
Cache Restoration for Highly Partitioned Virtualized Systems

David Daly and Harold W. Cain
IBM Thomas J. Watson Research Center

Yorktown Heights, NY
{dmdaly, tcain}@us.ibm.com

Abstract

The economics of server consolidation have led to the
support of virtualization features in almost all server-class
systems, with the related feature set being a subject of sig-
nificant competition. While most systems allow for par-
titioning at the relatively coarse grain of a single core,
some systems also support multiprogrammed virtualization,
whereby a system can be more finely partitioned through
time-sharing, down to a percentage of a core being allotted
to a virtual machine. When multiple virtual machines share
a single core however, performance can suffer due to the
displacement of microarchitectural state.

We introduce cache restoration, a hardware-based
prefetching mechanism initiated by the underlying virtual-
ization software when a virtual machine is being scheduled
on a core, prefetching its working set and warming its ini-
tial environment. Through cycle-accurate simulation of a
POWER7 system, we show that when applied to its private
per-core L3 last-level cache, the warm cache translates into
20% on average performance improvement for a mixture of
workloads on a highly partitioned core, compared to a vir-
tualized server without cache restoration.

1. Introduction

Architectural support for virtualization has emerged as
an essential feature provided by every major server ven-
dor, allowing the sharing of hardware resources by multi-
ple guest operating system instances, variously called logi-
cal partitions, containers, domains, or virtual machines. We
refer generically to such containers as partitions, and the
underlying virtualization software as the partition manager.
Virtualization support has been motivated by cost-savings
through server consolidation and improved systems man-
agement. With the recent support in x86 servers, it has been
estimated that the average utilization of such systems has
increased from 36% to 56% [4]. While a significant gain, a
utilization of 56% leaves considerable opportunity for fur-

ther server consolidation, which would result in significant
savings in power, cooling, and facilities costs. In compar-
ison, IBM mainframe installations, which have the longest
history of support for virtualization, are said to run at aver-
age utilizations of 80% [15]. To increase the opportunity for
such consolidation, a system must support a large number
of partitions. For example, in one case-study IBM reports
the consolidation of 3,900 x86-based servers onto 30 Sys-
tem z mainframes, a ratio of 130 virtual machines per server
[11]. The ongoing shift away from dedicated workstations
to virtualized desktop infrastructure (VDI) environments is
another trend in this direction but also a serious challenge;
the low cpu-utilization of individual desktops leads to high
consolidation rates, while also requiring low (unnoticeable)
interactive response times to desktop users. As an exam-
ple of consolidation rates in this context, VMWare lists sev-
eral case studies of customers transitioning from dedicated
workstations to VDI, with virtual desktops per server rang-
ing from 4-to-1 to 15-to-1 for those customers [18]. Botelho
summarizes the difficulty in calculating an estimated desk-
top to server ratio due to wide variations in desktop usage,
but does recommend a rule-of-thumb of six to eight virtual
desktops per core on the host [3].

While cost-reduction pressures are one factor leading to
more partitions per system, other factors also contribute to
this trend. In some environments (e.g. cloud computing
installations) it may be required to separate applications
belonging to different customers into individual operating
system instances for security reasons. System management
convenience is also a contributing factor, allowing for dif-
ferent software installations tailored to specific needs (e.g.
allowing for one OS image per user, or testing of multi-
ple operating system or library upgrades). Although some
systems limit the number of active partitions to prevent a
greater number of active partitions than cores, others in-
clude support for what we call multiprogrammed virtual-
ization, in which two or more partitions are assigned to a
single core or hardware thread, which is multiprogrammed
by the underlying partition manager [10, 19].

Unfortunately, multiprogrammed virtualization can af-



0

1

2

3

4

5
2
S

2
M 4
S

4
M

1
0
S

1
0
M 2
S

2
M 4
S

4
M

1
0
S

1
0
M 2
S

2
M 4
S

4
M

1
0
S

1
0
M

Web Dev DB

C
P
I

data cache

xlate

ROB empty

Other

No_Stall

Figure 1. CPI for three workload mixes (web
serving, development, and database), for
sharing levels of 2, 4, and 10, with multipro-
grammed virtualization enabled (M) and dis-
abled (S: Serial workload execution).

fect performance in a number of ways. First, there is over-
head incurred by the partition manager to switch partitions.
But a more significant impact is caused by the pollution of a
partition’s working set; at the time that the victimized parti-
tion is subsequently rescheduled, most or all of its working
set has been evicted from the core’s caches, branch predic-
tor, and TLBs. While the effects of this displacement can be
amortized by maximizing the amount of time each partition
runs before being switched out, requirements for acceptable
real-time interactive response times of the guest operating
systems dictate that each be permitted to execute within a
fixed time interval, as frequently as every 10 ms in some
systems [10]. Figure 1 shows the result of a study mea-
suring this negative impact as the number of partitions that
are active on a single core is varied, with configurations of
2,4,and 10 partitions, each being allocated a uniform por-
tion of a 10 ms scheduling window. As one would expect,
CPI increases with the number of partitions per core. At
two partitions per core, performance suffers between 2%
and 11%, depending on the workload type. At 4 partitions
per core, this range increases to 4% to 25%, and at 10 parti-
tions, varying from 12% to 40%.

