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Abstract

Recent proposals for determinism-enforcement architectures are

able to honor the dependences between threads through a commit

step that often becomes a performance bottleneck. As they commit

code blocks (or chunks) in a round-robin order, if one chunk gets

squashed due to a conflict, its successors also observe a stall. We

call this effect transitive squash delay.

This paper proposes a novel, high-performance approach to de-

terministic execution based on Conflict-Aware commit. Rather

than committing chunks in strict round-robin order, the idea is

to skip those chunks with conflicts and deterministically execute

them slightly later. The scheme, called BulkCompactor, largely

eliminates transitive squash delay, “compacts” the chunk commits,

and substantially speeds-up execution. With BulkCompactor, the

squash overhead is O(N) rather than O(N2) as in round-robin. We

describe BulkCompactor designs for machines with centralized or

distributed commit. Finally, a simulation-based evaluation shows

that BulkCompactor delivers performance comparable to nondeter-

ministic systems. For example, for 32 processors, BulkCompactor

incurs an average execution overhead of 22% over a nondetermin-

istic system. The round-robin scheme’s average overhead is 133%.

1. Introduction

Current shared-memory systems are nondeterministic. Multiple

runs of the same parallel application with the same input often ex-

ecute with different interleavings and may even produce different

results. The lack of determinism makes writing, testing, and debug-

ging parallel code harder. For example, due to nondeterminism, a

bug may be difficult to reproduce, test cases that provide enough

coverage may be hard to develop, and correct code may be trickier

to write in the first place.

To address this problem, there have recently been several pro-

posals for architectures that enforce determinism in parallel exe-

cution (e.g. [3, 5, 11, 12, 14]). Using different combinations of

hardware and software, these systems generally run code sections

in parallel, without allowing the different cores or threads to com-

municate. Then, in a deterministic data merge step, they resolve the

dependences between the sections.

A key difficulty of this approach is that, to honor the depen-

dences between the different threads, the merging step can be-

come a performance bottleneck. The Grace [5] and DMP-TM [11]

schemes run the parallel section in a transactional manner, execut-

ing what we call an atomic block or chunk. Each core or thread

buffers the state that the chunk generates in a private buffer. Then,
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in the merge step, these buffers are committed to memory in a de-

terministic round-robin manner. During the merging, we may find

a data dependence between two chunks, also known as a conflict.

This implies that one of them has used inconsistent state and, there-

fore, needs to be squashed and restarted.

Other proposals give up on maintaining the dependences across

threads that were specified in the program. They perform a fast

merging step that results in an unconventional memory consistency

model [3, 12, 14]. The result can be unintuitive executions.

Round-robin commit is costly because chunks have to commit

in a total pre-defined order. If a chunk gets squashed due to a con-

flict, it delays not only itself but very likely the commit of all of

its successor chunks as well. We call this effect transitive squash

delay. In addition, as multiple chunks get squashed, their transitive

squash delay accumulates, imposing more delay on successor pro-

cessors. Overall, we find that the total squash delay increases as

O(N2), where N is the processor count. With many processors,

the overhead can be high — e.g., the execution of ocean-nc from

SPLASH-2 with 32 processors is 4x slower than on a nondetermin-

istic system.

This paper makes the key observation that, since conflicts are

deterministic, rather than committing chunks in a strict round-robin

order, we can skip those chunks with conflicts and deterministi-

cally execute them slightly later. With this, we can largely eliminate

transitive squash delay, “compact” the chunk commits, and substan-

tially speed-up execution — all while retaining deterministic execu-

tion. We call this Conflict-Aware commit scheme BulkCompactor.

With BulkCompactor, the squash delay increases as O(N). We

also propose a variation of BulkCompactor called BulkCompactor-

S (for scalable) that is only concerned with conflicts between neigh-

bor chunks. In both algorithms, starvation and unfairness are ad-

dressed with simple solutions. Overall, BulkCompactor delivers

performance that is comparable to that of a nondeterministic sys-

tem.

The contributions of the paper are:

• We propose BulkCompactor, a novel, high-performance

scheme for deterministic execution based on Conflict-Aware com-

mit. BulkCompactor temporarily postpones the commit of chunks

with conflicts to avoid transitive squash delay. The overall squash

delay is O(N).

• We describe the design of BulkCompactor as extensions to a

nondeterministic multiprocessor. We present two designs: one for

a machine with a centralized commit, and the other for a machine

with distributed commit.

• We evaluate BulkCompactor and the conventional round-robin

scheme with detailed simulations using SPLASH-2 and Parsec ap-

plications. BulkCompactor delivers high-performance determin-

istic execution. For 32-processor executions, BulkCompactor in-

curs an average execution overhead of 22% over a nondeterministic



system. The round-robin scheme’s average execution overhead is

133%.

This paper is organized as follows. Section 2 reviews

background material; Section 3 presents BulkCompactor and

BulkCompactor-S; Section 4 shows their design; Section 5 eval-

uates them; Section 6 lists related work; Section 7 concludes; and

Appendix A presents an overhead analysis.

2. Background

2.1. Deterministic­Execution Architectures

Proposed architectures that enforce deterministic execution

(e.g., [3, 5, 11, 12, 14]) generally run parallel applications in a suc-

cession of two steps. In the first step, processors run code sections

independently, without communicating; in the second step, they ex-

ecute a deterministic data merge step where they resolve the inter-

processor (or inter-thread) dependences in the previous sections.

Of these architectures, we are interested in those like Grace [5]

and DMP-TM [11] that honor the dependences between threads

specified in the program and support sequential consistency —

since their execution is always intuitive. In these systems, the par-

allel section runs in a transactional manner, executing an atomic

block or chunk. Each core or thread buffers the state that the chunk

generates in a private buffer, and can only read from memory or

from that buffer. Then, in the merge step, these buffers are commit-

ted to or merged with memory in a deterministic total order.

During the merge, the system knows which memory locations

were read or written by each chunk. It checks for data dependences

between chunks, also known as conflicts. On a dependence, a chunk

may have read stale data or overwritten good data, and so it must

be squashed. Specifically, if a chunk that wrote to line X commits,

then the system cannot commit a chunk that read or wrote line X

— since the second chunk may have read stale data or incorrectly

overwritten data generated by the first chunk. Squashing a chunk

involves discarding the state it generated and returning the thread’s

execution to the beginning of the chunk.

The conflict detection in these systems is lazy. It means that

the trigger for the system to check for conflicts is when a chunk

commits — rather than when the chunk performs an access.

In these architectures, the merging step can easily become a

performance bottleneck, due to frequent chunk squashes. A ma-

jor reason for this is that these architectures use round-robin to to-

tally order the commit of the chunks from the different processors:

P0 → P1 → · · · → PN−1 → P0 → · · · . We discuss it next.

2.2. Overheads with Round­Robin Merge

Lazy, round-robin merge suffers the performance overheads

shown in Figure 1. The figure shows three processors executing

chunks with a round-robin P0 → P1 → P2 commit policy. The

unlabeled arrows are the commit token passing. When chunk C0 in

P0 commits, the system detects a dependence with chunk C1 in P1.

