chip directory. DSR needs to transfer miss information to a
spiller/receiver set’s home tile whenever a miss occurs in the
spiller/receiver set. Although this may incur network over-
head, we do not model it. For the 64-core CMP, we reduced
the number of spiller/receiver sets so that there are no over-
lapped monitoring sets.

4.2. Results and Analysis

4.2.1. 16-core CMP
Figure 3 shows the results for the evaluation of CloudCache
with the 16-core configuration. Figure 3(a) shows the av-
erage speedup of the shared cache, DSR, ECC, and Cloud-
Cache normalized to the baseline. CloudCache consistently
outperforms the other techniques. The average speedup over
the baseline is 1% (Heavy3) to 11% (Medium1). Some pro-
grams have a benefit at the expense of others. We call a pro-
gram that gets more cache capacity than a single cache slice
a “beneficiary program.” A program that is given capacity
smaller than a cache slice is a “benefactor.”

Figure 3(b) and (c) illustrate the speedup of the beneficia-
ries and the slowdown of the benefactors. The error bars in
these figures give the maximum value. The number above
the bars in Figure 3(b) is the number of beneficiary bench-
marks. For example, in Light2, there were one, five, three,
and six benchmarks that experienced a speedup of 4%, 15%,
12%, and 23%, for the shared cache, DSR, ECC, and Cloud-
Cache, respectively. While CloudCache has better perfor-
mance in terms of average speedup, the performance im-
provement for the beneficiary benchmarks is much higher
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Figure 3. Performance of 16-core CMP. (a) Relative performance to thebaseline (private cache). (b) Speedup of beneficiaries. (c)
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(b) are the number of beneficiaries in each workload with the given techniques.

than the other techniques.
Furthermore, CloudCache does not significantly hurt the

benefactors to improve performance of the beneficiary pro-
grams. CloudCache’s average and worst case slowdown is
limited to 5% and 9%, respectively (Light2). DSR and ECC
have 9% and 45% slowdown in the worst case. Calculix
in Light2, Medium1, and Medium3 performed worse with
ECC, whose slowdown in each workload was 35%, 30%,
and 43%. We found that calculix uses only 4 to 5 ways out
of 8 ways. Because ECC does not allow programs with less
than 6 ways to spill their evicted data [20], calculix’s capac-
ity was reduced too much. ECC’s private cache capacity for
each benchmark is determined by the hit counts in the LRU
blocks of the private and shared areas. If the private area’s
LRU hit count for a given time (100K cycles as in [20]) is
bigger than the shared area’s LRU hit count, the private area
is enlarged. However, benchmarks like calculix have a high
hit count only for cache capacities that are above a specific
large threshold. Once the cache capacity is reduced below
the threshold capacity, a large LRU hit count will not be de-
tected. Therefore, such programs never have a chance to
gain more capacity. This is the limitation of local partition-
ing which fails to provide QoS. Global partitioning in Cloud-
Cache avoids this situation and gets better performance.

Interestingly, the shared cache has poor performance for
all workloads and the degradation is magnified in three Light
workloads because these workloads do not need much ca-
pacity. Instead, they prefer fast cache access. For heavy

workloads (Heavy1, 2, and 3), the shared cache achieves
85% to 95% of the private cache’s performance. The private
based techniques do not have much performance improve-
ment over the shared cache for these workloads due to many
off-chip references. These references require an expensive
three step access (i.e., to the local L2 cache, the directory,
and then the memory controller).

In summary, we conclude that CloudCache maximizes
the performance of beneficiaries as well as the number of
beneficiaries. At the same time, CloudCache minimizes the
performance slowdown of benefactors.

4.2.2. 64-core CMP

25% utilization scenario. Figure 4 shows the performance
of each technique with 25% utilization (i.e., 16 threads are
run on a 64-core CMP). Three performance evaluations—
relative performance, speedup of beneficiary benchmarks
and slowdown of benefactor benchmarks—are illustrated in
Figure 4(a), (b), and (c). CloudCache consistently outper-
forms the other techniques by 1% to 33%. For the benefi-
ciary benchmarks, CloudCache achieves a 20% to 50% av-
erage speedup, except for Heavy3.