While degradation caused by i-cache and branch predic-
tor pollution (as indicated by ROB-empty stalls), and trans-
lation misses are significant, especially in the database and
web serving workloads, stalls due to data cache misses are
the dominant source of overheads, accounting for over half
of the increased stall cycles. As discussed in Section 4,
others have described the cache polluting effects of context
switches, but our work is the first to present the effects of
multiprogrammed virtualization, whose response time con-
straints require an additional degree of multiprogramming

above and beyond OS-level multiprogramming, inducing
severe cache pollution.

In response to this pollution, we introduce cache restora-
tion, a hardware-based prefetching mechanism initiated by
the partition manager when a partition is being scheduled
on a core, prefetching its working set and thereby warming
its initial environment. Through cycle-accurate simulation,
we show that the warm cache translates into 20% average
performance improvement in a simulated POWER7 system
when applied to its private per core L3 last-level cache[16],
for a mixture of workloads on a highly partitioned core,
compared to a virtualized server without cache restoration.

Because partition switches made by the partition man-
ager occur in addition to any multiprogramming performed
by the operating system, context switching will occur to a
greater degree than reported in previous studies of multipro-
gramming cache effects [1, 8, 12, 14, 13, 17]. Prefetching
for operating-system level multiprogramming has also been
a subject of recent work by Cui and Sair, who proposed a
global history list (GHL) [8]. We also evaluate applying the
GHL prefetcher to partition switches, and show that cache
restoration prefetching approaches the performance of GHL
prefetching while requiring fewer and simpler hardware re-
sources.

In summary, this work makes the following contribu-
tions:
• We demonstrate the harmful performance effects of

multiprogrammed virtualization, caused by the pollu-
tion of microarchitectural structures. Although simi-
lar issues have been explored in the context of multi-
programming by the operating system , to our knowl-
edge, this is the first work exploring the challenges
of multiprogrammed virtualization stemming from the
increased multiprogramming rates of this environment.
• We describe and evaluate a novel prefetching mecha-

nism that restores cache contents on behalf of a newly
rescheduled partition, showing that it improves perfor-
mance up to 31% in a highly partitioned environment.
We also show that this prefetcher approaches the per-
formance of global history list prefetching [8], while
requiring fewer on-chip resources.
• We show that restoring only a portion of the cache has

significant benefits, and describe a method of program-
ming the prefetcher that allows for control of perfor-
mance vs. bandwidth consumption.
• We show that a simple adjustment to the replacement

algorithm that preferentially chooses cache lines from
another partition for replacement yields small but sig-
nificant performance gains across the workload mixes.

We will first describe cache restoration in detail, fol-
lowed by analysis of its performance in Section 3 using
cycle-accurate full system simulator. Discussion of related
work is presented in Section 4.



LRUTag LPID

LRUTag LID

LRUTag LID

…

LRUTag LPID

LRUTag LID

LRUTag LID

…

LRUTag LPID

LRUTag LID

LRUTag LID

…

LRUTag LPID

LRUTag LPID

LRUTag LPID

…

Cache Meta-data Memory

PFLA for partition n

Address
Address

If (LPID of evicted line

!= Current LPID)

Prefetch

Engine

Prefetch A0

Prefetch A1

Staging

Buffer

…

PFLA for partition 0

Figure 2. Block diagram of the cache restora-
tion prefetcher.

Tag Array 4 extra bits per line
Staging Buffer 128B single ported per buffer. 2-16 buffers
Control Registers 4b active partition + 64b pointer/staging buffer
Cache Logic 4 bit comparator
Prefetch Logic Read from buffer and send address to existing

prefetcher with additional mux
Buffer Logic Detect buffer full or empty conditions, inducing

write or read to memory

Table 1. Summary of additional hardware due
to Cache restoration

2. Cache Restoration Prefetching

Cache restoration prefetching consists of two steps: the
collection of the cache footprint for a partition (the victim)
that has been descheduled by the partition manager, and the
subsequent prefetching of that victim’s footprint at the time
that it is rescheduled. Cache restoration prefetching could
be applied to any address-based cache structure, in this pa-
per however we assume it is used with an L3 cache, since L3
misses are the source of most processor stalls in our experi-
mental system. A high-level block diagram of the prefetch-
ing mechanism is shown in Figure 2, which is described in
detail in the following subsections. Table 1 details the hard-
ware overheads.

2.1. Collecting the Cache Footprint Lazily

Rather than attempt to save the victim’s footprint eagerly
while the partition is executing, or at the time the partition
is descheduled, we adopt a lazy scheme that records the ad-
dresses of cache lines belonging to the victim partition at
the time that they are evicted from the cache. In order to
identify the victim’s lines and distinguish those from lines
belonging to other partitions, the cache is augmented with a
logical partition ID (LPID) field associated with each cache
line, which indicates the particular partition that is using the

line. LPID 0 is treated specially to indicate that the cache
line is shared by multiple partitions (or shared with the par-
tition manager). Assuming up to 16 partitions per core (a 4-
bit LPID), LPID storage overhead represents less than 10%
of the cost of the existing tag array (which is itself small
relative to the data array). 1

At the time that a partition is scheduled, a register is set
by the partition manager indicating that the LPID for the
newly scheduled partition is the active LPID (and therefore
all other LPIDs are inactive). On a cache miss, lines with
inactive LPID values are preferentially chosen for eviction,
regardless of LRU state, since it is unlikely that an inac-
tive partition’s line would be used by the current partition.
Among the cache lines with inactive LPID values, LRU sta-
tus is still used to decide which inactive line to evict. The
shared LPID is always considered active. If the current par-
tition requests a line resident in the cache with an LPID
value different from the partition’s LPID, the line’s LPID
value is updated to 0, indicating a shared LPID.