C1 is then squashed and re-executed.

An obvious overhead is the squashed work of C1, which slows

down P1. It is shown as (1) in the figure. The overall squashed work

is highly related to the application’s runtime behavior and number

of processors. Applications with higher inter-thread communica-

tion typically have a higher squash rate. Also, a chunk’s squash rate

often increases with the number of processors.

In a squash, the use of round-robin commit induces an addi-

tional performance overhead compared to a platform where chunks
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Figure 1. Performance overheads.

are allowed to commit in any order — e.g., a nondeterministic

one. Specifically, when a chunk gets squashed, part (or all) of the

squashed execution may be visible as stall to the successor proces-

sors. This transmitted stall is shown as (2) in the figure. In this

case, (1) is visible in its entirety to P2. Moreover, all of the suc-

cessor processors can potentially be affected by it as well. This

transmitted stall accumulates and hence tends to increase with the

number of processors.

Token passing is another overhead, shown as (3) in the figure.

Since we require a total order of chunks, we experience delay to

transfer the token between processors. This overhead is higher the

more physically distributed the machine is.

Another overhead is the part of the commit operation that ap-

pears in the critical path of the processor, shown in the figure as (4).

Finally, there is conflict detection overhead, not shown in Figure 1.

All these overheads are mostly orthogonal to determinism ex-

cept for the transmitted stall (the second one), which appears in

round-robin deterministic systems. Our paper focuses on largely

eliminating this performance overhead.

2.3. Bulk Architecture for Chunk Execution

To compare a non-deterministic environment to a deterministic

one with either round-robin commit or the improved commit we

propose in this paper, we use as a common substrate the chunk-

based Bulk architecture [26]. This is a cache-coherent architec-

ture where processors continuously execute chunks. A chunk is a

dynamically-formed group of contiguous instructions. A chunk ex-

ecutes atomically and in isolation. As it executes, it buffers the state

it generates in the L1 cache. In addition, hardware Bloom filters en-

code all the addresses read and written by the chunk into a read (R)

and a write (W ) signature. Conflict detection between concurrent

chunks is performed lazily, when a chunk commits. At that point,

the committing chunk’s W signature is intersected against the other

chunk’s R and W signatures. If both intersections are null, there is

no conflict; otherwise, the second chunk is squashed.

We consider two Bulk designs: one with a centralized commit

arbiter (BulkSC [10]) and one with distributed directory modules

and no arbiter (ScalableBulk [24]). Both are nondeterministic.

In BulkSC, when a chunk completes execution, it sends out its

signatures (Ri, Wi) to the commit arbiter. The arbiter uses the sig-

nature pair to decide whether to commit the chunk. The arbiter

maintains a committing queue, which contains the W signatures of

all of the currently-committing chunks. If the intersection of Ri and

Wi with any of the W in the committing queue is not null, there is

a conflict and the processor is denied the commit request. Other-

wise, the chunk is permitted to commit, and the arbiter informs the



requester, which de-allocates Ri and Wi. In addition, the arbiter in-

serts Wi into the committing queue, updates the directory (if there

is one), and sends Wi to relevant processors to check for conflicts

and possibly squash their chunks. The committing queue is used by

the directory to reject loads and stores whose address overlaps with

the W of the committing chunks.

In ScalableBulk, the directory is partitioned into multiple on-

chip directory modules based on address ranges. Each directory

module is associated with a node and there is no commit arbiter.

When a chunk completes execution, it sends out its signatures to

all of the directory modules that may have addresses present in the

signatures. This group of directory modules then coordinate to de-

termine whether the chunk can commit. It can commit only if the

addresses that the chunk accessed do not overlap with those of an-

other chunk that is currently committing. Two groups of directory

modules can proceed with concurrent commits even if they include

common directory modules.

3. Conflict­Aware Commit of Chunks

In this section, we further analyze the limitation of the state-of-

the-art deterministic commit and then propose to solve the problem

with conflict-aware commit.

3.1. Transitive Squash Delay in Round­Robin

As indicated above, state-of-the-art deterministic systems com-

mit chunks in a round-robin order. In these systems, when a proces-

sor squashes a chunk, it potentially slows down all of the chunk’s

successor processors. This is repeated in Figure 2, which is sim-

plified to assume equal chunk sizes, no commit cost and no token

passing overhead. In the figure, there is a conflict between chunk C0

and C1, and between C2 and C3. Since we use a lazy scheme, af-

ter processor P0 commits C0, C1 gets squashed due to the conflict.

Thus, when P1 gets the commit token, it cannot pass it immediately

to P2 because it has to re-execute C1. Thereby, P2 ends up waiting

the equivalent of a chunk’s execution, even though its chunk does

not conflict with any of the predecessor chunks. In effect, the re-

execution overhead of C1 in P1 is transmitted to P2 and all of the

successor processors. We call this transmitted delay the Transitive

Squash Delay.
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Figure 2. Round­robin deterministic chunk commit.

Transitive squash delays accumulate. As illustrated in Figure 2,

P4 suffers the sum of the delays introduced by the squashes in P1

and in P3 (squashed by P2). The transitive delay generated by all

the processors in one Round of commits (i.e., one commit per pro-

cessor in the machine) ends up accumulating in the last processor

in the commit order. With more processors, the overall transitive

delay observed in a round is likely to grow, because (1) the squash

rate per processor increases given that more concurrent chunks are

running, and (2) there are more processors that can get squashed

and contribute to the transitive delay in the last processor. With

some reasonable assumptions, it can be shown that both factors

grow linearly with the number of processors. Consequently, the

overall squash delay increases as O(N2), where N is the number of

processors (Appendix A.2).

As will be shown in our evaluation, such quadratically-growing

overhead is modest for 4-8 processors. However, it can become

substantial with more processors. For 32 processors, the slowdown

of round-robin over a nondeterministic system is 2.3x on average

for all the applications, and 4x for ocean-nc.

Meanwhile, in a nondeterministic chunk system, the squash de-

lay grows as O(N) (Appendix A.1). Our goal is to reduce the over-

head of a deterministic system to reach the same level.

3.2. BulkCompactor: Minimizing Squash Delay

BulkCompactor is a new deterministic execution scheme that

focuses on minimizing the transitive squash delay. The idea is that

a chunk that does not conflict with earlier chunks does not need to

be delayed. In addition, chunks that conflict with earlier chunks are

deterministically postponed to the next round to retry the commit,

instead of following the round-robin order. Later, in the next round,

every processor continues to commit chunks as usual — as long as

they are conflict-free.

Figure 3 illustrates how BulkCompactor works. The figure

shows the same example as Figure 2 extended into three rounds

of commit. The token is still passed in round-robin order. In the

first round, P0 commits C0 and then squashes C1. Instead of wait-

ing for C1’s re-execution, the token bypasses P1 and is sent to P2.

