
BulkSMT: Designing SMT Processors
for Atomic-Block Execution

∗

Xuehai Qian, Benjamin Sahelices and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract

Multiprocessor architectures that continuously execute atomic

blocks (or chunks) of instructions can improve performance and

software productivity. However, all of the prior proposals for such

architectures assume single-context cores as building blocks —

rather than the widely-used Simultaneous Multithreading (SMT)

cores. As a result, they are underutilizing hardware resources.

This paper presents the first SMT design that supports contin-

uous chunked (or transactional) execution of its contexts. Our de-

sign, called BulkSMT, can be used either in a single-core processor

or in a multicore of SMTs. We present a set of BulkSMT config-

urations with different cost and performance. We also describe the

architectural primitives that enable chunked execution in an SMT

core and in a multicore of SMTs. Our results, based on simulations

of SPLASH-2 and PARSEC codes, show that BulkSMT supports

chunked execution cost-effectively. In a 4-core multicore with ea-

ger chunked execution, BulkSMT reduces the execution time of the

applications by an average of 26% compared to running on single-

context cores. In a single core, the average reduction is 32%.

1. Introduction

There has been much interest recently in a class of shared-

memory architectures where processors continuously execute

atomic blocks of instructions — often called chunks or transac-

tions. Broadly speaking, these architectures include research pro-

posals such as TCC [9], Bulk [20], Implicit Transactions [23],

ASO [24], InvisiFence [3], DMP [8] and SRC [16] among oth-

ers. Their chunked execution mode can improve performance and

software productivity. For example, it supports transactional mem-

ory [9, 16], high performance under strict memory-consistency

models [3, 20, 24], deterministic execution [8], parallel program

replay [13], and atomicity-violation debugging [12].

All of the proposals for such architectures have implicitly used

as their building blocks single-context cores — rather than Simulta-

neous Multithreading (SMT) cores [21]. This is unfortunate, given

that SMT cores are widely deployed [10, 11] and would likely be

used in a commercial implementation of these architectures. It is

therefore important to understand how SMT cores would support

chunked operation, both individually and integrated into a multi-

core of SMTs.

SMT processors are attractive for chunked execution for some

of the same reasons as they are interesting for conventional execu-

∗ This work was supported by the NSF under CCF-1012759, Intel un-

der the Illinois-Intel Parallelism Center (I2PC), Spanish Gov. & Euro-

pean ERDF under TIN2007-66423, TIN2010-21291-C02-01 and TIN2007-

60625, Aragon Gov. & European ESF under gaZ: T48 research group, Con-

solider CSD2007-00050, and HiPEAC-2 NoE (European FP7/ICT 217068).

B. Sahelices is with Universidad de Valladolid, Spain (benja@infor.uva.es).

tion. Specifically, they enable a better utilization of the hardware

resources in a core. Moreover, they support fast communication

between contexts, which improves performance and minimizes en-

ergy consumption. However, they are also attractive for chunked

execution in their own right. Indeed, by minimizing the cost of in-

teraction between the multiple contexts of the same core, they can

enable more aggressive, higher-concurrency forms of chunked exe-

cution — e.g., concurrent execution of dependent chunks.

On the other hand, the fact that SMT threads share caches and

other hardware structures makes it intrinsically more difficult to

support the execution of atomic, isolated chunks.

Given this state of the art, this paper contributes with the first

SMT design that supports chunked (or transactional) execution of

its contexts. We call it BulkSMT, and can be used either in a single-

core processor or in a multicore of SMTs. In this paper, we first per-

form an analysis of the design space, and propose three BulkSMT

configurations with different cost and performance: squash on con-

flict, stall on conflict, and order on conflict. Then, we describe a set

of novel architectural primitives that enable chunked execution in

an SMT core. Finally, we show how to augment the resulting SMT

core to work in a multicore of SMTs that executes chunks.

We evaluate our BulkSMT designs using simulations of

SPLASH-2 and PARSEC codes. Our results show that BulkSMT

supports chunked execution cost-effectively — both when it runs

in a single-core processor and when it is integrated in a multicore

of SMTs. In a 4-core multicore with eager chunked execution,

BulkSMT reduces the execution time of the applications by an av-

erage of 26% compared to running on single-context cores. In a

single-core machine, the average reduction is 32%.

The paper is organized as follows: Section 2 provides a back-

ground; Section 3 shows the BulkSMT core design; Section 4 ex-

amines BulkSMT multicores; Section 5 discusses implementation

issues; Sections 6 and 7 evaluate our designs; Section 8 discusses

related work; and Section 9 concludes.

2. Background

2.1. Continuous Execution of Chunks

In blocked (or chunked) execution, a core continuously executes

atomic blocks of instructions, also called transactions or chunks.

There are several recent proposals of architectures that operate or

can operate in this mode (e.g. [3, 8, 9, 16, 20, 23, 24]). These ar-

chitectures have interesting capabilities related to performance and

parallel software productivity.

In these systems, before a chunk starts, the processor hardware

takes a register checkpoint. Then, as the chunk executes, the ar-

chitecture records the addresses read and written by the chunk, and

prevents the written data from being irreversibly merged with the

memory system before the chunk is proven safe to commit. In

most designs, no other processor is allowed to observe the inter-

mediate state of the chunk as it executes. Consequently, the ar-

chitecture watches for data conflicts (i.e., RAW, WAW, and WAR

dependences) between concurrently-executing chunks. If a con-

flict is found, typically one of the chunks is squashed and restarted.

Squashing involves discarding the data updated by the chunk in the

cache or buffer, and restoring the register checkpoint.

Another reason for squashes is the overflow of the cache or

buffer that keeps the updates of the chunk (or a log of the values

prior to such updates). When a chunk is squashed by an event

that re-appears on re-execution (e.g., cache overflow), execution

transfers to a special version of the code that guarantees forward

progress.

A system with chunked execution needs to perform version

management, conflict detection, and conflict resolution. Each of

these operations can be performed eagerly or lazily. Version man-

agement deals with the storage of speculative and non-speculative

data. The lazy policy buffers the speculative data in special storage,

separate from the shared memory, until the chunk commits; the ea-

ger one stores the speculative data in place in the shared memory,

and saves the prior values in a special buffer or log. Conflict de-

tection refers to the detection of inter-thread conflicts. The eager

policy detects them as soon as a chunk tries to perform the conflict-

ing memory accesses; the lazy policy checks for conflicts when a

chunk is ready to commit. Finally, conflict resolution refers to the

action taken to deal with the conflict. The eager policy takes the ac-

tion as soon as the eager conflict detector has detected the conflict;

the lazy one takes the action when a chunk is ready to commit.

2.2. An Opportunity for Chunked Execution

Chunked-execution multiprocessors can attain higher perfor-

mance if they can withstand data conflicts between concurrently-

executing chunks without squashing. Recently, there have been

several proposals for such systems. For example, some proposals

use the Conflict Serialization model from database systems [2, 18].

The idea is to record and manage the conflicts between chunks as

they execute, and then ensure that the chunks commit in the cor-

rect order. In practice, as we discuss in Section 8, supporting this

additional level of concurrency has resulted in a complicated cache

coherence protocol as in DATM [18] or in non-trivial bookeeping

requirements to ensure correct ordering as in SONTM [2].

Other proposals involve a “state correcting” step. Specifically, in

RetCon [4], execution proceeds after a data conflict occurs. How-

ever, when the chunk is ready to commit, RetCon attempts to fix

its state by obtaining the current value of the variables that were

involved in the conflict. Alternately, in transaction value predic-

tion [15], a chunk uses a value that it predicts it will need in a future

conflict.

In general, many of these schemes involve significant concep-

tual and hardware complexity — much of it resulting from the dis-

tributed nature of the multiprocessor hardware involved. In con-

trast, an SMT processor contains multiple hardware contexts that

are in close proximity and share hardware structures such as caches

and buffers. If such contexts run chunks that conflict with each

other, the hardware can efficiently and quickly detect the conflicts,

record them, and manage them, in order to attain some concurrency

between the chunks.