The LPID extension to the cache enables the lazy collec-
tion of footprint data. Rather than eagerly recording cache-
resident addresses during steady-state execution, or at the
time of a partition switch, the recording of addresses is per-
formed lazily. Once a line is chosen for eviction, the cache
checks if the line’s LPID is active. If the LPID is inactive, a
hardware machine associated with the cache writes the ad-
dress of the cache line to a memory-resident log of cache
lines that have been evicted for that partition. The log rep-
resents the evicted footprint of the partition, and resides in a
private region of memory allocated to the partition manager
but invisible to each partition, called the Partition Footprint
Log Area (PFLA). The size of the PFLA per partition is at
most the width of a cache line address times the number of
lines in its cache (39 bits x 32k lines = 156KB for our sim-
ulated system), so a tiny fraction of total partition memory.

To avoid writing to the PFLA on every replacement, a
set of staging buffers is associated with the cache, with each
staging buffer being the size of a cache line. The address of
the victim line is appended to the staging buffer associated
with the victim’s LPID. When the buffer is full, its contents
are written to the PFLA for the LPID.

Since the existing LRU mechanism is used to decide
which inactive line to evict from the set, the partition foot-
print log contains a partial order among the addresses in the
saved footprint. Consider two lines X and Y for a given in-
active partition and a given set, with Y being less recently
used than X. Y will be evicted before X, and therefore will
be recorded earlier in the footprint than X. Lines that map
to the same set will be ordered in the log, however lines in
different sets will not be ordered by their recency of access.

1Assuming a system with 48 bits of metadata (tag, coherence state,
ECC, LRU stack) per cache line, which corresponds to our baseline
POWER7 system.



It should be noted that the width of the LPID field does
not limit the number of partitions supported by the sys-
tem, or even the number of partitions that can be assigned
and multiplexed on one core. The LPID only controls this
prefetching and replacement mechanism. If a partition man-
ager chooses to reuse an LPID for a given partition, its only
potential negative effect is that any cache-resident lines be-
longing to the old partition at the time that the LPID is re-
assigned may be subsequently written to the PFLA of the
new partition, and be subject to subsequent prefetches. This
may affect prefetch accuracy, but not correctness. Since a
partition manager should choose for reassignment the LPID
corresponding to the partition that executed least recently,
only those cache lines that have survived the prior 15 par-
tition executions (assuming a 4-bit LPID) could be subject
to such unnecessary prefetching, which is expected to be a
marginal amount.

While our cache restoration prefetcher uses a simple in-
memory list of addresses, prior work by Wenisch et al. has
also proposed the in-memory storage of prefetcher meta-
data, in that case allowing meta-data to exceed on-chip
capacity in correlation-based prefetchers [20]. Such in-
memory storage has also been leveraged for increased meta-
data capacity for other forms of predictors [6]. While this
prior work also used memory as a repository of meta-data,
the employed prefetching algorithms are significantly dif-
ferent from our cache restoration prefetching mechanism.

2.2. Footprint prefetching

A simple hardware prefetcher uses the footprint ad-
dresses stored in the PFLA to prefetch the partition’s cache
footprint back into the cache. The prefetch engine se-
quences through the list of blocks that were saved in the
footprint, reading a cache-line sized block of addresses at a
time from memory, and subsequently issuing prefetch re-
quests for each address in the line. When the partition
is scheduled, the partition manager sets a special purpose
register with the address of the PFLA, which triggers the
prefetcher to begin prefetching using the addresses in that
log. In theory this register could be set early by the par-
tition manager as soon as it knows the LPID of the parti-
tion that will be scheduled, in order to give the prefetching
mechanism a head start. We have not investigated this fur-
ther however, and in our experiments conservatively assume
that prefetching is delayed until the newly scheduled parti-
tion begins execution.

Since LRU members have been evicted first and saved
first, closer to the head of the footprint list, for timeliness
the prefetch engine traverses the list in the reverse order,
from tail to head. The prefetcher loads the prefetched line
into the LRU state. However, since there are lines belonging
to inactive partitions in the set during the prefetch period,

subsequent prefetches evict the inactive lines instead of the
recently prefetched line. As each set fills, the prefetched
lines are pushed onto the top of the LRU stack, moving the
lines prefetched earlier toward the MRU position.

We envision a cache restoration prefetcher design that is
tightly integrated with a conventional stride or stream-based
prefetcher, in order to leverage the cache interface and as
much pre-existing logic as possible. The stream prefetcher
is augmented with a base register for storing the PFLA ad-
dress, as well as two cache line-sized buffers, into which
PFLA entries are read; two are used so that prefetches can
be issued from one buffer while the other buffer is being
filled from the PFLA. Addresses are read from the buffer,
and issued to the existing prefetch logic.

2.3. Prefetch Throttling

The footprint prefetch also introduces bandwidth over-
head that could adversely affect the system. Any prefetch
that is eventually used before eviction does not introduce
bandwidth overhead, but any prefetch that is not used does
introduce overhead. We propose a simple limit to the num-
ber of prefetches to address the bandwidth overhead. With
the addition of a single counter, we allow the partition man-
ager to set a programmable limit to the number of lines in
the footprint to prefetch back into the cache, directly limit-
ing the number of wasteful prefetches possible. We evaluate
the prefetcher using a range of limits in Section 3.