P2 commits C2 while C1 is postponed to the next round. By doing

so, P2 avoids the transitive delay of C1’s squashed work. Similarly,

C3 is squashed by C2 and also postponed. After C4 commits, the

token is passed back to P0 to start a new round. In this new round,

P0, P2 and P4 can commit new chunks, while P1 and P3 commit

the re-executed chunks — assuming there are not cross-chunk con-

flicts. In the third round, each processor commits its next chunk

because there are no conflicts. Overall, BulkCompactor sequen-

tially commits conflict-free chunks in each round and, on a conflict,

postpones the destination chunk to the next round for retry. The

result is a highly-compacted execution of chunks. It produces a dif-

ferent chunk commit order than the round-robin one but, since de-

pendences are deterministic, this order is also deterministic across

executions of the same application and input.
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Figure 3. BulkCompactor deterministic chunk commit.

BulkCompactor eliminates transitive squash delay in a round. If

a chunk is squashed, rather than delaying successor chunks, it re-

executes but its commit gets postponed to the next round. Chunks

non-conflicting with their predecessor chunks in the same round

commit without waiting for such re-executions.



Interestingly, these features are quite similar to nondeterminis-

tic chunk-based systems such as TCC [13] and BulkSC [10]. In

these systems, if a chunk is squashed, it is re-executed and retried

for commit later, without affecting other processors; furthermore,

conflict-free chunks can always commit regardless of the behavior

of other processors. Our analysis shows that the overall squash de-

lay of BulkCompactor follows O(N) (Appendix A.3).

In summary, the key novelty of BulkCompactor is to compact

the schedule of chunk commits. The schedule is determined at run-

time, depending on the conflict behavior of the application.

3.3. Enforcing Deterministic Postponement

To understand BulkCompactor’s operation, Figure 4 shows a

model of processors executing chunks. The execution is divided

into Rounds, which contain one chunk per processor. Within a

round, a deterministically-picked Leader is the first chunk to com-

mit. The commit token originates in the leader and is passed in a

fixed order around the chunks in the round. Based on the order of

token visit, a chunk has Predecessor and Successor processors (and

chunks) in this round. When the commit token arrives at a chunk,

the chunk will be committed or postponed. The commit token trav-

els with the Non-Postponed Set. This set includes the chunks in this

round that have already committed (and, therefore, are not post-

poned). This set is gradually expanded as the commit token trav-

els within the round. The chunk that receives the commit token is

called the Commit-Attempting chunk.

P1

Round

Order of 

token passing
Non−postponed
set Leader

Block

T
im

e

P0 P3 P4P2

Figure 4. Model of BulkCompactor’s execution.

With BulkCompactor, it is crucial that the decision of whether to

postpone the commit of a chunk to the next round be deterministic.

If it is, it easily follows that the rest of the system is deterministic

as in the case of round-robin. While there can be many decision

algorithms, we propose two simple rules that ensure determinism:

Rule 1. A chunk Ci is always postponed if it has a conflict with any

previously committed chunk Cj in the same round, where 0 ≤ j <

i.

Rule 2. A chunk Ci is never postponed because of a conflict with a

chunk from an earlier round.

When the commit token reaches a chunk, BulkCompactor needs

to decide whether the chunk should be committed or postponed. If

the chunk has already been squashed by a predecessor chunk in the

same round, then the chunk is automatically declared postponed.

Otherwise, the chunk needs to finish its execution. Only then can

BulkCompactor, with the full information of the addresses accessed

by the commit-attempting chunk, determine whether or not there is

a conflict with any predecessor chunk. BulkCompactor determines

this by comparing the addresses accessed by the commit-attempting

chunk to those accessed by the chunks in the non-postponed set. If

there is a conflict, BulkCompactor postpones the chunk as per Rule

1 — even though the conflict did not actually trigger the squash

of the chunk in this run. Otherwise, the commit-attempting chunk

commits and is added to the non-postponed set. After a round fin-

ishes and the token is passed to the leader of the next round, the

non-postponed set is cleared as per Rule 2.

At all times, chunk squashes are only triggered by the conven-

tional lazy-scheme protocol: as a chunk completes and commits,

the protocol squashes all of the currently uncommitted chunks that

have prematurely accessed a conflicting location. However, the

processes of squashing and postponing are decoupled. This is be-

cause, while squashing is nondeterministic (a cross-chunk depen-

dence may or may not cause the squash of the consumer chunk

depending on the time when the consumer issues the consumer ac-

cess), postponing must be made deterministic.

For instance, as Figure 5(a) shows, chunk C1 may or may not be

squashed by C0, depending on whether the conflicting access in C1

(ld B) is performed before C0’s commit completes. In the example,

C1 is not squashed. However, to keep execution deterministic, C1

is always postponed to the next round (Figure 5(b)).

As indicated above, when a chunk is squashed by a predecessor

chunk in the same round, the chunk is automatically postponed.

However, the situation is different when a chunk is squashed by

a chunk in an earlier round. In this case, as per Rule 2, the chunk

simply restarts and will still be committed in the present round. This

event can cause the only instance of transitive squash delay. For

example, consider the case where the last chunk of a round has a

conflict with the first one of the next round. As the earlier chunk

commits, it will squash the second one. The latter will still restart

and commit in the next round, potentially passing some transitive

delay to its successors.

Figure 5(c) shows an example of this case, which also illustrates

the nondeterminicity of the squashes. Chunk C1 of P1 is in the first

round and C2 of P0 is in the second round, and they have a con-

flict. C1 is executed and commits in the first round. At that point,

depending on whether the consumer access in C2 (ld A) has been

performed or not, C2 is squashed. In the example, it is squashed.

However, as C2 re-executes, it will commit in the second round

(Figure 5(d)). This event may add some transitive squash delay to

the chunks in the second round.

To summarize, the postponement detection enforces the two

rules and guarantees a deterministic commit order of chunks re-

gardless of the nondeterministic behavior of chunk squashes. As

the commit order defines the thread interleaving, it follows that the

execution of BulkCompactor is deterministic.

3.4. BulkCompactor­S: Scalable Postponement

BulkCompactor performs full-round postponement detection, in

that a commit-attempting chunk compares its addresses to those of

all of its predecessor chunks in the round that have not been post-

poned. This approach ensures that the transitive squash delay is

minimized, since any conflict discovered triggers the postponement

of the commit-attempting chunk. However, with many processors,

the comparison operation becomes costly. The reason is that, as the

conflict rate is usually low, the non-postponed predecessor chunks

(collected in the non-postponed set) often are all of the predeces-

sor chunks in the round. Hence, a commit-attempting chunk Ci

often has to be compared to all of its predecessor chunks, which

consumes energy and either is slow or requires substantial hard-

ware. The total number of operations required for postponement
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detection is in the order of O(N2) for each round, where N is the

processor count.

To reduce the number of comparisons, we propose

BulkCompactor-S (for Scalable BulkCompactor). BulkCompactor-

S performs partial-round postponement detection. Specifically,

BulkCompactor-S decides whether to postpone a commit-

attempting chunk Ci by only considering conflicts with at most

its M immediate predecessor chunks. M is a small constant

called Range such that 1 ≤ M ≪ N . Consequently, on a

squash, the chunk’s commit will be postponed only if the squash

is induced by one of the chunk’s M immediate predecessors. In

addition, BulkCompactor-S gradually removes entries from the

non-postponed set as the commit token travels between chunks. At

any time, the non-postponed set has at most M entries.