The larger capacity from the 64-core CMP gives more
chance to improve the performance of each benchmark. The
number of beneficiaries in each workload is much higher
in the 64-core CMP case. While the number of beneficia-
ries is similar for DSR, ECC, and CloudCache as shown
in Figure 4(b), CloudCache has a much higher average
performance improvement for the beneficiaries than DSR
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Figure 4. Performance of the 64-core CMP with 25% utilization. (a) Relative performance to the baseline (private cache) with 16 threads
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and ECC. Furthermore, all workloads, except Comb3 and
Heavy2, have the best maximum performance improvement
on the beneficiaries with CloudCache (error bars, Heavy2’s
maximum speedup of CloudCache is close to that of DSR).
CloudCache offers a large capacity benefit as well as effec-
tive capacity isolation, such that it can provide optimized
capacity to each benchmark.

Similar to the 16-core CMP experiments, ECC has se-
vere problems with QoS. Figure 4(c) reveals this behavior.
calculix in Light2, Medium1, and Medium3 has a large per-
formance degradation of up to 35%. CloudCache limits the
performance slowdown to only 2%.

The shared cache does better for some workloads (e.g.,
Comb2, Comb3, Light2 and Medium3) due to its large cache
capacity. However, the number of beneficiaries is limited by
capacity interference and a longer L2 access latency. Note
that the performance of the shared cache is lower than the
private cache.
50% and 100% utilization scenario. Figure 5 shows the
performance of each technique with 50% and 100% utiliza-
tion. While the average speedup is lower for 50% and 100%
utilization than 25%, CloudCache clearly outperforms the
other techniques. For Light, Medium, and Comb, Cloud-
Cache has 4% to 20% performance improvement over the
private cache for 50% utilization (Figure 5(a)) and 4% to
17% improvement for 100% utilization (Figure 5(b)).

For the Heavy workloads, CloudCache has a 2% to 5%
performance improvement over the private cache, except
Heavy3 at 100% utilization. This benchmark has the best
performance with the private cache due to two character-
istics: a small gain in hit count from more capacity and
many off-chip accesses. A small capacity benefit minimizes
the potential improvement from partitioning in DSR, ECC,
and CloudCache. Furthermore, DSR, ECC, and CloudCache
generate more cache coherence traffic. This causes more

network contention and overhead that harms performance
when there are many off-chip accesses. Nevertheless, among
DSR, ECC, and CloudCache, CloudCache has the best per-
formance in this severe condition.

The speedup of beneficiaries (Figure 5(c) and (d)) re-
veals more about how these techniques perform. On average,
CloudCache has a 21% and 14.7% performance improve-
ment for beneficiaries while DSR and ECC have less than
10%. This result shows that CloudCache’s global partition-
ing strategy gives more capacity to beneficiaries, which in
turn boosts performance more than simple sharing (DSR) or
local partitioning (ECC). Interestingly, the shared cachehas
a large improvement for Comb3’s beneficiaries at 50% uti-
lization, while there are no beneficiaries at 100% utilization.
This result implies that simple capacity sharing is vulnerable
to capacity interference in heavily loaded situations.
Multithreaded workloads. Figure 6 plots the performance
of the multithreaded workloads on the 64-core CMP (four
16-threaded PARSEC benchmarks). The average speedup
of the five workloads in Figure 6(a) shows that CloudCache
does better than the other cache management techniques.
The performance improvement over the private cache is 18%
(Comb2) to 45% (Comb4).

Unlike multiprogrammed workloads, the shared cache
does well for some cases (Comb1 and Comb4). It does not
duplicate shared data blocks, and thus, the overall effective
capacity is larger than the private cache. Figure 6(b) illus-
trates the speedup of individual PARSEC benchmarks for
Comb2 and Comb5. In Comb2, blackscholes and canneal
compete to get more capacity. DSR and ECC fail to im-
prove canneal’s performance. Shared and CloudCache get
a benefit because they can better exploit the cache capacity.
CloudCache’s performance follows the shared cache for can-
neal in Comb2. Although DSR and ECC achieve speedup
for blackscholes, CloudCache’s performance improvement
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is close to these techniques.
Comb5 has a different scenario. For facesim, Cloud-

Cache has a slight performance degradation while DSR and
ECC have significant performance improvements. How-
ever, ferret and canneal have a greater benefit with Cloud-
Cache. Comparing Comb2 and Comb5 in Figure 6(b),
CloudCache’s characteristic is clear: it always maximizes
the cache capacity for the most beneficiaries, and each bene-
factor’s slowdown is minimized. Canneal has a 58% per-
fomance improvement in Comb2 and a 12% speedup in
Comb5. CloudCache allocates much more capacity to ferret
for Comb5, and thus, canneal cannot be improved as much
as in Comb2.