3. Experimental Results

We evaluate the effectiveness of the cache restoration
prefetcher using three workload mixes that represent com-
mon usage scenarios for virtualized servers. Each mix con-
sists of a set of traces from an IBM System p server running
AIX.
• Web Serving Mix: A collection of traces from sys-

tems running the Daytrader J2EE benchmark, using
the WebSphere Application Server v 7.0 and DB2 9.1.
• Database Serving Mix: A collection of traces from a

system running an OLTP benchmark using DB2 v9.0.
• Development Mix: A collection of traces of develop-

ment related applications from the SPEC CPU bench-
mark suite: gcc, perl, bzip2

For each mixture, a round-robin approach is used to
mimic the multiprogrammed virtualization that would be
incurred by the underlying partition manager. Each of
the mixtures is run in a 2-way, 4-way, and 10-way parti-
tioned configuration, corresponding to a system with a 10
ms scheduling wheel divided equally among the partitions.
Since we are simulating a core with a frequency of 4GHZ,
this corresponds to time quantums of 4M, 10M, and 20M
cycles for the 10x, 4x, and 2x configurations respectively.



For comparison, the mixture for each configuration is
also executed without partitioning, running each trace in its
entirety before moving on to the next. These runs, marked
serial in the results, indicate system performance for each
mixture without the negative effects of multiprogrammed
virtualization.

Each mixture of traces is simulated on a version of
Mambo[2], which has been heavily modified with a cycle-
accurate model of a POWER7 system, including out-of-
order core, cache hierarchy, Powerbus, and memory subsys-
tem [16]. A detailed machine description used for all exper-
iments is listed in Table 2. For each data point, 1B instruc-
tions are executed in total. During simulation, a partition-
unique offset is added to the physical addresses of refer-
ences by the simulated partition, mimicking the partitioning
of memory that occurs in a virtualized system.

For simplicity we assume a single 128B staging buffer
per partition in our experiments, however a more realistic
design would provision a small fixed set of staging buffers;
since most cache lines from a victimized partition will have
been evicted after a few intervening partitions have exe-
cuted, benefits from writing subsequently evicted lines from
that partition will be small.

We modeled five configurations:
• Baseline: No prefetching
• LPID-based eviction: Cache lines with inactive LPID

values are preferentially evicted
• Cache Restoration Prefetching: Cache Restoration

Prefetching in conjunction with LPID-based eviction,
while modeling all bandwidth and latency costs of
prefetching.
• Perfect Prefetching: Cache Restoration Prefetching

in conjunction with LPID-based eviction, in a “per-
fect” zero-latency/zero-bandwidth memory system for
prefetches. These results are used to gauge the perfor-
mance opportunity lost due to bandwidth constraints
and prefetch timeliness.
• Serial: Execution without partition switching. Each

trace is processed to completion, in order to measure
performance in the absence of virtualization effects.

The LPID-based eviction strategy will allow lines that
survive in the cache from the time the partition is desched-
uled, until it is rescheduled, to be productively used by the
cache, while cache restoration prefetching also performs a
prefetch based on the saved footprint. The perfect prefetch
serves as a comparison point to cache restoration prefetch-
ing for analyzing the impact of the bandwidth overhead and
timeliness of the prefetches.

3.1. Performance

Although we have evaluated the cache restoration
prefetcher when used at both the L2 and L3 caches, and

Speedup from Cache Restoration Techniques

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Web Dev DB

Workload

S
p

e
e
d

u
p LPID Eviction

Prefetch Engine

Perfect Prefetch

Serial

Figure 3. Speedup for workload footprint
prefetch techniques.

against the 2-way, 4-way, and 10-way multiprogrammed
virtualized systems, due to space constraints we present
only the 10-way results when applied at the L3; we have
found the impact of perfect L2 prefetch to be minor com-
pared to prefetching at the L3, and we focus on the 10-way
workloads since they are the most strenuous and we observe
similar ability to overcome the effects of virtualization in
the less heavily partitioned systems.

Speedup results are shown in Figure 3, relative to the
multiprogrammed virtualized system without any cache
restoration. Cache restoration is able to restore the majority
of performance loss caused by micro-architectural displace-
ment, closely following the “perfect” prefetching mecha-
nism. The difference between cache restoration and per-
fect prefetching is due to both the reduced timeliness of
the prefetches, as well as the bandwidth due to prefetching
degrading memory latency for demand references. Perfect
prefetching falls short of the non-virtualized serial execu-
tion due to remaining pollution of the i-cache, branch pre-
dictor, and translation buffers, which is not addressed by our
technique. We also note that the LPID based eviction has a
small but noticeable improvement on performance, indicat-
ing that even with the 10-way partitioned workload, some
of the partition’s working set is still cache-resident when
the workload is rescheduled. The LPID-based eviction pre-
vents those lines from being evicted before newer, but inac-
tive lines are evicted. The cache restoration speedup results
directly follow improvements in L3 miss rate, shown in Fig-
ure 4(a). Figure 4(b) shows a breakdown of CPI for each
configuration. In addition to the reduced commit stalls for
data cache misses, we also observe fewer i-cache miss stalls
due to an increased number of L3 hits on i-cache misses,
and fewer TLB miss stalls since we observe the L3 hit rate
is also improved for the hardware page table walker.



Out-of-order core 4 GHz 16-stage pipeline, 20 entry reorder buffer (six grouped instructions per entry, subject to grouping restrictions). 64 entry load buffer, 64
entry store buffer.