The advantage of BulkCompactor-S is that it reduces the number

of comparisons between chunks. Its shortcoming is that it may be

unable to eliminate some of the transitive squash delay that Bulk-

Compactor eliminates. Specifically, if a chunk Ci has a conflict

with a predecessor that is earlier than Ci−M , then Ci will not be

postponed and any delay resulting from chunk Ci’s squash may be

visible to i’s successors.

Fortunately, two reasons help minimize the delay propagated to

chunk Ci’s successors. The first one is that, since the conflict oc-

curs between relatively far-off chunks, it is typically detected far

before the commit token reaches Ci. Hence, if Ci got squashed, by

the time the token reaches Ci, Ci has likely had the time to finish

most of its re-execution, and the delay propagated will be small.

The second reason is that experimental evidence suggests that pro-

grams have a certain conflict locality, meaning that a thread tends

to conflict with neighboring threads more often than with far-off

threads — especially in nearest-neighbor algorithms. As a result, by

not checking for far-off dependences to decide on postponements,

chunks are unlikely to suffer much transitive squash delay. Overall,

BulkCompactor-S with small M can discover and avoid most of the

transitive squash delay.

Compared to BulkCompactor, BulkCompactor-S enforces these

adjusted determinism rules:

Rule 1’. A chunk Ci is always postponed if it has a conflict

with any previously committed chunk Cj in the same round where

MAX{i − M, 0} ≤ j < i.

Rule 2’. A chunk Ci is never postponed because of a conflict with

a chunk from an earlier round or with a chunk Cj in the same round

where 0 ≤ j < MAX{i − M, 0}.

Figure 6 shows an example of BulkCompactor-S with M = 2.

There is a conflict between chunks C0 and C1, and between C0 and

C3. C1 is squashed and postponed. Hence, its squash delay is not

transmitted. C3 is squashed by C0. However, C3 is conflict-free

with the current non-postponed set — composed of only C2 be-

cause C1 is postponed. Consequently, C3 is not postponed and its

re-execution causes transitive delay to C4. As suggested by the ex-

ample, with BulkCompactor-S, the transitive squash delay is likely

to be kept low (e.g., C1 was postponed but not C3), which means

that BulkCompactor-S may not be much slower than BulkCom-

pactor. Meanwhile, partial-round postponement detection needs

fewer comparison operations for each round than in BulkCom-

pactor. Specifically, the number of operations is in the order of

O(N × M) = O(N) rather than O(N2) as in BulkCompactor.

Hence, BulkCompactor-S consumes less energy doing the compar-

isons. In addition, the number of comparisons per chunk is reduced

from O(N) to O(M), which means that BulkCompactor-S needs

less storage for the non-postponed set, and either needs less com-

parison hardware or compares faster.
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Figure 6. BulkCompactor­S operation with M = 2.

The squash delay of BulkCompactor-S is in the order of O((N−
M)2 + M) (Appendix A.4). Consequently, with a small range M ,

the delay would be similar to round-robin’s. In practice, however,

we will see in Section 5 that, for 32 processors, BulkCompactor-

S with M = 4 or M = 8 attains almost the same performance

as BulkCompactor. This low overhead is due to the two reasons

mentioned before. Thus, BulkCompactor-S with a small M avoids

most of the transitive squash delay.

3.5. Handling Starvation and Fairness

A simple implementation of BulkCompactor and

BulkCompactor-S may induce starvation. It occurs when a

chunk continuously fails to commit due to a predecessor that

repeatedly conflicts with the chunk and postpones it. For instance,

consider two processors P0 and P1, where P0 has higher priority

to commit than P1 in every round. If P0 continuously commits

chunks that conflict with the chunk that P1 is trying to commit

(C1), then C1 will be postponed indefinitely. To solve this

issue, both BulkCompactor and BulkCompactor-S shift the leader

processor at every round (Figure 4). This simple solution ensures



that each processor can commit at least one chunk every N rounds,

thus avoiding starvation and guaranteeing progress.

Unfortunately, the support described does not ensure fairness.

In the worst case, a processor might only commit one chunk for

every N rounds, while other processors make fast progress. This

may happen when a processor’s chunk is squashed every time ex-

cept when the processor becomes the leader. With the insight that

the leader processor is guaranteed to commit a chunk, we set the

leader to be the one that suffers the most postponements. With this

solution, fairness is attained.

4. Design

We design BulkCompactor and BulkCompactor-S as extensions

to the Bulk architecture [26] (Section 2.3). The components of the

design include constructing a deterministic postponement detector

(Section 4.1), ensuring deterministic chunk building (Section 4.2),

and enforcing deterministic conflict detection (Section 4.3). Sup-

porting BulkCompactor and BulkCompactor-S in other chunk-

based platforms such as TCC [13] or the software-based Grace sys-

tem [5] may involve somewhat different issues. In the following,

we describe the three components.

4.1. Deterministic Postponement Detector

The Postponement Detector (or p-detector for short) is a hard-

ware module that ensures deterministic chunk postponement and

commit order. It uses address signatures for its operation. In

the following, we outline a design for a centralized system like

BulkSC [10] and one for a distributed system like Scalable-

Bulk [24]. The designs correspond to BulkCompactor; those for

BulkCompactor-S require only small modifications.

4.1.1. Centralized Design

In a design with a centralized arbiter like BulkSC, the p-detector

is placed together with the arbiter. The commit token and the non-

postponed set are kept in the p-detector rather than circulated be-

tween the processors. The non-postponed set is an array with as

many entries as the number of processors. The entries for the

processors that have successfully committed a chunk in the cur-

rent round contain the W signature of the chunk; the entries for

those that have postponed the chunk in the current round contain a

marker. The commit token is an index into the non-postponed set

array, pointing to the processor that holds the token.

Processors inform the p-detector of two events: (1) when they

complete a chunk and request to commit it, and (2) when their

chunk gets squashed (in this case, the message includes which pro-

cessor squashed it). With this information, the p-detector is able

to deterministically postpone and commit chunks. When it decides

to commit a chunk, it informs the arbiter, which will proceed as in

BulkSC — namely, send confirmation to the requesting processor

(which will then start a new chunk) and proceed with the directory

update. We now describe each of the two processor-to-p-detector

messages.

When a processor completes a chunk, it sends its R and W

signatures to the arbiter/p-detector module and stalls. Unlike in

BulkSC, the arbiter never rejects any of these requests. The p-

detector buffers the signatures. Later, when the p-detector’s commit

token reaches this processor number, the p-detector checks if the

chunk has a conflict with any of its non-postponed predecessors in

the same round. For this, it intersects the chunk’s R and W signa-

tures with the W signatures of all its non-postponed predecessors

in the same round, which are stored in the non-postponed set array.

If any intersection is not null, there is a conflict. In this case, the

p-detector silently postpones the executed chunk to the next round,

records this fact in the non-postponed set array, and retains the R

and W signatures. Otherwise, the p-detector stores the chunk’s W

signature in the non-postponed set array and requests the arbiter to

commit the chunk. In either case, the p-detector then moves the

commit token to the next entry.