Remarkably, none of the proposals for chunked-execution archi-

tectures has used SMT cores as its building block. There is, there-

fore, an opportunity to leverage SMT to support higher levels of

chunk concurrency with simpler hardware than in the past. Uncov-

ering such opportunity is the goal of this paper.

3. Chunked­Execution SMT Processors

Given an off-the-shelf SMT processor with L1 and L2 caches,

we want to extend it to support chunked execution. In this section,

we examine the design space and the basic hardware mechanisms

required. The processor can be part of a multicore, although we

ignore multicore effects until later sections.

3.1. Design Space

The extensions needed in the SMT processor to support chunked

execution depend on our choices for the operations of Section 2.1.

The preferred design points are shown in Table 1. For version man-

agement, it is simpler for the hardware to adopt an eager policy.

This means allowing a speculative write from one context to update

the cache and be immediately visible to the other contexts of the

SMT processor. There is no need to save the old value of the writ-

ten variable in a log, as long as speculative data is prevented from

spilling from L2; we can always get the old value of the data from

main memory. If L2 is about to overflow, the chunk is squashed.

The alternative, lazy version management, would require separately

buffering the state that each context is generating. For conflict de-

tection, it is natural to do it eagerly between contexts, as soon as a

conflicting access executes. Similarly, for conflict resolution, it is

simpler for the hardware to do it eagerly, rather than keeping state

and resolving the conflict at commit time.

Version Managmt. Eager, but without updating main memory

with speculative data. No log is needed

Conflict Detection Eager

Conflict Resolution Eager squash, eager stall, or eager order

Table 1. Preferred design points.

We propose three distinct eager conflict resolution schemes, as

shown in Figure 1. They generate three very different BulkSMT

design points. Consider a data dependence between two concur-

rent chunks as in Figure 1(a). In SQUASH, the hardware squashes

and restarts one of the conflicting chunks (Figure 1(b)). In STALL,

the hardware stalls the consumer chunk until the producer commits

(Figure 1(c)). However, if the stall induces a cycle between two

or more stalled chunks, the consumer is squashed. In ORDER, the

hardware records the order of the two chunks, lets them continue

and enforces the order at commit (Figure 1(d)). However, if the

conflict forms a cycle between two or more ordered chunks, then

one or more chunks are squashed. The three schemes are summa-

rized in Table 2.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
������
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

rd x rd x

rd x

rd xrd x

wr x wr x wr x wr x

rd x

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

T0 T1 T0 T1 T0 T1T0 T1

..

(a)

Commit
Commit

Commit

SQUASH(b) STALL(c) (d) ORDER

Figure 1. Conflict resolution schemes.

The main tradeoff is one of performance versus hardware cost.

As we go from SQUASH to STALL and ORDER, we enable more

Design Conflict Action on a Conflict

Point Resol.

Policy

Between Chunks

SQUASH Eager

Squash

Squash one of the conflicting chunks

STALL Eager

Stall

(1) Stall the consumer chunk; (2) if there

is a cycle between two or more stalled

chunks, squash the consumer chunk

ORDER Eager

Order

(1) Record the order of two chunks; (2)

if there is a cycle between two or more

ordered chunks, squash one or more

chunks; (3) enforce the order at chunk

commit

Table 2. Conflict resolution design points.

concurrency and, therefore, higher performance — as seen in Fig-

ure 1. However, the hardware is more costly and we need to keep

more state. Specifically, STALL needs to record if a thread is stalled

and, if so, which other thread stalled it, and detect cycles of stalled

threads. ORDER needs to record if threads are currently ordered

and, if so, by what type of dependence. In addition, it needs to

enforce the commit ordering, and also detect cycles of dependent

threads. Fortunately, thanks to the tight coupling of the contexts in

an SMT, the hardware needed is simple and highly localized.

Next, we describe the three schemes. When we refer to a data

dependence, we include RAW, WAR, and WAW, and they are at

memory line granularity. The thread at the receiving end of the

dependence is called consumer.

3.1.1. SQUASH Design

On a conflict, the chunk from one of the conflicting threads is

squashed. Then, all of the processor resources used by the chunk

(e.g., ROB entries, registers, and load/store queue entries) are re-

leased, and the cache lines written by the chunk are discarded (Sec-

tion 3.2.1). Finally, the chunk restarts. We use the policy of oldest

transaction wins, which helps make forward progress.

3.1.2. STALL Design

When a conflict is detected, the consumer chunk stalls before

the actual consumer memory access is performed. The hardware

records which chunk is stalled and which chunk is the producer

one. When the producer chunk commits, the hardware resumes the

consumer chunk, starting from the consumer memory access.

A chunk may stall on an already-stalled chunk. This is accept-

able as long as the stalled chunks do not form a cycle. Consider

Figure 2(a). In the figure, thread T0 is about to write x and stalls

on T1. Then, T2 is about to write y and stalls on T0. This is fine

because there is no cycle. Eventually, T1 will commit and then T0

will resume. When T0 commits, T2 resumes.

T0 T1 T2

wr y

wr x

rd x

wr y

T0 T1

wr y

wr x

rd x

wr y

Squash
T1

(a) (b)

Figure 2. Examples of stalls.

When the hardware detects a cycle, it squashes the chunk that

closes the cycle and resumes the chunks that were stalled on it. For

example, in Figure 2(b), T0 is stalled on T1. Then, T1 attempts to

write y, which would stall it on T0, creating a cycle. Consequently,

T1 gets squashed and T0 resumes. A cycle can involve more than

two chunks.

When BulkSMT stalls a chunk, the processor pipeline completes

all the instructions in the chunk that are before the stalling one in

program order. All the instructions that are after it must be flushed

from the pipeline. Keeping them in the pipeline would lock up en-

tries in resources that are shared by all of the contexts, such as the

instruction queue. The result could be deadlock, as other contexts

could fail to make progress. When the stalled chunk resumes, all of

these instructions are reloaded again into the pipeline.

3.1.3. ORDER Design

When a conflict is detected, the hardware records the type and

direction of the dependence. The chunks involved are allowed to

proceed, but the hardware will enforce that they commit in the same

order. The hardware also watches for a dependence that creates a

cycle of ordered chunks (with two or more threads). If this happens,

the hardware breaks the cycle by squashing and restarting one or

more chunks — which may not include the one with the reference

that closed the cycle.

To understand which chunks should get squashed in a cycle,

consider the type of dependence. Figure 3 shows a RAW, WAW

and WAR dependence and the squash rules that are easiest to sup-

port in hardware. Recall that a chunk squash also invalidates the

cache lines updated by the chunk. In a RAW, one chunk wrote to

the cache and a second one read. If we choose to squash the pro-

ducer chunk, then we also have to squash the consumer. However,

we can squash the consumer and not the producer. In a WAW, since

dependences are at line granularity, if we choose to squash one of

the chunks, we also have to squash the other. In a WAR, the squash

of either one of the chunks does not cause the squash of the other.

Section 3.2.5 uses these rules to decide which chunks to squash

when a cycle is detected.

Squash T0 o Squash T1

Squash T1 o Squash T0

T0 T1

rd

wr

Squash T0 z Squash T1

Squash T1 o Squash T0

T0 T1

wr

rd

RAW WAR

Squash T0 z Squash T1

Squash T1 z�Squash T0

T0 T1

wr

wr

WAW

Figure 3. How squashes are affected by the type of dependence.

3.2. Basic Hardware Mechanisms

The basic mechanisms for BulkSMT operation are shown in Ta-

ble 3. For each mechanism, the table shows its function, its imple-

mentation, and the designs it applies to. We consider each in turn.