Fetch/Issue/Commit width 8/6/6
Issue queues Pair of 24 entry queues for FXU/FPU/LSU, 12 entry branch queue, 8 entry compare queue.
Functional units 2 FXU, 2 FPU, 2 LSU, 1 branch, 1 compare.
Branch prediction Combining predictor with 16k entry global/8K entry local/8K entry select. 16-entry call/return stack. 128 entry indirect branch target cache.
L1 instruction cache 32KB 4-way associative, 128-byte lines, 1 cycle latency, max 4 outstanding misses.
L1 data cache 32KB 8-way associative, 128-byte lines, 2 cycle latency, max 8 outstanding demand load misses and 4 outstanding prefetches.
L2 Private 256KB 8-way associative, 128-byte lines, 8 cycle latency, 64-entry STQ/RC machine, gathering on 128-byte block basis.
Conventional Prefetcher A sequential stream prefetcher supporting up to 12 active streams, as well as software prefetch instructions. These prefetching mechanisms are

enabled in all simulations, with and without cache restoration.
Interconnect Power7 Powerbus model connecting L2/L3 controllers into a local coherence domain.
L3 Private 4MB 8-way associative, 128B lines, 22 cycle latency
Memory 640 MHz DDR3, 400 cycle best case latency. 2 memory controllers interleaved on cache block boundary.

Table 2. Experimental machine configuration.
L3 Hit Rates

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Web Dev DB

Workload

L
3
 H

it
 R

a
te

No Prefetch

LPID Eviction

Prefetch Engine

Perfect Prefetch

Serial

(a)

Effect of Cache Restoration Techniques on CPI

0

1

2

3

4

5

6

N
o
 P

re
fe

tc
h

L
P

ID
 E

v
ic

ti
o
n

P
re

fe
tc

h
 E

n
g
in

e

P
e
rf

e
c
t 

P
re

fe
tc

h

S
e
ri
a
l

N
o
 P

re
fe

tc
h

L
P

ID
 E

v
ic

ti
o
n

P
re

fe
tc

h
 E

n
g
in

e

P
e
rf

e
c
t 

P
re

fe
tc

h

S
e
ri
a
l

N
o
 P

re
fe

tc
h

L
P

ID
 E

v
ic

ti
o
n

P
re

fe
tc

h
 E

n
g
in

e

P
e
rf

e
c
t 

P
re

fe
tc

h

S
e
ri
a
l

Web Dev DB

Workload and Optimization

C
P

I

data cache

xlate

ROB empty

Other

No Stall

(b)

Figure 4. Effect of workload footprint prefetch techniques on (a) L3 hit rates and (b) CPI breakdown.

3.1.1 Bandwidth overhead and mitigation

While the performance gains due to cache restoration are
considerable, its bandwidth requirements are also nontriv-
ial. In this section, we explore the prefetch throttling mech-
anism (previously described in Section 2.3), which limits
the total number of prefetches that are issued when a par-
tition is rescheduled by the underlying partition manager.
Figure 5(a) illustrates the impact of this throttling on per-
formance, when limiting the number of prefetches to 2000,
4000, 8000, 16000 (out of 32K lines in the 4MB cache).
As one would expect, we see an increase in performance
as more lines are prefetched. However, the performance
improvement gained by prefetching further into the saved
footprint is sub-linear to the number of prefetched lines,
implying that the lines prefetched first are more likely to
be used than the lines prefetched later, which is expected
based on the LRU properties of the stream. MRU items are
prefetched first and LRU items later, so one would expect
prefetches closer to the head of the list to be more accurate
than those near the tail. Additionally, these prefetches are
more likely to be timely since they are issued first.

Depending on the workloads and the system configu-
ration, memory bandwidth may be at a premium. Fig-
ure 5(b) shows the increase in bandwidth associated with

cache restoration prefetching for the various prefetch limits.
The bandwidth overhead is for all read and write traffic to
the memory controller, and is normalized to the virtualized
system with no optimizations, not the serialized case. We
note that there is already a bandwidth overhead associated
with running highly partitioned, as the serial case requires
up to 60% less memory bandwidth than the virtualized case.

In general the increased performance of allowing more
prefetches is balanced by the growing bandwidth overhead.
The bandwidth overhead consists of prefetched lines that
were not used as well as lines that were unnecessarily
castout from the caches. We experience diminishing returns
in L3 hit rate and performance at the largest prefetch limits,
and therefore see an increasing proportion of unnecessary
prefetches and higher memory overhead.

However, we also note that the most constrained case
of 2000 prefetches, actually lowered overall memory band-
width while still providing a system performance boost.
These results imply that the technique should be tuned ac-
cording to the running system to be as aggressive as possi-
ble, while making sure not to drive the memory bandwidth
to full utilization and increasing latency. We believe prior
work in this area would be another means of preventing the
prefetcher from overburdening system resources [9].



Speedup for Various L3 Footprint Prefetch Depths

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Web Dev DB

Workload

S
p

e
e
d

u
p

2000

4000

8000

16000

unbounded 

Serial

(a)

Memory Bandwidth Overhead Compared to No Prefetch

-100.00%

-50.00%

0.00%

50.00%

100.00%

150.00%

Web Dev DB

Workload

M
e
m

o
ry

 O
v
e
rh

e
a
d 2000

4000

8000

16000

Unbounded 

Serial

(b)

Figure 5. (a) Speedup and (b) Increase in memory bandwidth, while varying he number of prefetches
performed per partition switch.