We conclude that CloudCache’s global partitioning is
beneficial for a large aggregated cache capacity. Distance-
aware placement and limited target broadcast also effec-
tively cooperate to boost performance.
Quality of Service support. Let us examine the perfor-
mance of multiprogrammed workloads on the 16-core CMP
with the QoS support. Figure 7(a) presents the average
speedup of CloudCache with three QoS levels, no QoS, 5%

QoS, and 2% QoS. 5% (2%) QoS means the maximum al-
lowed performance degradation is 5% (2%) of the private
cache. The figure shows the QoS support does not signifi-
cantly decrease overall performance.

Figure 7(b) and (c) are S-curves of each application’s
performance with the three QoS levels. As shown in Fig-
ure 7(b), the QoS support does not significantly decrease the
performance of beneficiaries. Figure 7(c) plots only the per-
formance of the benefactors. In Figure 7(c), 5% QoS level
meets all applications’ performance requirement. For 2%
QoS level, two programs have 2.2% performance slowdown.
In these cases, the miss rate computation is somewhat inac-
curate due to sampling. While the error is negligible, a more
conservative design (e.g., by using a larger average miss la-
tency in Equation 3) might better guarantee the QoS level.

4.2.3. Impact of individual techniques
Impact of dynamic global partitioning. Figure 8 depicts
MPKI for sphinx, hmmer, and gobmk from Comb2. The
figure illustrates the 25% utilization case with a representa-
tive execution period. From Figure 8(a), CloudCache has a
significant partitioning benefit over the other techniques for
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sphinx. The shared cache has a capacity benefit over Pri-
vate and DSR. In this workload, DSR determines sphinx as
a receiver, which does not spill data to other cores. With
limited spilled data, a DSR receiver performs similar to a
private cache. ECC has better performance because it can
spill sphinx’s evicted data to other shared cache regions. The
limited data spilling from other cores may increase the ben-
efit for sphinx. CloudCache’s MPKI is significantly smaller
than all other techniques because it dedicates a large cache
capacity that is not subject to interference.

Figure 8(b) shows a case, hmmer, where CloudCache
does not outperform the other techniques. The large MPKI
for the shared cache shows that hmmer is greatly impacted
from cache capacity interference while additional capacity
might be helpful as shown in the ECC figure. CloudCache’s
MPKI is slightly higher than ECC for hmmer. This shows
that the effective cache capacity of CloudCache is somewhat
smaller than that of ECC. However, the difference between
the two schemes for hmmer is limited.

Lastly, gobmk, shown in Figure 8(c), has the highest
MPKI with CloudCache. CloudCache aggressively reduces
the cache capacity of gobmk to help other benchmarks.
However, the maximum MPKI of this benchmark is only
0.14, which is far smaller than that of sphinx (20) and hm-
mer (3.5). This illustrates that CloudCache’s performance
loss is limited for this benchmark. In fact, with distance-
aware placement and limited broadcast, CloudCache even
outperforms the other techniques for gobmk.

From this analysis, the benefit of CloudCache’s global
partitioning is apparent. First, it judiciously grants more
cache capacity to benchmarks with more potential for
performance improvement. The simple capacity sharing
schemes (DSR and ECC) can generate capacity interference
in the shared cache capacity, which in turn reduces the ben-
efit of more capacity. Second, the effective use of cache ca-
pacity with CloudCache in moderate beneficiaries (e.g., hm-
mer) is close to the best technique (ECC). This leads to sim-
ilar performance improvement with ECC and DSR. Third,
CloudCache aggressively grants cache capacity from less
sensitive benchmarks (e.g., gobmk) to more capacity sen-
sitive ones. This achieves a better overall speedup without
harming other benchmarks.
Impact of distance-aware data placement. We investigate

the performance of the cache management techniques when
only one benchmark is run on a 64-core CMP. This high-
lights the impact of additional capacity and distance-aware
placement. We disabled CloudCache’s broadcast function to
show the pure effect of distance-aware placement. We make
a few interesting observations. First, the shared cache per-
forms the best for gcc, but it does the worst for many bench-
marks. For example, GemsFDTD might need the additional
capacity benefit from shared cache. However, shared cache’s
capacity benefit is offset by a longer NUCA latency. Gcc has
many hits beyond the local L2 cache slice (i.e., 512KB), and
thus, it is capacity demanding. In this situation, the shared
cache can directly determine the data location and does not
need three-step communication involving the directory, un-
like DSR, ECC, and CloudCache.