3.2.1. Access Recording and Conflict Detection

Past work has used Bloom-filter based hardware signatures to

detect conflicts between chunks or transactions executing on differ-

ent cores (e.g., [5]). In BulkSMT, since the chunks are executing

all in the same core and share the (multi-level) cache, it is eas-

ier to record the accesses with cache bits and use simple logic to

Mechanism Function Implementation Designs

Access Recording and Record the addresses accessed by each chunk Access Bits in cache All

Conflict Detection and detect when two chunks have a data conflict and related logic (More in ORDER)

Cycle Record data conflicts and their ordering, Dependence Table STALL and

Detection and detect conflict cycles and Cycle Table ORDER

Advanced Represent the type of conflict between different Enhanced ORDER

Conflict Recording chunks compactly Dependence Table

Squash Set On a cycle of chunks with conflicts, decide the Logic that operates on ORDER

Generation set of chunks to squash the Dependence Table

Table 3. Basic mechanisms to support chunked execution in an SMT processor.

detect conflicts. Hence, we augment each cache line with a Last

Writer (LW) context-ID, a read bit-mask with as many bits as con-

texts (R[i]), and a speculative bit (Sp). In an SMT with 4 contexts,

this represents 7 bits per cache line (Figure 4(a)). When thread k

reads from the cache, it sets R[k]; when it writes to the cache, it

sets Sp and writes its context ID to LW. These bits are in the L1 and

L2 caches and write buffers.

(a) Access Bits

Cache

R[i]LW Sp

WAW

Contexts

#
 C

o
n
te

x
ts

RAW
WAR

(b) Enhanced Dependence Table

Figure 4. Two mechanisms for BulkSMT operation.

With this support, conflicts are detected as follows. When a

load accesses a cache line, if Sp is set and LW is not the requester’s

ID, a RAW conflict is declared. When a store accesses a cache

line, if the R[i] for any other context is set, a WAR is declared.

Moreover, if Sp is set and LW is not the requester’s ID, a WAW is

(also) declared. In addition, when a chunk commits, the hardware

performs two multi-cycle operations: (1) a flash clear of the R[i]

bit corresponding to the chunk’s context for all the cache lines, and

(2) a flash conditional clear of the Sp bit of any cache line whose

LW is equal to the committing context ID. Finally, when a chunk is

squashed, the hardware performs two operations: (1) a flash clear

of the R[i] bit corresponding to the chunk’s context for all the cache

lines, and (2) a flash conditional clear of the valid and Sp bits of any

cache line whose Sp bit is set and the LW is equal to the squashed

context ID. An example of SRAM cells augmented with similar

support is shown in [3].

In a WAR dependence in ORDER, we may want to squash the

writer chunk after it has written and not squash the reader chunk

(Figure 3). In this case, we need to make sure that, after the squash

of the writer (and invalidation of the lines it updated), we do not

lose the record of any prior reader to those lines. To support this

performance optimization, we add one additional bit per line called

Read But Missing (RM). When a chunk is squashed, as the hard-

ware invalidates a line, it checks the line’s R[i]. If R[i] has a set bit

for a thread Ti that is not being squashed, such bit is left unmodified

and RM gets set. RM indicates that R[i] is up-to-date but the data

is invalid. A future access to the line brings the line from memory,

while clearing RM but not R[i] and, if applicable, recording a data

conflict with Ti.

3.2.2. Cycle Detection

In both STALL and ORDER, we need a structure to record inter-

thread data conflicts and their order — so that we stall the con-

sumer thread in STALL and order the commit of producer and con-

sumer in ORDER. Such structure also needs to detect conflict cy-

cles. BulkSMT uses two low-cost hardware structures: the Depen-

dence Table (DT) to record conflicts and the Cycle Table (CT) to de-

tect conflict cycles. They are two-dimensional arrays, with as many

rows and as many columns as hardware contexts in the processor.

In the baseline design, each entry has one bit.

Figure 5(a) explains how they work. If there is a conflict where

the chunk in thread Ti is the producer and the one in Tj is the con-

sumer (represented as Ti →Tj), the BulkSMT hardware sets the

bits DT[i][j] and CT[i][j]. Every time that a new conflict is detected,

the DT sets the corresponding bit. As the processor continues, in the

background, the CT attempts to find if the new dependence has cre-

ated a cycle. The CT does it by setting: (i) the bit corresponding

to the latest conflict and (2) the bits corresponding to dependences

transitively implied by all the recorded conflicts. A cycle is detected

if a bit is set in the diagonal of the CT — i.e., a dependence has the

same producer and consumer thread.

As an example, consider Figure 5(b). As conflict d1 occurs,

DT[0][1] and CT[0][1] get set. Later, as conflict d2 occurs,

DT[1][2] and CT[1][2] get set, and CT tries to find transitive de-

pendences. This is done by taking the newest dependence (d2) and

examining, in turn, its source and its destination, checking for other

arrows connected there. Starting at the source (T1), we consider all

the arrows that point to it. In our example, the only one is d1. For

this arrow, the transitive dependence is shown as dA. Specifically,

any arrow whose destination is T1 (i.e., d1) creates a new one (i.e.,

dA), whose source is unchanged and whose destination is the desti-

nation of the newest dependence (i.e., d2). In hardware terms, CT

takes the column corresponding to T1’s ID (i.e., second column)

and bit-ORs it into the column corresponding to the destination of

the newest dependence d2 (i.e., third column). This is shown in

Figure 5(b).

The next step is to consider the arrows that start at the destina-

tion of the newest dependence and create transitive dependences.

Our example does not have any. If it had (call it dependence d3),

we would create an arrow from the source of d2 to the destination of

d3. Specifically, any arrow whose source is T2 creates a new arrow

whose destination is unchanged and whose source is the source of

the newest dependence. In hardware, CT would take the row cor-

responding to T2’s ID (i.e., third row) and bit-OR it into the row

corresponding to the source of dependence d2 (i.e., second row).

The process described proceeds recursively: every time that a

new transitive dependence is found in the CT, the algorithm pro-

ceeds to analyze its source and destination as described above to

find new dependences. The process terminates when the CT no

longer changes. Since an SMT processor has few contexts, CT is

small (e.g., 4x4), and very few steps are typically needed.

Figure 5(c) shows an example of a cycle with two threads. On

the left, we show the dependences d1 and d2 and, on the right, the

evolution of the CT. When d1 is flagged, bit CT[0][1] is set. When

Ti Tj i

j

Dependence Table (DT)

i

j

Cycle Table (CT)

(a)

T0 T1 T2

d1

d2

dA

1

DT

1

1

DT

1

CT

1

1

CT

1 1

1

CT

d1 d2 dA

Col2 |= Col1

T0 T1

d1

d2

1

CT

1

1

CT

1 1

1

CT

d1 d2 dA

dA

(b) (c)

T0 T1 T2

d1

d2

dA

1

CT

1

1

CT

1 1

1

CT

d1 d2 dA

(d)

dB

d3

dC

1 1

1

1

CT

1 1 1

1 1

1

CT

d3 dB and dC

n

n

n
1

1

Figure 5. Operation of the Dependence Table and Cycle Table.

d2 is flagged, bit CT[1][0] is set and the algorithm proceeds by

ORing the second column into the first one. The set bit CT[0][0]

flags the cycle, which corresponds to arrow dA. While the algorithm

stops as soon as it finds a cycle, for completion, we note that there

is another cycle. It is an arrow not shown in the figure that goes

from T1 to T1. It is obtained by processing the destination of d2.

It appears as we bit-OR the first row into the second row and bit

CT[1][1] gets set.

Figure 5(d) shows a three-thread cycle. Dependence d1 sets

CT[0][1]; dependence d2 sets CT[1][2] and uncovers dA, setting

CT[0][2]; finally, dependence d3 sets CT[2][0] and uncovers dB

and dC, setting CT[1][0] and CT[0][0] — hence flagging a cycle.

3.2.3. Additional Issues Related to the DT and CT

The CT is not a time-critical structure. While the DT must be up-

dated as soon as the dependence occurs, the CT can buffer its inputs

and only later get updated and run the cycle detection algorithm. It

is always correct to find a few cycles later that a cycle occurred. At

that point, the Squash Set Generation algorithm (Section 3.2.5) will

be run based on the up-to-date state of the DT.

The DT and CT are also updated when a chunk commits or gets

squashed. Consider first that the chunk in thread Ti is ready to

commit. In ORDER, BulkSMT first checks if it can commit. If

any bit in column i of the DT is set, the thread has to stall — and

post that it is stalled. In all other cases of ORDER and STALL, the

chunk commits and then BulkSMT runs the algorithm of Figure 6.