3.1.2 Prefetcher accuracy and coverage

We now present some standard prefetcher metrics for cache
restoration prefetching. We measured the accuracy and cov-
erage of the prefetcher, where the accuracy is the percent-
age of prefetches that were useful (i.e., directly led to a
cache hit), and the coverage is the miss rate reduction the
prefetcher provides. Figure 6(a) shows the miss rate reduc-
tion for the prefetcher with varying number of prefetches,
which mirrors the performance data shown in Figure 5(a).
As expected the miss rate reduction increases as the number
of prefetches goes up, although it does so sub-linearly.

The accuracy results are shown in Figure 6(b). As ex-
pected, the prefetch accuracy decreases as the number of
allowed prefetches becomes large. Surprisingly, however,
the accuracy actually increases a small amount as the num-
ber of prefetches is increased from 2000 to 4000 for the
Web workload, and increases more dramatically for the DB
workload as the number of prefetches per partition is in-
creased from 2000-8000, before then trailing off beyond
8000. We suspect this may be due to the incomplete LRU
information available in the PFLA. Recall that the LRU in-
formation is maintained among lines within a set, but the
ordering of lines between sets is driven by the next parti-
tions memory usage. We explore this idea more in the next
section.

3.2. Impact of global LRU information

We implemented a more idealistic version of cache
restoration prefetching in which the PFLA is ordered based
on global LRU information across all sets in order to ana-
lyze the performance impact of the partial LRU information
collected by our technique.

System speedup results with and without the global LRU
are shown in Figure 7(a). The DB workload shows the

largest performance improvements from prefetching the
saved footprint according to the global LRU, almost achiev-
ing the same performance as doubling the number of al-
lowed prefetches. We note performance improvements for
all the workloads and all the configurations using the global
LRU. Such performance improvements show that some
form of cross-set LRU tracking can provide valuable im-
provements.

Figure 7(b) shows the effect of the global LRU on
prefetch accuracy. We note that the prefetch accuracy
monotonically decreases as the number of prefetches is
increased, which was not the case for cache restoration
(shown in Figure 6(b)). Additionally, the global LRU infor-
mation improves prefetch accuracy for the lower prefetch
limits, while having a small effect on the unbounded cases
(approximately 1.8% relative change in speedup or 0.34%
absolute change in speedup). The unbounded case only ben-
efits from the increased timeliness of prefetches using the
global LRU information, demonstrating that the timeliness
has a minor impact on accuracy. The bounded cases benefit
from increased timeliness, as well as improved selection of
which lines to prefetch. This improved accuracy is partic-
ularly beneficial for the 2000 and 4000 limited cases, with
less pronounced benefits beyond that.

3.3. Cache restoration vs. GHL prefetching

We now provide a comparison of cache restora-
tion prefetching to the only prior work in prefetching
across context-switches: Global-history-list prefetching
(GHL) [8]. GHL maintains a complete list of cache lines
that is precisely ordered by recency of use, maintained using
a hardware-implemented doubly-linked list, part of which
resides on chip, but which spills into a memory region as
lines fall out of the on-chip structure. Duplicate entries
are removed from the list by also maintaining pointers with



Miss Rate Reduction vs. Prefetch Bound

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Web Dev DB

Workload

M
is

s
 R

a
te

 R
e
d

u
c
ti

o
n

2000

4000

8000

16000

Unbounded

Serial

(a) Cache restoration prefetch coverage

Prefetch Accuracy vs. Prefetch Bound

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Web Dev DB

Workload

A
c
c
u

ra
c
y

2000

4000

8000

16000

Unbounded

(b) Cache restoration prefetch accuracy

Figure 6. Prefetch coverage and accuracy for cache restoration prefetching.
Performance Improvement from Arranging Saved Cached Footprint According to Global LRU

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Web Dev DB

Workload

S
p

e
e
d

u
p

2000

2000 Global LRU

4000

4000 Global LRU

8000

8000 Global LRU

16000

16000 Global LRU

Unbounded

Unbounded Global

LRU

(a) Performance Impact of global LRU information

Prefetch Accuracy with Global LRU Information

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Web Dev DB

Workload

A
c
c
u

ra
c
y

2000

2000 Global LRU

4000

4000 Global LRU

8000

8000 Global LRU

16000

16000 Global LRU

Unbounded

Unbounded Global

LRU

(b) Accuracy Impact of global LRU information

Figure 7. Impact on (a) performance and (b) accuracy of prefetching using global LRU information.

each cache line in the L2 to the corresponding entry in the
list. On a context switch the processor pauses to write the
hardware-contained portion of this list to memory, loads the
global history list of the new process, and begins prefetch-
ing.

Although GHL was developed to address cache misses
due to context switches of processes rather than partitions,
the concept can be applied to partitions. GHL’s mecha-
nism for saving addresses is different from ours, but the
resulting address list is similar, with one significant differ-
ence: while our technique preserves LRU information only
within a set, their technique saves LRU information across
all lines, although it requires significantly more hardware
resources to do so. In our evaluation, since the idealized
cache restoration prefetcher evaluated in Section 3.2 also
uses a globally-ordered LRU list, we use these results to
give an upper bound on the performance of GHL, since
GHL also preserves LRU information globally (across sets).
There are two differences between the GHL prefetching and
the cache restoration prefetching with global LRU informa-
tion that we present, which make the global LRU results

more optimistic than GHL: the bandwidth and latency of
saving/restoring the on-chip portion of the GHL on con-
text switch are not included in the global LRU results, and
the global LRU model includes the preferential eviction of
lines from inactive partitions, which GHL does not explic-
itly support but could support easily enough. Both of these
differences are in favor of GHL prefetching.