Sphinx3 is also an interesting example: the shared cache
does better than DSR and ECC. However, it does worse than
CloudCache. Like gcc, sphinx is capacity demanding but it
has a sharp fall-off in the hit counts once a particular capac-
ity is reached. As a result, distance-aware placement is ben-
eficial because it can concentrate hits in nearby cache slices.
For gcc, it is more important to add additional capacity than
to keep the hits near the home core.

The other benchmarks, except milc, have the best per-
formance with CloudCache. While milc does not achieve
performance improvement with all the techniques, Cloud-
Cache’s additional network traffic causes a small perfor-
mance slowdown. Note this is the case when milc is ex-
ecuted alone in a 64-core CMP. In real conditions, when
milc is run with other benchmarks, milc has limited cache
capacity which naturally does not generate additional net-
work traffic. Interestingly, ECC performs worse than DSR
for most benchmarks.
Impact of limited target broadcast. We also investigate the
performance improvement from the limited target broadcast
technique. This experiment is performed with one thread in
a 64-core CMP so that the full performance impact of broad-
cast can be revealed. This experiment uses varying broadcast
depth from 1 to 5 hops, which is the maximum distance of
cores that are targets of a broadcast to the home core.

The benchmarks are roughly clustered in three categories.
First, benchmarks such as bzip2, gromacs, calculix, hmmer,
h264ref, omnetpp, astar, and sphinx3 benefit significantly
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from limited broadcast. They have up to 16% performance
improvement. The peak performance benefit was usually
achieved with a broadcast depth of two. A deeper depth in-
curs more traffic, which reduces the benefit of broadcast.

Second, there are benchmarks, like gcc, mcf, milc,
leslie3d, libquantum, and lbm, whose performance is hurt by
broadcast. The performance loss is even more apparent at a
3-hop depth. With a large depth, performance slowdown of
up to 11.5% was observed (milc). This illustrates that broad-
cast is not always good due to its additional network traffic.
However, under realistic workloads, CloudCache would ac-
tively adjust the capacity of these benchmarks to be small,
which would automatically limit this effect.

Lastly, benchmarks such as perlbench, gamess, namd,
gobmk, and soplex are relatively insensitive to broadcast.
These benchmarks have a small number of remote cache ac-
cesses, and thus, the impact of the broadcast is limited.

4.2.4. Putting all techniques together

Figure 9 presents the L2 access latency profile of bzip2
(“ML” type, see Table 3) and sphinx3 (“MH” type). Com-
paring the shared and private cache, we observe the trade-off
between on-chip cache miss rate (shared cache is better) and
on-chip cache access latency (private cache has many local
hits). DSR, ECC, and CloudCache (without limited target
broadcast) share the strength of a private cache and have
many local cache hits. Furthermore, many accesses are sat-
isfied from remote cache capacity. Note that the accesses in
CloudCache have lower latency due to distance-aware place-
ment. With limited target broadcast, the non-local cache hit
latency is even smaller.

The performance gap between the shared cache and the
other schemes is smaller with sphinx, which requires much
more capacity for high performance than bzip2 (i.e., data
reuse distance is longer). Therefore, the private cache suffers

from a high cache miss rate. Many cache accesses are ser-
viced by remote cache slices in DSR, ECC, and CloudCache.
While CloudCache’s distance-aware placement helps, its
benefit is somewhat limited as many cache slices are in-
volved. Nevertheless, limited target broadcast significantly
improves performance by 8%.

5. Conclusion
Future CMPs are expected to have many cores and cache re-
sources. We showed in this work that both efficient capacity
partitioning and effective NUCA latency mitigation are re-
quired for scalable high-performance on a many-core CMP.
We proposed CloudCache, a novel scalable cache manage-
ment substrate that achieves three main goals: minimiz-
ing off-chip accesses, minimizing remote cache accesses,
and hiding the effect of remote directory accesses. Cloud-
Cache encompasses dynamic global partitioning, distance-
aware data placement, and limited target broadcast. We ex-
tensively evaluate CloudCache’s performance with two basic
techniques (shared and private caches) and two recent pro-
posals (DSR and ECC). CloudCache outperforms the other
techniques by up to 18% in comparison to the best one. Our
detailed analysis demonstrates that our proposed techniques
significantly improve system performance. We also showed
that CloudCache naturally accommodates QoS support.
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