Similarly, after the chunk in thread Ti is squashed, BulkSMT runs

the algorithm of Figure 6.

3.2.4. Advanced Conflict Recording

In STALL, each DT entry only needs to record if there is a depen-

dence or not. Therefore, one bit per entry suffices. In ORDER, each

DT entry also needs to record what type(s) of dependence there are

between the two chunks — RAW, WAW, or WAR. This information

1.1) Consider row i in the DT. Find all columns where their only

set bit is in row i

1.2) For each column j in this set

1.2.1) If in STALL: wake up thread T

1.2.2) If in ORDER: if thread T is stalled, wake up thread T

2) Clear row DT[i][.] and column DT[.][i]. Clear the CT

j

jj

3) Copy the DT to the CT. Regenerate all the transitive dependences in CT

1) Wake up any chunks that are stalled and can now proceed:

Figure 6. Actions at the commit/squash of thread Ti’s chunk.

is needed in case of a cycle, to decide what chunks to squash (Sec-

tion 3.2.5). Recall that the dependence type impacts which chunk

to squash (Figure 3).

Two chunks may have multiple dependence types (on the same

or different variables). Hence, in ORDER, the DT has three bits per

entry, one per each type of dependence (Figure 4(b)). Note that the

CT is unaffected, and it still has one bit per entry. The bit in the CT

entry is set if any of the three bits in the DT entry is set.

3.2.5. Squash Set Generation

In ORDER, when the CT detects a cycle, the hardware stalls

the processor and uses the DT (which is consistent with the cur-

rent speculative memory state) to decide which chunks to squash to

break the cycle. The algorithm used to select such chunks is called

Squash Set Generator (SSG). It reads the bits currently in the DT

and applies the rules of Figure 3 for RAW, WAW, and WAR depen-

dences.

The Baseline SSG algorithm starts by putting in the set of

chunks to squash (the squash set) the chunk that closed the cycle.

Then, it follows forward dependences from that chunk, using the

rules in Figure 3 to put additional chunks in the squash set. The

squash propagation stops when forward dependences either bring

us to chunks already in the set or they do not propagate squashes be-

cause they are WAR dependences. Then, SSG goes back to the orig-

Event Actions

Chunk wants Initiate a global commit; when it succeeds, commit locally

to commit EE: Wait for the completion of all the buffered previous memory accesses, then perform local commit

LL: Send signature out, wait for the global confirmation, then perform local commit. For

performance, perform commit combining under ORDER

Reception of Squash any local chunk that needs to be squashed (even the stalled ones)

a coherence EE: Use the address of the coherence message to index the cache and read the Access Bits; if

event that a conflict [14] is detected, squash the corresponding local chunk(s)

may cause LL: Intersect the incoming signature with local signatures [6]; if intersection is not null, squash the

a squash corresponding local chunk(s)

Propagate the squash inside the SMT processor

Table 4. Rules for integrating local and global chunk­based protocols.

inal chunk and follows backward dependences from there, again

using the rules. The backward propagation stops when we reach

chunks already in the set or the dependences do not propagate the

squash because they are RAW or WAR dependences. The algorithm

is recursive.

Figure 7 shows an example of a cycle with three chunks. The

read in thread T0’s chunk closes a cycle. Consequently, T0 is put

in the squash set. From T0, SSG then follows the RAW to thread

T1, which is also put in the set. The next forward dependence is

a WAR to T2, which stops the propagation. Then, SSG goes to

T0 and propagates backward. Since we find a RAW to T2, back-

propagation stops. Consequently, only T0 and T1 get squashed.

T0 T1 T2

wr

rd

rd

wr

rd

wr

R
AW W

A
R

RA
W

Figure 7. Example of breaking the cycle of ordered chunks.

In reality, a given cycle can be broken in multiple ways, possibly

resulting in different numbers of squashed chunks. Consequently,

the Advanced SSG algorithm does not simply squash the chunks

found in the squash set as described after the first try. Instead, it then

picks each chunk in the set in turn and re-runs the algorithm start-

ing from that chunk. These new runs may result in fewer chunks to

squash. For example, in Figure 7, if SSG starts from T1, it finds that

it only needs to squash T1 to break the cycle. Consequently, the Ad-

vanced SSG algorithm breaks the cycle in the way that minimizes

the number of squashed chunks.

Since over 95% of the cycles that we found only involve two

chunks, the Advanced SSG adds very little overhead. Moreover,

Section 5 shows that the Advanced SSG helps ORDER handle high-

contention locks.

After BulkSMT has squashed the chunks to break the cycle, it

uses the resulting DT to regenerate the CT. If the CT finds that there

is still a cycle, the whole process is repeated. The CT may still find a

cycle if the last dependence recorded ended up creating two cycles,

and with the use of the Advanced SSG algorithm, we broke only

one. Overall, we use the Advanced SSG algorithm. Its hardware

cost is modest, since it only accesses the DT and the number of

contexts in an SMT is fairly small. Moreover, it only runs in the

relatively rare case of a cycle.

4. Chunked­Execution Multicores of SMTs

SMT cores with chunked-execution support should be amenable

to integration into multicores and multi-socket systems. We now ex-

amine the additional microarchitecture needed to use BulkSMT as

a building block for a chunked-execution multicore. In our discus-

sion, we refer to the hardware actions across SMT cores as global,

while those across the contexts of an SMT core as local.

There has been much research on designing multiprocessor

hardware that supports chunks or transactions using single-context

(non-SMT) cores (e.g., [6, 7, 9, 14, 16, 17]). To cover a broad de-

sign space, we consider two global designs. The first one (EE) uses

eager version management and eager conflict resolution, and is like

LogTM [14]. The other (LL) uses lazy version management and

lazy conflict resolution, and is like BulkSC [6]. Next, we outline

the relevant parts of the two global protocols and then describe the

integration with the local protocol.

4.1. Global Protocols Examined

The EE scheme uses the Access Bits in the caches to flag con-

flicts between threads running on different cores. As in LogTM, we

need to augment each core with hardware-based undo logs that save

the old values when a speculative thread writes a variable. Since we

use SMT cores, a core has as many undo logs as hardware contexts.

The LL scheme could also use the Access Bits in the caches to

flag inter-core conflicts like TCC [9]. However, since we model

BulkSC [6], we use hardware-based address signatures to detect

conflicts. Hence, in an SMT core, each context has a R an a W

signature. When chunks commit, they send out their signatures,

which are intersected with those in the receiving cores. To detect

conflicts between the contexts of a core, we still use the Access Bits

in the caches.

4.2. Integrating the Local and Global Protocols

Table 4 lists our two rules for a design that integrates local and

global chunk-based protocols. The first rule applies when a chunk

wants to commit: it should first initiate a commit globally (across

cores) and, when it succeeds, commit locally among the threads in

the SMT. In the EE scheme, this implies waiting for the completion

of all the buffered previous memory accesses by the chunk, and then

performing the local commit in the SMT core. In the LL scheme,

it implies sending the chunk’s signature out to the global network,

waiting for the global commit confirmation, and then performing

the local commit in the SMT core.

In the LL scheme, since commit is costly, we augment OR-

DER with Commit Combining. This event occurs when a consumer

chunk completes execution before its producer chunk in the same

SMT core does. The consumer has to wait to commit until after

the producer commits. With commit combining, when the producer

completes, both chunks perform the commit together — i.e., they

send a combined signature out and then commit locally together.

The second rule applies when a core receives a coherence event

that may cause a squash. The core must check against all of the

local chunks — even the stalled ones. In the EE scheme, this means

using the address of the coherence message (e.g., invalidation) to

index the cache and check the Access Bits; if a conflict is found, we

squash the corresponding chunk(s). In the LL scheme, the hardware

intersects the incoming signature with all the local signatures; if

an intersection is not null, we squash the corresponding chunk(s).

Moreover, in both EE and LL, the squash needs to be propagated.

Specifically, in ORDER, we run the SSG algorithm (Section 3.2.5)

to detect other chunks to squash; in STALL, we wake up all the

chunks that are stalled waiting only on the squashed chunks.