When a processor suffers a chunk squash, it informs the p-

detector and restarts the chunk. The message includes the ID of

the processor that caused the squash, which came from the invali-

dation message that triggered the squash. Since the p-detector keeps

at all times a table with which round each processor is currently ex-

ecuting in, the p-detector knows if the squashing processor is in the

same round as the squashed processor. If it is, the p-detector marks

the squashed chunk as postponed; otherwise, it takes no action. In

either case, the p-detector discards the squashed chunk’s R and W

signatures (if it had them).

When the p-detector points the commit token to a chunk that is

to be postponed, it simply moves the token to the next entry. When

the p-detector completes a round, it clears the non-postponed set

array. It then moves to commit the leader of the next round. At any

time, if the p-detector points the commit token to a chunk for which

it neither has the R and W signatures (because the chunk has not

completed yet) nor has it recorded as postponed for this round, it

waits. Finally, a processor stalls from the time it requests a chunk

commit until it gets a commit confirmation (at which point it starts a

new chunk) or it gets the chunk squashed (at which point it re-starts

the chunk).

Figure 7(a) outlines the main structures of the p-detector and

arbiter. The W signatures in the non-postponed set (center) are

intersected with the R and W signatures of the incoming chunks

(left), resulting in a commit or a postponement. Committing chunks

store their W signatures in the non-postponed set and in the arbiter

(right), preventing overlapping loads and stores from accessing the

directory.

4.1.2. Distributed Design

ScalableBulk modifies the BulkSC protocol to work in a ma-

chine with a directory distributed across multiple modules, each

handling a range of memory addresses. We now enhance such a

design by associating a p-detector with each directory module.

A key idea of ScalableBulk is that a processor only commu-

nicates with the subset of directory modules that are home to the

data read or written by the chunk. We call these the Relevant

directories/p-detectors. Consequently, in the distributed BulkCom-

pactor, a processor informs its relevant p-detectors (and only them)

when it wants to commit a chunk or when its chunk gets squashed.

Only these p-detectors will store the chunk’s R and W signatures

when the chunk requests to commit, and the chunk’s W signature

when the chunk is part of the non-postponed set.

Another ScalableBulk feature is that in a group of relevant di-

rectories, there is a Leader that coordinates the actions of the Group

and communicates with the requesting processor. Such leader is the

lowest-numbered directory in the group. In the distributed Bulk-

Compactor, we use such a concept.

In the distributed BulkCompactor, passing the commit token

involves sending protocol messages between processors and p-
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detectors. Specifically, when a processor has the token for a chunk,

it sends it to its relevant p-detectors. These p-detectors, under the

coordination of its leader, decide whether the chunk should be com-

mitted or postponed. The actual coordination is much simpler than

in ScalableBulk, since only one group of p-detectors is active at a

time — unlike in ScalableBulk, where multiple groups are active

concurrently. After the decision is made, the leader sends the token

to the next processor in the commit order, which forwards it to its

relevant p-detectors.

BulkCompactor needs a structure to keep which processors have

committed their chunks in the current round so far. This informa-

tion is carried in the commit token. Specifically, the token is a bit

vector with as many bits as the number of processors. For the pro-

cessors that have committed their chunks so far in the current round,

the bit is set; for those whose chunks have been postponed or not

considered yet, the bit is clear.

The actual distributed BulkCompactor algorithm is as follows.

When the relevant p-detectors for a chunk Ci receive the commit to-

ken, they first check if the chunk has been squashed by another one

in the current round. If so, the chunk is postponed. Otherwise, the

p-detectors intersect the Ri and Wi signatures of the chunk against

the Wk signatures of all the predecessor chunks already committed

in this round. Such predecessors have their bit set in the commit

token. In addition, their Wk signatures are stored locally if the lo-

cal p-detector was relevant to those chunks. If the local p-detector

does not have a given Wk signature, it means that such a chunk

did not access addresses local to this directory module and, there-

fore, the intersection would be null anyway. As the intersections

are performed, the leader aggregates the information from all the

group members. If the result is that all the intersections are null, the

chunk can commit. At this point, the leader sets the bit in the com-

mit token and informs all the p-detectors/directories in the group,

which save the Wi signature and proceed to commit the chunk as in

ScalableBulk. If, instead, at least one intersection is not null, there

was a conflict and the chunk is postponed. In all cases, the leader

then sends the token to the next processor to commit.

Figure 7(b) shows an example of the algorithm. After P1 fin-

ishes a chunk, it sends the R and W signatures to its relevant p-

detectors, with a chosen leader D0. In the meantime, P2 also com-

pletes a chunk and sends out the signatures. Once P1 receives the

commit token from an earlier processor, it forwards the token to all

of its relevant p-detectors (message 2 in Figure 7(b)), which per-

form signature intersection. After the leader D0 collects the results

(message 3), it decides to postpone the chunk, hence leaving P1’s

bit in the token clear, and forwards the token to P2 (message 4). P2

forwards the token to D2, which decides to commit the chunk. D2

sets P2’s bit in the token, initiates the commit, and passes the token

to the next processor.

Overall, this is a distributed algorithm with minimal amount of

data communicated. Still, the latency of the token-passing mes-

sages appears in the critical path of chunk commit or postponement.

To prevent such latency from becoming too high in large machines,

it may be beneficial to provide fast interconnection links for token

passing.

4.2. Deterministic Chunk Building

A requirement of a chunk-based deterministic machine is that

chunks be built deterministically. BulkCompactor accomplishes

this by terminating a chunk when it reaches a certain maximum size

and by handling certain events that could introduce nondetermin-

ism. We discuss the latter. Recall that BulkCompactor is concerned

with application-level determinism only.

4.2.1. Cache Overflow

The overflow of data generated by an uncommitted chunk from

the cache (or speculative buffer) is typically nondeterministic. It

depends on the machine state. When overflow is about to happen,

the chunk cannot continue and is usually forced to commit its partial

state. This would be a non-deterministic chunk termination.

In the round-robin scheme, nondeterminism can be avoided. Be-

fore any part of the overflowing chunk C is allowed to commit, all

of the previous chunks are committed. Then, the section of C be-

fore the overflow is committed. Finally, the rest of C is executed

and committed before passing the commit token.

Unfortunately, this solution fails in BulkCompactor or

BulkCompactor-S. We cannot commit any section of C before com-

pleting and checking the full chunk. The reason is that the rest of

C could contain a conflict with a prior chunk and require C to be

postponed.

To solve this issue, we allocate a buffer in main memory that

temporarily buffers data generated by an uncommitted chunk that

overflows from the cache. When the chunk finally completes and

commits, the data is copied from the buffer back to non-speculative

space. We call the buffer sufficient private buffer or S-buffer. The

solution is similar to the buffer in the Unbounded Transactional

Memory (UTM) system [1] and the unlimited-sized overflow area

of Prvulovic et al. [23].

The buffer is hash-indexed with the address for fast access.

Moreover, thanks to BulkCompactor using signatures, it can be ma-

nipulated efficiently. Specifically, the S-buffer only needs to be ac-

cessed on cache misses whose address is found in the W signature.