Based on the global LRU performance data, the largest
potential performance gap between GHL and cache restora-
tion occurs for the database workload when prefetching
8000 lines, where despite the additional hardware resources
the GHL prefetcher outperforms our technique by at most
4.5% in this extreme case. On average the performance dif-
ference is less than 1.5%, and is less than 1% for the un-
bounded case. While the GHL prefetching mechanism is
able to more accurately restore cache contents following a
context switch, we consider these differences to be quite
small, especially considering that they also come with sig-
nificant implementation cost and complexity caused by the
need to maintain a complete access history list. We now
summarize these costs in detail.



Tag Array 14 extra bits per line
Entry List New 1K x 46b list, multiported
Staging Buffer 2 x 128B single ported
Control Registers 4b active partition + 64b pointer/staging buffer
Cache Logic Complex logic on each L2 access: add new entry,

remove duplicates, updated pointers, and evict to
memory if needed

Prefetch Logic Read from buffer and send address to existing
prefetcher

Buffer Logic Detect buffer empty and read from memory

Table 3. HW overheads associated with GHL

For a comparison of overheads due to storage, we must
consider cache impact, GHL storage, and staging buffers.
Table 3 lists GHL’s hardware costs and can be compared
to cache restoration’s hardware costs shown in Table 1.
We point out the increased tag size, the multiported entry
list, and the logic to update that list as requiring signif-
icantly more hardware, design, and verification resources
than cache restoration. As described in [8], on each L2 ac-
cess an entry is removed from the free list and inserted at
the tail of the address list (requiring at least three writes,
two for the insert and one for the removal, in addition to the
maintenance of the head/tail pointers). GHL also employs
a mechanism for removing duplicates from the list, requir-
ing an additional read and two writes for list removal and
two writes in order to add the removed entry to the free list.
While the list is being maintained, the tail of the list also
needs to be evicted to the off-chip GHL, requiring more up-
dates to the history list and free list. Although a description
of the implementation envisioned for the GHL was omitted
from that work, one would expect it to either be done with a
highly multiported SRAM, or with a finite state machine se-
quencing through the described steps over multiple cycles,
or some combination. Considering that typical L2 caches
support multiple concurrent accesses, several of these oper-
ations on the GHL and free list will be required in parallel.

4. Related Work

Although there is no prior work on prefetching for mul-
tiprogrammed virtualization, there is a long history of work
on the performance impact caused by the conventional mul-
tiprogramming performed by an operating system.

Stone and Thiebalt first described the cache polluting
effects of context switches, and developed an analytical
model that could predict their impact on cache performance
[17]. Agarwal et al. experimentally measured the perfor-
mance effects of context switches and operating system in-
teractions, and evaluated the effects of different cache orga-
nizations on miss rates [1]. Mogul and Borg also studied
the cache effects of context switches on multiprogrammed
workloads, finding that the additional overhead of cache
displacement accounts for an additional 10 to 400 microsec-
onds [14]. As predicted by these prior studies, per-core

cache sizes and memory latencies have grown to the extent
that the latency required to restore a core’s cache can con-
sume a significant fraction of the the time quantum allotted
to a virtual machine or a conventional multiprogrammed
thread. For example, in a typical Nehalem EX system,
an L3 cache miss requires 79 ns to receive the data from
DRAM. With 3MB of L3 cache per core and 64B lines,
49,152 requests must be sent to the memory system to com-
pletely restore a core’s footprint. Fulfillment of these re-
quests would require 3.8 ms (assuming no memory-level
parallelism), or 1.9ms (optimistically assuming a MLP of
22). Given that many operating systems operate using a 10
ms time quantum, this 1.9 to 3.8 ms constitute 20-40% of a
time quantum spent mitigating the cold-start phenomenon.

More recently, Koka and Lipasti have shown that
for commercial applications that exhibit frequent context
switches due to I/O, a significant fraction of data cache
misses are due to context switches [12]. Although the con-
cept of restoring cache state across context switches is men-
tioned in their work, they instead focus on minimizing con-
text switch misses through better scheduling by the OS. Liu
et al. further studied context switch misses, highlighting the
significance of LRU stack perturbation as a source of evic-
tions that continue to occur even after a swapped-out thread
has been rescheduled [13].

Despite this long history of work, the only prior work in
prefetching across context-switches was recently proposed
by Cui and Sair [8], which was discussed in Section 3.3.

Brown et al. investigate cache working set prediction
as an enabler for mechanisms that may need frequent mi-
gration, for example in systems exploiting loop or task-
level parallelism, as well as speculative multithreading and
helper threading [5]. The time intervals explored in their
work are significantly shorter (1 instruction to 1M instruc-
tions) than those explored in our work, which affects the
predictability of the working set over that interval. For
these smaller intervals, they find that a bulk copy of cache
contents from one cache to another is detrimental to per-
formance (due to competition between demand misses and
prefetches for MSHRs and bandwidth), but that a small ta-
ble recording the MRU memory locations is the most effec-
tive subcomponent of their working set predictor. This cor-
roborates our own results as well as those of Cui and Sair
[8], in which an MRU-ordered list of cache lines is shown
to be an effective source of prefetch addresses. Also, we
mitigate the competition between prefetches and demand
misses by capping the number of outstanding prefetches (at
four) leaving additional MSHRs (eight) for demand misses.
(This policy follows the implementation of POWER7 [16],
our baseline machine.)