5. Implementation Issues

5.1. Cycle Detection Algorithm Implementation

To complement the description of the cycle detection algorithm,

we outline its hardware implementation in a Cycle Table Module

(Figure 8). The module contains the Cycle Table (CT), combina-

tional logic to perform the steps of the cycle detection algorithm

(Dependence Generator) and detect a cycle (Cycle Checker), and

the Shadow Cycle Table (SCT). The latter is a table like the CT that

contains temporary state as the algorithm runs.

CT

Dependence
Generator (DG) SCT

Cycle Checker(CC) cycle?

New Dep

src dst

Figure 8. Cycle Table Module.

In idle state, CT holds a certain bit pattern and SCT is clear.

When the program generates a new dependence, it is encoded as a

(src,dst) code and goes through the Dependence Generator. The lat-

ter finds if the dependence itself sets a new bit in CT. If so, the new

bit is set in both CT and SCT, and the multi-step process of finding

transitive dependences starts. Such process involves the SCT feed-

ing the new bit to the Dependence Generator in two steps: (1) first

to combine with existing dependences at the source of the new de-

pendence (which triggers the Dependence Generator to bit-OR two

CT columns as in Figure 5(b)) and (2) then to combine with depen-

dences at the destination of the new dependence (which triggers the

Dependence Generator to bit-OR two CT rows). After these two

steps, the bit is cleared from the SCT.

If, in any of these two steps, a bit that was not set in CT gets

set, we have found a new dependence by transitivity. Such bit is

set in both CT and SCT, and the SCT will process the new bit once

it is done with the first one. The process continues until no new

dependence is found and SCT becomes clear. At all times, the Cycle

Checker uses simple logic to check if a bit gets set in CT’s diagonal.

If one gets set, a cycle is flagged and the whole process stops.

If, during this process, the program generates a new dependence,

the dependence is buffered. Completing the current process of un-

covering all transitive dependences has higher priority. The new

dependence will be processed immediately after.

Based on this description, Figure 9 lists the hardware cost of the

Cycle Table (CT) Module, and of all the other hardware structures

required by BulkSMT. We assume a BulkSMT processor with n

contexts. The CT Module only needs two arrays of n2 bits and

the combinational logic for the Dependence Generator (DG) and

Cycle Checker (CC). The Enhanced Dependence Table (DT) needs

an array of 3×n2 bits. Finally, the Access Bits need n+ log2n+1

bits per cache line. Overall, the hardware requirements of BulkSMT

are very modest.

Number of Contexts in the BulkSMT Processor: n

Structure Name Cost Hardware Type

CT Module

CT n2 Array of bits

SCT n2 Array of bits

CC + DG Combinat. logic —

Enhanced DT 3 × n2 Array of bits

Access Bits per cache line n + log2n + 1 Extension to tags

Figure 9. Hardware requirements of the BulkSMT mechanisms.

5.2. Cache Conflicts

While our discussion has focused on chunk squashes due to

dependences, chunks may also get squashed on cache overflow.

Specifically, when a cache conflict displaces a line with non-null

Access Bits from the lowest cache level, the chunks that accessed

the line get squashed. In addition, in ORDER, the hardware follows

the rules of Figure 3 to find dependent chunks to squash. Finally,

after the squashes, in both STALL and ORDER, chunks that were

stalled on the squashed ones are released. Given the potential cost

of these actions, it may be beneficial to tune the cache replacement

algorithms to avoid these cases. In this paper, we have not done so.

5.3. Handling High­Contention Synchronizations

High-contention synchronizations are a concern for chunked-

execution architectures because they introduce frequent depen-

dences between chunks. Such dependences cause squashes or stalls.

One way to minimize their impact is to explicitly terminate the

chunk with a software command after or before a high-contention

synchronization. The shortcoming of this approach is that it needs

either a profiling pass to identify high-contention synchronizations

or support to learn the frequent dependences dynamically.

In this paper, we do not use a profiling pass or hardware to learn

the frequent dependences dynamically. Hence, we do not termi-

nate chunks in software at high-contention synchronizations. The

one exception is at barriers: since it is clear that chunks conflict at

barriers, we place chunk termination commands inside the barrier

library call or macro. By terminating the chunk, we ensure the work

before the barrier is not squashed due to a conflict in the barrier.

For an interesting illustration of how chunked-execution works,

consider a high-contention lock under ORDER. BulkSMT uses

Test&Test&Set for the lock. In Figure 10(a), the chunk in thread

T0 grabs the lock. Then, T1 spins on it, creating a RAW depen-

dence. When T0 releases it, it creates a cycle. The Advanced SSG

algorithm (Section 3.2.5) squashes the minimum number of chunks

to break the cycle, namely just the one in T1. As the chunk restarts

(Figure 10(b)), an ordered dependence is created, which still allows

both chunks to eventually commit successfully.

6. Evaluation Setup

In our evaluation, we model a 4-context BulkSMT core alone or

in a 4-core multicore chip. We model all combinations of SQUASH,

Configurations Used: XX-YY, where:

XX: Type of core:

SQ: 4-context SQUASH BulkSMT design

ST: 4-context STALL BulkSMT design

OR: 4-context ORDER BulkSMT design

BK: Single-context core with

chunked-execution support

YY: Type of global (inter-core) protocol:

EE: Eager version management and

eager conflict resolution

LL: Lazy version management and

lazy conflict resolution

Figure 11. Names of configurations used.

P0
L1$

L2$

P1
L1$

L2$

P2
L1$

L2$

P3
L1$

L2$

P0
L1$

L2$

P1
L1$

L2$

P2
L1$

L2$

P3
L1$

L2$

P
L1$

L2$

P
L1$

L2$

(a) SQ,ST,OR

P0
L1$

L2$

P1
L1$

L2$

P2
L1$

L2$

P3
L1$

L2$

P0
L1$

L2$

P1
L1$

L2$

P2
L1$

L2$

P3
L1$

L2$

P0
L1$

L2$

P1
L1$

L2$

P2
L1$

L2$

P3
L1$

L2$

P0
L1$

L2$

P1
L1$

L2$

P2
L1$

L2$

P3
L1$

L2$

(c) [SQ,ST,OR]-[EE,LL]

(b) BK

(d) BK-[EE,LL] (e) BK-[EE,LL] (16 cores)

Figure 12. Configurations used.

Core Memory Subsystem Chunk Parameters

Frequency: 5.0 GHz Private write-back D-L1: # of outstanding

of contexts: 4 for BulkSMT, 1 for BK Size/assoc/line: 32KB/4-way/32B chunks/thread: 1

Fetch/issue/comm width:4/4/5 Hit round trip: 2 cycles Target chunk size:

I-window: 80 Private write-back L2: 10k instructions

ROB: 176 (1/4 per thread in BulkSMT) Size/assoc/line: 256KB/8-way/32B Commit latency:

LdSt/Int/FP units: 2/3/3 Hit round trip: 9 cycles 50 cycles (1 core)

Ld/St queue: 56 (1/4 per thread in BulkSMT) L2 miss delay: 200 cycles (4 cores)

Int/FP registers: 96/80 Hit other L2s (avg): 16 cyc in 4 cores/chip 250 cycles (16 cores)

Branch penalty: 17 cyc (min) 20 cyc in 16 cores/chip Signature size: 2K bits R and W

To memory: 500 cycles round trip Signature config: S14 from [5]

Table 5. Simulated system configurations.

T0 T1

Test

(a)

Test & Set

R

W

Successful
Acquire

R
R
R

Release W

Test

Acq

Rel Squash

Test
Test
Test

Acq

T0 T1

(b)

RAW

WAR

Figure 10. Competing for a high­contention lock in ORDER.

STALL, and ORDER with the EE and LL global protocols. In addi-

tion, we compare the performance to machines built out of single-

context cores with chunked-execution support called BK. The con-

figurations used are shown in Figure 11 and Figure 12.