In addition, read-only data that is evicted from the cache does not



Processors & Interconnect Memory Subsystem Application Input Size

Cores: 2-issue in-order at 1GHz Private D-L1: barnes 4096 nbody

4 to 32 cores with centralized p-detector Size/assoc/line: fmm 4096 parts

64 cores with distributed p-detectors 64KB/4-way/64B lu-nc 512x512 matrix

Maximum chunk size: 2,000 instructions Latency: 1 cycle ocean-nc 258x258 ocean

Interconnect: 2D bidirectional torus Shared distributed L2: radiosity default

Interconnect hop latency: 7 cycles Size/assoc/line: radix 262144 keys

Signature size: 2K bits 4MB/8-way/64B raytrace teapot

Signature organization: Like in BulkSC [10] Latency to local module: 5 cycles bodytrack simmedium

Range for BulkCompactor-S: 4 and 8 S-buffer & main memory: fluidanimate simmedium

Simultaneous chunks per core: 2 Avg. latency: 150 cycles streamcluster simmedium

Page size: 256KB S-buffer size: 64KB swaptions simmedium

Default architecture: Centralized p-detector x264 simmedium

Table 1. Architecture and application parameters.

need to be stored in the S-buffer because the R signature keeps a

record of the addresses read. Finally, since BulkCompactor builds

chunks with a fixed maximum size, the S-buffer can be statically

sized so that all the overflowed data fits in it. This is unlike past

schemes like UTM’s or Prvulovic et al.’s buffers.

In our evaluation, we use a cache line replacement algorithm that

follows LRU but tries avoid replacing speculatively-written cache

lines. Our evaluation shows that the S-buffer is rarely accessed and

thus imposes negligible performance overhead.

4.2.2. Other Events

Other events could also introduce nondeterminism. These

events include system calls, interrupts, program inputs, and pro-

gram exceptions. We briefly discuss how to handle them to en-

sure determinism. First, system calls cause the termination of the

currently running chunk because BulkCompactor is concerned with

application-level determinism rather than system-level. Since they

are part of the executable, they terminate the chunks deterministi-

cally. However, care must be taken that nondeterministic operating

system behavior does not affect the state used by the application.

Second, typical interrupts such as timer interrupts can be delayed

to the end of the currently running chunk. They are executed at

chunk boundaries and, therefore, do not affect chunks. Third, pro-

gram inputs need to be deterministically provided in every run of

the application for the execution to be deterministic. Finally, pro-

gram exceptions such as division by zero can be either reproduced

deterministically or eliminated if they are an artifact of the specula-

tive execution. Specifically, the chunk with the exception needs to

be re-executed after all of its predecessor chunks commit, to ensure

a deterministic architectural state.

4.3. Deterministic Conflict Detection

We adopt signatures to perform conflict detection [9]. Signature

operations can introduce false positive conflicts, namely two sets

of addresses that are disjoint, when represented as signatures, may

appear to overlap with each other. Ordinarily, this would pose no

major problem because such false positives are also deterministic.

Unfortunately, a problem occurs if we use physical addresses —

which change from run to run — to generate signatures. While true

conflicts will be deterministic, false positive conflicts will not. To

solve this problem, BulkCompactor uses virtual addresses to con-

struct signatures. Such addresses are identical (or can be made to be

identical) across program runs. In addition, the signature encoding

mechanism is assumed to be identical across machines.

Another problem is that, in a distributed machine like the one

described in Section 4.1.2, addresses are distributed across the dif-

ferent directories based on their physical values. Therefore, unless

we do something, the same data structures (hence, the same virtual

addresses) will likely be mapped to different directories in different

runs. As a result, when we intersect virtual-address signatures in a

directory/p-detector to decide on chunk postponement and commit,

we will intersect different addresses across runs. While true con-

flicts will be the same, false positive conflicts will vary across runs,

making the algorithm non-deterministic.

To solve this problem, we must assign the same virtual addresses

to the same directory modules across runs. We do this by choosing

a large page size and using some page offset bits (which are the

same for virtual and physical addresses) to map physical space to

different directories. For example, if we have 16 directories, we

use the four most-significant bits of the page offset to assign space

to the different directories — i.e., one directory gets all of the 0000

offsets, another all of the 0001, etc. In this way, a given virtual page,

irrespective of what physical page it maps to in this particular run,

will be split into the different directories in a deterministic manner.

As a result, the virtual-address signatures in each directory will be

identical across runs. This scheme works best with large pages.

Hence, we use 256-Kbyte pages.

4.4. Applying Existing Optimizations

BulkCompactor deterministic systems are compatible with and

can benefit from many performance optimizations that have been

proposed for chunk-based systems. For example, supporting multi-

ple in-progress chunks per thread [10] is useful to overlap commit

latency with next-chunk execution. As another example, data for-

warding between two dependent chunks as in the case of Thread-

Level Speculation can be applied to reduce the number of squashes.

5. Evaluation

5.1. Evaluation Setup

We use the Intel PIN [16] infrastructure to model the Bulk multi-

core architecture [26] running the default nondeterministic environ-

ment (used as baseline) plus extensions to support the BulkCom-

pactor, BulkCompactor-S, and round-robin deterministic schemes.

We model both the centralized and distributed designs of Sec-

tions 4.1.1 and 4.1.2. We model all the components, including

chunk building, chunk squash and roll-back, and deterministic post-

ponement and commit. We perform experiments for 4–64 proces-

sors. We run 12 applications from SPLASH-2 and Parsec to com-

pletion. The cache hierarchy is sized for the modest working set

sizes of the applications. The parameters of the architecture and

applications are shown in Table 1.
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Figure 8. Execution time on different architectures for 32 processors. BulkCompactor­S uses ranges of 4 or 8. The bars are normalized

to the nondeterministic architecture.

5.2. Overall Performance

Figure 8 compares the execution time of the applications run-

ning on several architectures for 32 processors. The figure shows

bars for the round-robin, BulkCompactor and BulkCompactor-S

schemes (the latter with ranges of 4 and 8) normalized to the non-

deterministic architecture. Based on the geometric mean, Bulk-

Compactor only incurs a 22% execution overhead over the non-

deterministic platform. The round-robin scheme’s execution over-

head is 133%. Hence, execution on BulkCompactor takes slightly

over half the time it takes in round-robin. BulkCompactor-S-4

and BulkCompactor-S-8 incur an overhead of 34% and 29%, re-

spectively. These overheads are moderately higher than BulkCom-

pactor’s because BulkCompactor-S suffers from some transitive de-

lays as the range decreases.

It can be shown that the execution overheads of our round-robin

scheme are comparable to those of DMP-TM [11] for 4, 8, and 16

processors, which are the data points reported for DMP-TM.

The raytrace code is unusual in that BulkCompactor in-

curs an overhead similar to round-robin. A common pattern in

raytrace is that a chunk often conflicts with the chunks of many

other processors. This happens because raytrace uses critical

sections that conflict frequently. As a result, when the first chunk

commits, it squashes most of the other concurrent chunks. Hence,

BulkCompactor cannot compact the execution. This suggests that a

code’s synchronization pattern can have a noticeable impact on the

behavior of BulkCompactor. This issue is a subject for future work.