2We consider an MLP of 2 optimistic since prior studies have shown a
maximum MLP of 1.38 for a set of server workloads [7].



5. Conclusions

This paper introduces the problem of restoring cache
contents for newly rescheduled partition, and proposes
cache restoration prefetching to address that problem.
Cache restoration allows a system to support significantly
more virtual machine workloads at a given quality of service
than would otherwise be possible. By remembering cache
state at the last time a workload is active, and using that
history to proactively prefetch when the workload is subse-
quently rescheduled, cache miss penalties are significantly
reduced, resulting in up to 31% performance improvement,
on average 20% percent across several workload mixes with
10 partitions per core. It is understood that improvements of
this magnitude will not provide the illusion that the individ-
ual partitions are being executed on a dedicated core, how-
ever they will help keep the negative effects of multipro-
grammed virtualization linear with respect to the number of
partitions, rather than causing a precipitous degradation.

Cache restoration’s performance is comparable (within
1-2% overall performance) to the best known existing tech-
nique (GHL prefetching) for the related problem of restor-
ing cache context after context switches, while being con-
siderably simpler to implement than GHL, requiring only
minor changes to the existing cache hierarchy.

We have shown that cache restoration prefetching has
mostly solved the cache pollution problem, however non-
trivial overheads remain due to translation buffer, i-cache,
and branch predictor pollution. In future work, we plan to
explore cache restoration for these structures as well, in ad-
dition to improved mechanisms for reducing prefetch band-
width without sacrificing coverage.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache per-
formance of operating system and multiprogramming work-
loads. ACM Transactions on Computer Systems, 6(4):393–
431, 1988.

[2] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra,
J. Peterson, R. Rajamony, R. Rockhold, H. Shafi, R. Simp-
son, E. Speight, K. Sudeep, E. V. Hensbergen, and L. Zhang.
Mambo: A full system simulator for the PowerPC architec-
ture. ACM SIGMETRICS Performance Evaluation Review,
31(4):8–12, 2004.

[3] B. Botelho. Virtual machines per server, a vi-
able metric for hardware selection? Web Arti-
cle. http://itknowledgeexchange.techtarget.com/server-
farm/virtual-machines-per-server-a-viable-metric-for-
hardware- selection/.

[4] J. S. Bozman and G. P. Chen. Optimizing hardware for x86
server virtualization. IDC White Paper, August 2009.

[5] J. Brown, L. Porter, and D. Tullsen. Fast thread migration via
cache working set prediction. In Proc. of the 17th Symp. on
High Performance Computer Architecture, pages 193–204,
February 2011.

[6] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi. Predic-
tor virtualization. In Proc. of the 13th Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating
Systems., pages 157–167, 2008.

[7] Y. Chou, B. Fahs, and S. G. Abraham. Microarchitecture op-
timizations for exploiting memory-level parallelism. In Proc.
of the 31st Intl. Symp. on Computer Architecturew, pages 76–
89, 2004.

[8] H. Cui and S. Sair. Extending data prefetching to cope with
context switch misses. In Proc. of the 2009 IEEE Inter-
national Conference on Computer Design, pages 260–267,
2009.

[9] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. Patt. Coordinated
control of multiple prefetchers in multi-core systems. In
Proc. of the 42nd Intl. Symp. on Microarchitecture, Decem-
ber 2009.

[10] C. Hales, C. Milsted, O. Stadler, and M. Vagmo. PowerVM
virtualization on IBM System p: Introduction and configura-
tion. IBM Redbook, May 2008.

[11] IBM Corporation. Shrinking 3900 Distributed Servers to 30
Linux Mainframes, August 2007. Press Release.

[12] P. Koka and M. H. Lipasti. Opportunities for cache friendly
process scheduling. In Proc. of the Workshop on Interac-
tion between Operating Systems and Computer Architecture,
October 2005.

[13] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker. Character-
izing and modeling the behavior of context switch misses.
In Proc. of the 17th Intl. Conf. on Parallel Architectures and
Compilation Techniques, pages 91–101, October 2008.

[14] J. Mogul and A. Borg. The effect of context switches on
cache performance. Proc. of the 4th Intl. Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, April 1991.

[15] B. Reeder. Networking in a virtualized environment. IBM
Systems Magazine, March/April 2010.

[16] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni,
J. A. Van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra,
G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F. Marino, E. Ret-
ter, and P. Williams. IBM POWER7 multicore server proces-
sor. IBM Journal of Research and Development, 55(3):1–29,
2011.

[17] H. Stone and D. Thibaut. Footprints in the cache. SIGMET-
RICS Performance Evaluation Review, 14(1):4–8, 1986.

[18] VMWare Inc. Enabling End-to-End Virtualization Solutions
for Mid-market and Enterprise Customers: Featured Case
Studies. www.vmware.com/solutions/partners/alliances/hp-
vmware-customers.html.

[19] VMWare Inc. VMWare vSphere 4.0 and Sphere
4.0 Update 1: Configuration Maximums, 2009.
http://www.vmware.com/pdf/vsphere4/r40/vsp 40 config max.pdf.

[20] T. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos. Practical off-chip meta-data for temporal
memory streaming. In Proc. of the 15th Intl. Symp. on High-
performance Computer Architecture, pages 79–90, February
2009.