We evaluate these designs using a cycle-accurate execution-

driven simulator based on SESC [19] with detailed models for the

processor, the memory subsystem and the interconnect. The ar-

chitectural parameters are shown in Table 5. The BulkSMT and

BK cores have the same issue width and hardware structure sizes.

However, in BulkSMT, the ROB and load-store queue are parti-

tioned equally among the 4 contexts. Each core has private L1 and

L2 caches. The global protocol is similar to BulkSC’s [6] in LL and

LogTM’s [14] in EE.

We use the applications from SPLASH-2 and PARSEC that

have a noticeable degree of interactions between threads. From

SPLASH-2, the applications and inputs we use are: Barnes

(16k particles), Cholesky (tk29.0), Ocean (258x258 ocean), Ra-

diosity (room), Radix (256K keys) and Raytrace (car). From

PARSEC, they are: fluidanimate (simmedium) and streamcluster

(simmedium). For the other applications, the total squash time is

very small and the different core designs discussed make no differ-

ence. The applications run with 1, 4 or 16 threads. The applica-

tions are dynamically broken down into chunks of 10K dynamic in-

structions automatically in hardware. However, the software places

chunk termination commands inside the library calls for barriers, to

minimize any work squashed at barriers. We use these relatively

large chunks because, as discussed in [1], they more accurately rep-

resent future uses of chunked architectures, where the compiler op-

timizes the code, and the commit cost is more effectively amortized.

7. Evaluation

7.1. Performance Comparison

We want to find out which of the BulkSMT designs performs

best, and how does the performance of BulkSMT and BK compare

(i) for a fixed number of cores (which is a proxy for the amount of

hardware) and (ii) for a fixed number of total threads. Due to space

limitations, we do not compare a chunked-execution platform to a

non-chunked one. Our focus is chunked-execution environments

and our goal is to find out the impact of SMT on them.

In our plots, we break an application’s execution time into the

following types of processor cycles: cycles retiring instructions

(Useful), stalled due to pipeline hazards (ProcPipe), stalled due to

memory accesses (ProcMem), stalled because the chunk is stopped

in STALL or ORDER (ChunkStall), and performing work that will

be squashed (Squashed). The total time that a processor is stalled

while committing a chunk is negligible. The plots also show the

geometric mean of the applications, which cannot be broken down.

7.1.1. Comparing BulkSMT Designs

Figure 13 compares the execution time of all of the 4-core ar-

chitectures: BulkSMT designs running with 16 threads as in Fig-

ure 12(c) and BK designs running with 4 threads as in Figure 12(d).

SQ-EE

Barnes Cholesky Fluidanimate Ocean Radiosity Radix Raytrace Streamcluster GeoMean
0

1.0

2.0

3.0

E
x
e

c
u

ti
o

n
 T

im
e

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
LS

Q
-L

L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L S

T
-L

L

O
R

-L
L O

R
-L

L

O
R

-L
L

O
R

-L
L

O
R

-L
L

O
R

-L
L

O
R

-L
L O

R
-L

L

O
R

-L
L

B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
E B
K

-E
E

B
K

-E
E B
K

-E
E B

K
-E

ES
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
T

-E
E S
T

-E
E

S
T

-E
E

S
T

-E
E

S
T

-E
E

S
T

-E
E

S
T

-E
E S

T
-E

E

S
T

-E
E

O
R

-E
E O

R
-E

E

O
R

-E
E

O
R

-E
E O
R

-E
E

O
R

-E
E

O
R

-E
E O

R
-E

E

O
R

-E
E

Useful
ProcPipe

ProcMem
ChunkStall

Squashed
GeoMean

Figure 13. Execution time of 4­core architectures. The BulkSMT designs (SQ­LL, ST­LL, OR­LL, SQ­EE, ST­EE, OR­EE) run with 16

threads, while the BK designs (BK­LL, BK­EE) run with 4 threads. In each application, the bars are normalized to SQ­LL. The SQ­EE bar

for Radiosity reaches 4.23.

BK

Barnes Cholesky Fluidanimate Ocean Radiosity Radix Raytrace Streamcluster GeoMean
0

1.0

2.0

E
x
e

c
u

ti
o

n
 T

im
e

B
K

B
K

B
K

B
K B
K

B
K

B
K

B
K

S
Q

S
Q

S
Q

S
Q

S
Q

S
Q

S
Q

S
Q

S
Q

S
T

S
T S

T

S
T

S
T

S
T

S
T

S
T

S
T

O
R

O
R

O
R

O
R O

R

O
R

O
R O

R

O
R

Useful
ProcPipe

ProcMem
ChunkStall

Squashed
GeoMean

Figure 14. Execution time of single­core architectures. The BulkSMT designs (SQ, ST, OR) run with 4 threads, while the BK design runs

with 1 thread. In each application, the bars are normalized to SQ. The BK bar for Radix reaches 3.39.

Each application has 8 bars, organized as LL first and EE later, all

normalized to SQ-LL.

Comparing the different BulkSMT designs, we see that

SQUASH suffers from Squashed time, since it is not tolerant of

dependences. As we move to STALL, Squashed decreases, but

some ChunkStall time appears — often resulting in faster execution.

Finally, as we move to ORDER, both Squashed and ChunkStall

largely disappear, resulting in the fastest design. These trends are

clearest in Barnes and Raytrace.

In Radiosity, the large changes across bars are due to the fre-

quent enqueue and dequeue operations in a task queue. Each op-

eration involves the update of shared variables in critical sections,

which translates into squash and stall in SQUASH and STALL.

The particular characteristics of each application determine

whether the LL or EE designs are better.

Overall, ORDER is the recommended design. On average, its LL

design reduces the execution time by 38% relative to SQUASH or

STALL. In the EE environment, the reductions attained by ORDER

are 48% relative to SQUASH and 35% relative to STALL.

7.1.2. BulkSMT vs BK for a Fixed Number of Cores

We return to Figure 13 to compare the BulkSMT and BK de-

signs. They use the same core count, which is a proxy for hardware

amount, although BulkSMT runs with 16 threads and BK with 4.

Since the applications run with more threads in BulkSMT, they

can attain higher performance. Moreover, the tightly-coupled SMT

hardware enables fast inter-thread communication. However, these

applications do not exhibit linear speedup curves up to 16 threads.

Instead, their speedups saturate. Moreover, more inter-thread de-

pendences appear, which the BulkSMT designs have to handle. Fi-

nally, with BulkSMT, multiple threads compete for the fixed re-

sources of a core. The relative impact of these factors determines

the execution time.

For example, in Radix, the BulkSMT designs perform better.

With a single context executing in each core, processor resources

are underutilized because the ILP is low; when 4 contexts are exe-

cuting per core, processor resources are utilized better. On the other

hand, in Raytrace, BulkSMT designs perform worse because of the

increased contention for locks among the more threads.

Looking at the geometric mean, we see that ORDER is faster

than BK, although SQUASH and STALL are not. Specifically, in the

EE environment, ORDER reduces the execution time of the appli-

cations by an average of 26% compared to BK. The corresponding

number in the LL environment is 10%.

Figure 14 repeats the experiments for 1 core, such that the

BulkSMT designs run with 4 threads as in Figure 12(a), and BK

with 1 as in Figure 12(b). Each application only has 4 bars because

there are no EE or LL effects. The bars are normalized to SQ.