Interestingly, for a large fraction of the applications,

BulkCompactor-S-4 and BulkCompactor-S-8 perform almost like

BulkCompactor. The reason is that, in these programs, the work is

divided into processors in a way that, if a conflict appears, a proces-

sor tends to conflict mostly with its neighboring processors. On the

other hand, for some programs such as ocean-nc, bodytrack

and swaption, the conflicts are more distributed. Therefore,

BulkCompactor-S suffers some transitive squash delays. The char-

acterization section gives more details.

Figure 9 shows an example of the scalability of the execution

time overhead as the number of processors increases. The figure

corresponds to fmm for 4–32 processors. With increased number

of processors, round-robin’s overhead grows significantly, whereas

BulkCompactor’s and BulkCompactor-S’s only grow moderately.

This is the case for most of our applications.
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Figure 9. Scalability of the execution time overhead for fmm.

5.3. Sensitivity to the Chunk Size

Figure 10 compares the relative overheads of the round-robin

and BulkCompactor schemes for different maximum chunk sizes.

For a given maximum chunk size, we measured the execution

time increase of round-robin over the nondeterministic system, and

of BulkCompactor over the nondeterministic system. Then, we

plot them normalized to the first one. The figure corresponds to

barnes with 32 processors. For very large chunk sizes such as

100K instructions, BulkCompactor’s overhead is similar to round-

robin’s. The reason is that, with such a chunk size, the conflict rate

is very high and therefore the execution is severely serialized in both

schemes. For smaller chunk sizes, the two schemes differ. There-

fore, relative to round-robin, BulkCompactor is most attractive for

moderate chunk sizes such as 2–8K instructions.
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Figure 10. Comparing round­robin to BulkCompactor with differ­

ent maximum chunk sizes for barnes.

5.4. Sensitivity to the Token­Passing Latency

We now focus on the BulkCompactor architecture with dis-

tributed p-detectors (Section 4.1.2). In this architecture, the commit

token is passed explicitly between processors, potentially adding



Transitive Bypass Conflict Conflict S-Buffer (for BC)

Apps Ratio Rate (%) Degree Distance Chunks Store Dirty Lines Displaced Lines

RR BC BC-S BC BC-S BC BC in S-Buffer Displaced per Chunk

barnes 9.6 1.1 2.5 11.3 5.3 7.1 9.2 0.01 0.00 34.5

fmm 3.8 1.0 1.8 3.2 2.5 5.3 7.1 0.02 0.00 2.1

lu-nc 8.4 1.1 1.3 17.5 10.6 3.4 4.7 1.57 0.01 1.7

ocean-nc 10.3 1.2 2.6 18.2 7.4 3.6 7.3 0.00 0.00 2.8

radiosity 5.7 1.1 1.1 29.5 15.5 2.8 3.6 0.00 0.00 21.0

radix 21.2 1.1 1.2 17.7 13.6 3.1 2.5 9.37 0.02 1.3

raytrace 6.8 1.4 6.5 84.3 80.6 16.6 3.3 0.00 0.00 3.6

bodytrack 3.1 1.0 1.5 12.6 7.8 2.4 6.3 0.00 0.00 2.2

fluidanimate 2.9 1.1 1.2 23.3 20.6 2.2 4.0 0.00 0.00 0.0

streamcluster 12.4 1.1 2.5 14.3 10.5 3.3 5.9 0.00 0.00 1.8

swaptions 8.2 1.1 4.2 11.3 8.7 2.3 12.3 0.00 0.00 0.0

x264 3.1 1.0 1.3 7.1 5.0 6.7 7.5 0.97 0.00 2.1

Average 8.0 1.1 2.3 20.9 15.7 4.9 5.9 1.00 0.00 6.1

Table 2. Characterizing deterministic schemes: round­robin (RR), BulkCompactor (BC), and BulkCompactor­S with M=8 (BC­S).

stall to the application. To assess this effect, we measure the av-

erage time it takes for the token to travel a round trip (i.e., leaving

from a processor, visiting all the other processors, and returning to

the first one). We include the time needed for the p-detectors to

coordinate with each other, but not the chunk commit time or any

stall time. We consider network-hop latencies of 2–7 cycles in a

64-processor machine. Figure 11 shows the round-trip latency nor-

malized to the average time it takes for a chunk to execute and send

its signatures to its relevant directories. If the ratio is higher than

one, a processor will finish the execution of its chunk and stall be-

fore it gets the commit token again.
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Figure 11. Commit­token round­trip time for different network­

hop latencies normalized to the chunk execution time.

The figure shows that, for the default 7-cycle hop time, several

applications have a ratio higher than 1. Hence, the token-passing

operation becomes a bottleneck for some applications. With smaller

hop latencies, this effect disappears. For example, for 2 cycles, the

token passing-latency is hidden behind chunk execution. Hence,

supporting low-latency token passing is very necessary for dis-

tributed architectures.

5.5. General Characterization

To gain insight into the deterministic schemes, Table 2

characterizes round-robin (RR), BulkCompactor (BC), and

BulkCompactor-S with a range of 8 (BC-S) for 32 processors and

the centralized p-detector architecture. In the following, we call in-

herent squash delay the time wasted by a processor when one of

its own chunks gets squashed or postponed. Based on this, Col-

umn Transitive Ratio shows the ratio of (inherent squash delay plus

transitive squash delay) over the inherent squash delay. Generally,

a higher ratio leads to a higher execution overhead. On average,

RR has a ratio of 8.0, while BC has a ratio of only 1.1 because it

eliminates most of the transitive squash delay, and BC-S has a ratio

of 2.3. The Bypass Rate column shows the fraction of times that a

token bypasses a chunk and, therefore, the chunk is postponed. A

moderate value is usually good because it implies overhead reduc-

tion against RR, as transitive squash delay is avoided. On average,

BC has a bypass rate of 21% while BC-S has a rate of 16%. The

next two columns show data only for chunks that conflict with other

chunks in the same round. Column Conflict Degree shows the av-

erage number of chunks they conflict with, while Column Conflict

Distance shows the average processor distance of the conflict. (We

set the conflict distance between two conflicting chunks Ci and Cj

to be |i − j|). We see that, save for a few exceptions, both values

tend to be modest. On average, they are 4.9 and 5.9, respectively.

The latter explains why BC-S does well.

The S-Buffer columns show the behavior of the buffer described

in Section 4.2.1. The Chunks Store in S-Buffer column shows the

number of chunks that need to use the S-Buffer per 1,000 chunks. It

is about 0.0 for most applications, and the average is only 1.0. The

Dirty Lines Displaced is the average number of dirty cache lines

displaced into the S-Buffer for every 1,000 L1 accesses. This num-

ber is even lower than the previous column. Finally, the Displaced

Lines per Chunk column shows the average number of dirty cache

lines displaced into the S-Buffer per chunk that needs to use the

S-Buffer. This value is 6.1 on average. These values indicate that

the S-Buffer is sparsely accessed and imposes minor performance

overhead.