We largely observe the same trends as in Figure 13, except that

the BulkSMT designs perform relatively better than BK. The reason

is that the applications scale much better from 1 to 4 threads than

from 4 to 16. From the mean, ORDER is the best design, followed

SQ-EE

Barnes Cholesky Fluidanimate Ocean Radiosity Radix Raytrace Streamcluster GeoMean
0

1.0

2.0

3.0

E
x
e

c
u

ti
o

n
 T

im
e

B
K

-L
L

B
K

-L
L

B
K

-L
L

B
K

-L
L B
K

-L
L

B
K

-L
L

B
K

-L
L B

K
-L

L

B
K

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
Q

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L

S
T

-L
L S

T
-L

L

O
R

-L
L O

R
-L

L

O
R

-L
L

O
R

-L
L

O
R

-L
L

O
R

-L
L

O
R

-L
L O

R
-L

L

O
R

-L
L

B
K

-E
E B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
E

B
K

-E
ES

Q
-E

E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
Q

-E
E

S
T

-E
E S
T

-E
E

S
T

-E
E

S
T

-E
E

S
T

-E
E

S
T

-E
E

S
T

-E
E S

T
-E

E

S
T

-E
E

O
R

-E
E O

R
-E

E

O
R

-E
E

O
R

-E
E O
R

-E
E

O
R

-E
E

O
R

-E
E O

R
-E

E

O
R

-E
E

Useful
ProcPipe

ProcMem
ChunkStall

Squashed
GeoMean

Figure 15. Execution time of different 16­thread architectures. The BulkSMT designs (SQ­LL, ST­LL, OR­LL, SQ­EE, ST­EE, OR­EE) use

4 cores, while the BK designs (BK­LL, BK­EE) use 16 cores — hence about 4 times more hardware. In each application, the bars are

normalized to SQ­LL. The SQ­EE bar for Radiosity reaches 4.23.

by SQUASH, STALL, and BK. On average, SQUASH, STALL, and

ORDER reduce the execution time of the applications by 23%, 17%,

and 32%, respectively, relative to BK. Hence, supporting BulkSMT

is cost effective.

7.1.3. BulkSMT vs BK for a Fixed Number of Threads

Figure 15 shows the execution time of 16-threaded architectures,

where BulkSMT designs use 4 cores as in Figure 12(c) and BK

designs use 16 cores as in Figure 12(e). As a result, the BK designs

use about 4 times more hardware. The figure is organized as usual.

The figure shows that the OR designs, with much less hardware

than the BK systems attain, on average, about the same performance

as the BK systems. Specifically, the average execution time of OR-

LL is 15% higher than that of BK-LL, while OR-EE’s execution

time is 20% lower than BK-EE’s. The other BulkSMT designs are

slower.

Comparing the BK designs of Figures 13 and 15, we see that,

as applications move from 4 to 16 threads, they reduce their Useful

and other stall times. However, they often increase their Squashed

time. On the other hand, ORDER often avoids squashes thanks to its

technique of ordering chunks. This is the case for Radiosity, Radix,

Raytrace and Streamcluster.

Overall, combining all the findings in this performance sec-

tion, we conclude that the ORDER BulkSMT design is attractive.

For 16-threaded applications, it performs significantly better than

single-context core platforms with the same core count, and per-

forms about the same as single-context core platforms with four

times more hardware.

7.2. Dependence Analysis in STALL and ORDER

Figure 16 shows the number of dependences (WAW, RAW and

WAR) observed between the 4 threads running on a BulkSMT core.

The data corresponds to the 16-thread ST-LL and OR-LL environ-

ments. We do not show data for SQUASH because, on a depen-

dence, one of the threads gets squashed. We also do not show data

for the EE environment because the trends are qualitatively simi-

lar. For each application and architecture, the bars are normalized

to 1 and broken down into the type of dependence. The number

on top of each bar is the average number of dependences per 100K

instructions.

We see that the number of dependences in ORDER is larger

than in STALL. This is because, in STALL, one of the chunks is

B
a

rn
e

s
_

S
T

B
a

rn
e

s
_

O
R

C
h

o
le

s
k
y
_

S
T

C
h

o
le

s
k
y
_

O
R

F
lu

id
a

n
im

a
te

_
S

T
F

lu
id

a
n

im
a

te
_

O
R

O
c
e

a
n

_
S

T
O

c
e

a
n

_
O

R
R

a
d

io
s
ity

_
S

T
R

a
d

io
s
ity

_
O

R
R

a
d

ix
_

S
T

R
a

d
ix

_
O

R
R

a
y
tra

c
e

_
S

T
R

a
y
tra

c
e

_
O

R
S

tre
a

m
c
lu

s
te

r_
S

T
S

tre
a

m
c
lu

s
te

r_
O

R
A

ritM
e

a
n

_
S

T
A

ritM
e

a
n

_
O

R

0

0.25

0.5

0.75

1.0

#
 o

f
D

e
p

e
n

d
e

n
c
e

s

7
0
.4

3
5
7
.4

0
.2

4
.4

0
.1

0
.1

7
.8

2
7
.5

1
0
1
.3

2
5
2
2
.0

2
.4

1
6
.8

5
0
7
.1

1
8
4
5
.3

4
8
.9

5
6
7
.7

9
2
.3

6
6
7
.6

WAW RAW WAR

Figure 16. Types of dependences.

stopped after the dependence. In ORDER, both chunks can con-

tinue execution. Therefore, more dependences can be established

between the two chunks. We also see that applications with a large

difference between the number of dependences in STALL and OR-

DER have a much faster ORDER architecture than STALL in Fig-

ure 13. This is because many same-direction dependences between

two concurrently-executing chunks are formed in ORDER, while

STALL has to stall. Finally, we see that the dominant dependence

type in ORDER is RAW, while the three types of dependences are

more equally distributed in STALL.

7.3. Dependence Cycles in ORDER

Figure 17 characterizes the dependence cycles observed be-

tween the 4 threads running on a BulkSMT core. The data cor-

responds to the 16-thread OR-LL environment. For each applica-

tion, the bars are normalized to 1 and broken down into the different

types of cycles. The large majority of the cycles are formed between

two chunks, and are classified according to the type of dependence.

For example, RAW → WAR means that the cycle is formed by a

RAW dependence followed by a WAR one in the opposite direc-

tion. Accordingly, there are 9 types of cycles between two chunks.

The topmost class is cycles with more than two chunks. On top of

each bar, we show the number of cycles per 100K instructions.

 0

 0.2

 0.4

 0.6

 0.8

 1

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

O
R

−
E

E
S

T
−

E
E

S
Q

−
E

E
O

R
−

L
L

S
T

−
L
L

S
Q

−
L
L

G
lo

b
a
l
a
n
d
 L

o
c
a
l
S

q
u
a
s
h
e
s

Barnes Cholesky Fluidanimate Ocean Radiosity Radix Raytrace Streamcluster AritMean

Locally−Squashed Chunks

Globally−Squashed Chunks

Figure 18. Comparing the number of locally­squashed and globally­squashed chunks.

B
a
rn

e
s

C
h
o
le

sky
F
lu

id
a
n
im

a
te

O
ce

a
n

R
a
d
io

sity
R

a
d
ix

R
a
ytra

ce
S

tre
a
m

clu
ste

r
A

ritM
e
a
n

0

0.25

0.5

0.75

1.0

#
 o

f
c
y
c
le

s

0
.0

1

0
.0

5

0
.0

1

0
.2

7

2
.7

2

0
.0

6

2
.4

5

0
.1

2

0
.7

1

MoreThanTwo
RAW->RAW
RAW->WAR
RAW->WAW
WAR->RAW
WAR->WAR
WAR->WAW
WAW->RAW
WAW->WAR
WAW->WAW

Figure 17. Types of cycles.

Some of the major types of cycles are WAR → RAW (where

two consecutive reads are interleaved by a remote write) and RAW

→ RAW (where information is transferred from one processor to

another and then back to the first one). Comparing Figure 17 and

Figure 16, we see that the average number of cycles is typically

much lower than the average number of dependences.

7.4. Squash Set Size

Figure 19 shows the number of chunks that need to be squashed

to break a cycle (i.e., the Squash Set size) in ORDER. The fig-

ure corresponds to 16-thread OR-LL. For each application, the bar

is normalized to 1 and broken down into squash set sizes: one

(SqSet:1), two (SqSet:2), three (SqSet:3), or four (SqSet:4). We see

that, in practially all cases, only one chunk is squashed to break the

cycle; the other chunk(s) can continue.

B
a
rn

e
s

C
h
o
le

sky
F
lu

id
a
n
im

a
te

O
ce

a
n

R
a
d
io

sity
R

a
d
ix

R
a
ytra

ce
S

tre
a
m

clu
ste

r
A

ritM
e
a
n

0

0.25

0.5

0.75

1.0

S
q

u
a

s
h

 S
e

t
D

is
tr

ib
u

ti
o

n

SqSet: 4
SqSet: 3
SqSet: 2
SqSet: 1

Figure 19. Squash sets sizes.

7.5. Comparing Local vs Global Squashes

Figure 18 compares the number of chunks squashed by intra-

SMT conflicts (Locally Squashed) to those squashed by inter-core

conflicts (Globally Squashed). The figure shows data for each of the

BulkSMT designs with 16 threads: SQ-LL, ST-LL, OR-LL, SQ-EE,

ST-EE, and OR-EE. There is a bar for each design, normalized to

1, and broken down into locally- and globally-squashed chunks.

The figure shows that, while most of the squashes in SQUASH

and STALL are local, the opposite is true for ORDER. ORDER’s

ability to allow the two chunks involved in a dependence to con-

tinue executing enables it to eliminate practically all of the local

squashes. Interestingly, STALL still suffers local squashes. The rea-

son is that stalled chunks, as they wait, are effectively vulnerable to

squashes due to new dependences that appear.

8. Related Work

Beyond the chunked-execution architectures listed in Section 2,

the most relevant work includes techniques that try to increase

the concurrency of conflicting transactions in hardware transac-

tional memory systems. There are two proposals, DATM [18] and

SONTM [2], which apply to multicore systems with single-context

processors.

DATM manages the dependences between uncommitted trans-

actions, sometimes forwarding data between them to be able to

safely commit conflicting transactions. It uses a bus-based shared-

memory machine and proposes the FRMSI snoopy-based cache co-

herence protocol. This is a new protocol with 11 stable states. Such

protocol supports the forwarding of lines between caches like an

update-based protocol. It also needs to select the correct version of

a datum among the several that exist in the different caches of the

machine. It has per-word access bits to support the ability to merge

cache lines that have been partially updated by different processors.

Finally, to keep the order of transactions, it has an order vector of

transactions stored in each cache.

The SONTM system maintains an upper bound and a lower

bound Serializability Order Number (SON) for each transaction.

They are updated when a transaction performs a memory opera-

tion and when a transaction commits. During a transaction’s exe-

cution, when the upper bound is smaller than the lower bound, the

transaction is aborted because it cannot be serialized with other de-

pendent transactions. While SONTM does not modify the cache

coherence protocol, it adds substantial overhead. Specifically, each

memory location accessed has a read-number and a write-number

stored in memory. While some optimizations are possible, each

load and store instruction needs to get the read-number or write-

number to potentially update the upper and lower bounds. More-

over, a validation step at a transaction commit involves broadcasting

write-numbers of all the updated data and receiving read-number

responses from other processors.

Overall, compared to these schemes, we focus on optimizing

dependent chunks executing on the same core, rather than across

cores. Hence, our hardware is substantially simpler and has much

less overhead.

Tullsen et al. [22] present a hardware structure called Lock Box

that allows threads in an SMT to synchronize efficiently. A thread

trying to acquire a lock is blocked if the lock is busy. When a thread

releases the lock it wakes up the blocked thread. STALL proposes a

similar idea for any data dependence.

9. Conclusions

None of the previously-proposed architectures that continuously

execute chunks of instructions or transactions use SMT cores —

although SMT cores are widely deployed and would likely be used

in a commercial implementation of these architectures.

To address this problem, this paper has presented the first SMT

design that supports continuous chunked execution. The design,

called BulkSMT, can be used either in a single-core processor or

in a multicore of SMTs. We have proposed three BulkSMT con-

figurations with different cost and performance: SQUASH, STALL,

and ORDER. We have described a set of novel architectural prim-

itives that enable chunked execution in an SMT core. Finally, we

have shown how to augment the resulting SMT core to work in a

multicore of SMTs that supports chunked execution. Our results,

based on simulations of SPLASH-2 and PARSEC codes, showed

that BulkSMT supported this mode of execution cost-effectively.

For example, in a 4-core multicore with eager chunked execution,

BulkSMT reduces the execution time of the applications by an av-

erage of 26% compared to running on single-context cores. The

corresponding number for lazy chunked execution is 10%. In a

single-core machine, the average execution time reduction is 32%.

References

[1] R. Agarwal and J. Torrellas. FlexBulk: Intelligently Form-

ing Atomic Blocks in Blocked-Execution Multiprocessors to

Minimize Squashes. In International Symposium on Com-

puter Architecture, June 2011.

[2] U. Aydonat and T. Abdelrahman. Hardware Support For Re-

laxed Concurrency Control In Transactional Memory. In In-

ternational Symposium on Microarchitecture, 2010.

[3] C. Blundell, M. M. Martin, and T. F. Wenisch. InvisiFence:

Performance-Transparent Memory Ordering in Conventional

Multiprocessors. In International Symposium on Computer

Architecture, June 2009.

[4] C. Blundell, A. Raghavan, and M. M. K. Martin. RetCon:

Transactional Repair Without Replay. In International Sym-

posium on Computer Architecture, June 2010.

[5] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk Disam-

biguation of Speculative Threads in Multiprocessors. In Inter.

Symposium on Computer Architecture, June 2006.

[6] L. Ceze, J. M. Tuck, P. Montesinos, and J. Torrellas. BulkSC:

Bulk Enforcement of Sequential Consistency. In International

Symposium on Computer Architecture, June 2007.

[7] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald,

C. Cao Minh, W. Baek, C. Kozyrakis, and K. Olukotun. A

Scalable, Non-blocking Approach to Transactional Memory.

In International Symposium on High Performance Computer

Architecture, February 2007.

[8] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deter-

ministic Shared Memory Multiprocessing. In ASPLOS, 2009.

[9] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.

Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,

and K. Olukotun. Transactional Memory Coherence and Con-

sistency. In International Symposium on Computer Architec-

ture, June 2004.

[10] R. Kalla. POWER7: IBM’s Next Generation POWER Micro-

processor. In HotChips 21, August 2009.

[11] D. Koufaty and D. Marr. HyperThreading Technology in

the NetBurst Microarchitecture. In IEEE Micro, March/April

2003.

[12] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: De-

tecting and Surviving Atomicity Violations. In International

Symposium on Computer Architecture, June 2008.

[13] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Record-

ing and Deterministically Replaying Shared-Memory Multi-

processor Execution Efficiently. In International Symposium

on Computer Architecture, June 2008.

[14] K. Moore, J. Bobba, M. J. Moravam, M. Hill, and D. Wood.

LogTM: Log-based Transactional Memory. In International

Symposium on High Performance Computer Architecture,

February 2006.

[15] S. Pant and G. Byrd. A Case for Using Value Prediction to Im-

prove the Performance of Transactional Memory. In TRANS-

ACT, June 2009.

[16] S. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and

R. Balasubramonian. Scalable and Reliable Communication

for Hardware Transactional Memory. In PACT, 2008.

[17] X. Qian, W. Ahn, and J. Torrellas. ScalableBulk: Scalable

Cache Coherence for Atomic Blocks in a Lazy Environment.

In International Symposium on Microarchitecture, December

2010.

[18] H. Ramadan, C. Rossbach, and E. Witchel. Dependence-

Aware Transactional Memory for Increased Concurrency. In

International Symposium on Microarchitecture, 2008.

[19] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,

S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC

Simulator, January 2005. http://sesc.sourceforge.net.

[20] J. Torrellas, L. Ceze, J. Tuck, C. Cascaval, P. Montesinos,

W. Ahn, and M. Prvulovic. The Bulk Multicore Architecture

for Improved Programmability. Communications of the ACM,

December 2009.

[21] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multi-

threading: Maximizing On-Chip Parallelism. In International

Symposium on Computer Architecture, June 1995.

[22] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting Fine-

Grained Synchronization on a Simultaneous Multithreading

Processor. In International Symposium on High Performance

Computer Architecture, February 1999.

[23] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide,

P. Stenstrom, J. E. Smith, and M. Valero. Implementing Kilo-

Instruction Multiprocessors. In International Conference on

Pervasive Systems, July 2005.

[24] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.

Mechanisms for Store-wait-free Multiprocessors. In Interna-

tional Symposium on Computer Architecture, June 2007.