6. Related Work

There has been significant interest on deterministic execution

from different layers of the computing stack. The DMP-TM scheme

proposed as a part of the DMP project [11] and the Grace sys-

tem [5] are the most related works to ours. Both of them enforce

a pre-defined, round-robin commit order of chunks, thus incurring

a quadratic squash delay growth as we show in our analysis. The

DMP-O scheme [11] uses ownership tracking to enforce memory

access ordering. In case of ownership violation, it can introduce sig-

nificant serialization and resulting performance degradation. The

DMP-B scheme proposed in CoreDet [3] and further exploited in

RCDC [12] employs relaxed consistency to reduce the serialization

of DMP-O. Calvin [14] proposes a pure hardware implementation

similar to the DMP-B scheme. Our scheme, instead, enforces se-

quential consistency.

Kendo [21] is a runtime library that imposes ordering restric-

tions for synchronization primitives and guarantees determinism for



race-free programs. The dOS [4] operating system enforces deter-

minism for process groups by applying DMP-O at page granularity,

thus inherently incurring similar inefficiencies as DMP-O. The De-

terminator [2] is a deterministic operating system that relies on a

deterministic micro-kernel and explicit message passing to emulate

shared-memory access. The Deterministic Parallel Java project [6]

proposes a type and effect language that prohibits nondeterministic

communication at the language level, enforced by compiler verifi-

cation. Stream-based programming languages such as StreamIt [25]

provide determinism as the deterministic message channel handles

all the communication. Finally, some works check if a program

behaves deterministically in a nondeterministic execution environ-

ment (e.g., [7, 8, 20]).

A related problem is that of execution recording and deter-

ministic replay. The goal is not to enforce a deterministic thread

interleaving like BulkCompactor, but to deterministically replay

a given initial interleaving. The existing proposals include both

hardware-level solutions (e.g., [15, 17, 19]) and software ap-

proaches (e.g., [18, 22, 27]). Much of the effort has focused on

generating a minimal execution log, to save space. This has lead to

schemes where log entries correspond to the execution of large code

structures similar to chunks [15, 17]. The speed of the execution

replay has been less critical, unlike in the deterministic execution

schemes.

7. Conclusion

This paper proposed a novel, high-performance approach to de-

terministic execution based on Conflict-Aware commit. The goal

was to eliminate the commit bottleneck that proposed determinism-

enforcement architectures suffer as they honor the dependences be-

tween threads. They use round-robin commit, which induces tran-

sitive squash delay.

Our key observation was that, since conflicts are deterministic,

rather than committing chunks in a strict round-robin order, we can

skip those chunks with conflicts and deterministically execute them

slightly later. The result is that transitive squash delays are mostly

eliminated, chunk commits are compacted, and execution time is

substantially reduced — all while retaining deterministic execution.

With our scheme, called BulkCompactor, the overall squash delay

increases as O(N), rather than as O(N2) as in round-robin.

We described the design of BulkCompactor as extensions to the

Bulk chunk-based nondeterministic multiprocessor. We presented

two designs: one for a machine with a centralized commit point,

and the other for a machine with distributed commit. We evaluated

BulkCompactor and the round-robin scheme with detailed simula-

tions. The results showed that BulkCompactor delivers determin-

istic execution at a performance that is comparable to a nondeter-

ministic chunk-based system. For example, for 32-processor exe-

cutions, BulkCompactor only incurred an average execution over-

head of 22% over the nondeterministic system. The round-robin

scheme’s average execution overhead was 133%.
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A. Squash Delay Analysis

A.1. Nondeterministic Chunk Systems

For simplicity, we make the following assumptions for all the

chunk-based systems compared:

1. On a chunk squash, a fixed L cycles of work are lost.

2. The conflict rate between two concurrent chunks is C for all pairs

of chunks.

3. 0 < C ≪ 1 and 0 < C × N ≪ 1, where N is the number of

processors in the machine.

Given two concurrent chunks with a conflict rate C, the worst

case is for one of them to get squashed by the other one at every

conflict. In this case, the squash rate or probability of that chunk

getting squashed is S2 = C. With k concurrent chunks (where

2 ≤ k ≤ N ), the worst-case squash rate for a chunk is Sk =
1−(1−C)k−1. Since C has a very small value, Sk ≈ C×(k−1).

For SPLASH-2 and Parsec applications, S64 ≈ 0.05 [24] when the

chunk size is ≈ 2,000 instructions. With a squash rate of S, the

squash delay is L × S.

In a nondeterministic chunk execution system, when a chunk

is squashed, its delay does not transmit. Hence, the total delay is

proportional to the squash rate and chunk length:

O(DELAYNondeterministic(N)) = O(L × SN ) = O(N).

A.2. Round­Robin Systems

In the round-robin scheme, an earlier chunk is never squashed

by a later chunk. Thus, chunk Ck gets squashed every time it has

a conflict with its predecessor chunks, namely C0, C1, ... Ck−1.

Using the formula above, Ck has a squash rate of Sk+1 = C × k.

Consider now the last processor in the group, PN−1. The second

chunk in the group (C1) gets squashed by conflicts with chunk C0,

and transitively causes PN−1 to delay with a probability of S2. The

third chunk in the group (C2) gets squashed by conflicts with C0

and C1, and transitively causes PN−1 to delay with a probability of

S3. Thus the overall delay of PN−1 is the sum of the above cases:

O(DELAYRoundRobin(N)) = O(L ×

N
X

k=2

Sk) = O(N2).

A.3. BulkCompactor Systems

In BulkCompactor, any chunk with a conflict is simply post-

poned to the next round and does not cause any transitive squash

delay. Consider the last chunk in the round, which is the one

getting postponed when it has a conflict with any other chunk in

the round. The probability of getting postponed is the probabil-

ity of having a conflict with any other chunk in the round, namely,

SN = C× (N −1). Like in the nondeterministic systems, the total

delay is proportional to the conflict rate of this chunk and chunk

length:

O(DELAYBulkCompactor(N)) = O(L × SN ) = O(N).

A.4. BulkCompactor­S Systems

In BulkCompactor-S with range M , a chunk suffers transitive

delays like in the round-robin scheme when it conflicts with an-

other chunk that is farther than M . For a given processor Pk, the

probability of such a conflict is Sk+1−M . The overall delay of

PN−1 is obtained by considering all such probabilities from pro-

cessor PM+1 to processor PN−1 and adding up all of the resulting

delays:

O(DELAYout range(N)) = O(L×

N
X

k=2+M

Sk−M ) = O((N−M)2).

In addition, conflicts with chunks inside the M range cause post-

ponements, and result in overall delays like in BulkCompactor,

which are:

O(DELAYin range(N)) = O(M).

Therefore, the overall squash delay is:

O(DELAYBulkCompactor−S(N)) = O((N − M)2 + M).

With small M , it is approximately O(N2).

If, due to conflict locality, all of the conflicts are between neigh-

bor chunks within the range M , then the overall squash delay

of both BulkCompactor and BulkCompactor-S is of the order of

O(M). However, the round-robin scheme does not scale as well

and is O(N × M).


