
Store-Load-Branch (SLB) Predictor:
A Compiler Assisted Branch Prediction for Data Dependent Branches

M. Umar Farooq Khubaib Lizy K. John

Department of Electrical and Computer Engineering
The University of Texas at Austin

ufarooq@utexas.edu, khubaib@ece.utexas.edu, ljohn@ece.utexas.edu

Abstract

Data-dependent branches constitute single biggest
source of remaining branch mispredictions. Typically,
data-dependent branches are associated with program
data structures, and follow store-load-branch execution se-
quence. A set of memory locations is written at an earlier
point in a program. Later, these locations are read, and
used for evaluating branch condition. Branch outcome de-
pends on data values stored in data structure, which, typi-
cally do not have repeatable pattern. Therefore, in addition
to history-based dynamic predictor, we need a different kind
of predictor for handling such branches.

This paper presents Store-Load-Branch (SLB) predic-
tor; a compiler-assisted dynamic branch prediction scheme
for data-dependent direct and indirect branches. For ev-
ery data-dependent branch, compiler identifies store in-
structions that modify the data structure associated with
the branch. Marked store instructions are dynamically
tracked, and stored values are used for computing branch
flags ahead of time. Branch flags are buffered, and later
used for making predictions. On average, compared to stan-
dalone TAGE predictor, combined TAGE+SLB predictor re-
duces branch MPKI by 21% and 51% for SPECINT and
EEMBC benchmark suites respectively.

1 Introduction

Most branch prediction techniques rely on branch his-
tory information for predicting future branches. Some use
short history [11] [21] [36], while others use longer his-
tory [16] [25] [30] [32]. History-based dynamic branch pre-
diction schemes have shown to reach high prediction accu-
racy for all except few hard-to-predict branches. Figures
1 and 2 show branch mispredictions per 1K instructions
for EEMBC and SPECint benchmark suites using several
history-based branch predictors. As can be seen from the
figures, several benchmarks have higher branch mispredic-
tions even when using long history branch predictor.

This work is based on the following observation: Hard-
to-predict data-dependent branches are commonly associ-
ated with program data structures such as arrays, linked
lists, trees etc., and follow store-load-branch execution se-
quence similar to one shown in listing 1. A set of memory
locations is written while building and updating the data
structure (line 2, listing 1). During data structure traver-
sal, these locations are read, and used for evaluating branch
condition (line 7, listing 1).

 0

 5

 10

 15

 20

 25

 30

 35

A
v
er

ag
e

ro
u
te

lo
o
k
u
p

te
x
t0

1

ro
ta

te
0
1

co
re

m
ar

k

o
sp

f

d
it

h
er

0
1

cm
y

ca
n
rd

r0
1

A
u
tC

o
rP

u
ls

e

cj
p
eg

m
at

ri
x
0
1

tb
lo

o
k
0
1

tt
sp

rk
0
1

d
jp

eg

fB
it

A
lS

te
p

a2
ti

m
e0

1

ii
rf

lt
0
1

b
it

m
n
p
0
1

ai
fi

rf
0
1

id
ct

rn
0
1

ca
ch

eb
0
1

V
it

er
b
Z

er
o
s

p
u
w

m
o
d
0
1

F
F

T
P

u
ls

e

p
n
tr

ch
0
1

b
as

ef
p
0
1

rs
p
ee

d
0
1

ai
if

ft
0
1

ai
ff

tr
0
1

p
k
tf

lo
w

5
1
2

h
p
g

C
o
n
v
E

n
2

M
is

p
re

d
ic

ti
o
n
s

p
er

 1
K

 i
n
st

ru
ct

io
n
s

52 50 53

Gshare

YAGS

BiMode

TAGE

Figure 1. MPKI for EEMBC benchmark suite

 0

 5

 10

 15

 20

 25

 30

A
v
er

ag
e

1
7
6
_
g
cc

1
7
5
_
v
p
r_

p
la

ce

1
7
5
_
v
p
r_

ro
u
te

4
7
3
_
as

ta
r

3
0
0
_
tw

o
lf

2
5
6
_
b
zi

p
2

1
9
7
_
p
ar

se
r

1
8
1
_
m

cf

1
8
6
_
cr

af
ty

1
6
4
_
g
zi

p

2
5
2
_
eo

n

2
5
4
_
g
ap

2
5
5
_
v
o
rt

ex

2
5
3
_
p
er

lb
m

k

M
is

p
re

d
ic

ti
o
n
s

p
er

 1
K

 i
n
st

ru
ct

io
n
s

Gshare

YAGS

BiMode

TAGE

Figure 2. MPKI for SPECint benchmark suite

This paper proposes Store-Load-Branch (SLB) predic-
tor, a compiler-assisted dynamic branch prediction scheme

1

Listing 1. Store-Load-Branch execution sequence
1 f o r (node=head ; node !=NULL; node=node→n e x t) {
2 node→key = ... ;
3 }
4 . .
5 node = head ;
6 whi le (node !=NULL) {
7 if(node→key <condition>) {
8 . . .
9 }

10 node=node→n e x t ;
11 }

for data-dependent branches using data value correlation.
Compiler identifies all program points where data structure
associated with a hard-to-predict data-dependent branch is
referenced and modified. At run-time, hardware tracks
marked store instructions that modify the data structure,
computes branch condition flags ahead of time using store
data values, and buffers them in a structure at store ad-
dresses. Later, during data structure traversal, pre-computed
flags are read using predicted load address, and used for pre-
dicting branch outcome.

Typically, instruction that loads data structure values
is quickly followed by branch instruction for evaluating
branch condition using loaded values. Therefore, actual
load address is usually not available before branch instruc-
tion gets fetched. Hence, we use predicted load address for
reading pre-computed branch flags. Addresses for simple
data structures such as arrays are easier to predict using
stride-based address predictor. Bekerman et al. proposed
load address predictor for irregular data structures such as
linked list and tree [4], which we adapted according to our
requirement.

We compared our design with the state-of-the-art TAGE
branch predictor [32]. Results show that, for several bench-
marks, top mispredicting branches in the TAGE predictor
are accurately predicted using SLB predictor. On aver-
age, compared to standalone TAGE predictor, combined
TAGE+SLB predictor reduces branch mispredictions per
1K instructions (MPKI) by 21% for SPECint [34] bench-
mark suite. Similarly, for EEMBC [12] benchmark suite,
MPKI is reduced by 51%.

This paper makes following contributions:

1. We investigate program patterns that manifest hard-to-
predict, data-dependent branches.

2. We propose SLB prediction scheme for data-
dependent branches, which predicts branch outcome
using pre-computed branch flags.

3. Our implementation of SLB requires adding couple
of hint instructions to ISA, and light-weight hardware
structures.

Rest of the paper is organized as follows: Section
2 presents motivating examples from real benchmarks.
Section 3 describes SLB prediction scheme. Simulation
methodology and results are presented in Sections 4 and
5 respectively. Section 6 discusses related work. Finally,
Section 7 concludes the paper.

Listing 2. LD-BR execution sequence (cjpeg)
1# d e f i n e DCTSIZE2 64
2# d e f i n e DIVIDE BY (a , b) a /= b
3
4void forward DCT (. . .)
5{
6/∗ work area f o r FDCT s u b r o u t i n e ∗ /
7DCTELEM workspace[DCTSIZE2];
8
9/∗ Perform t h e DCT ∗ /
10(*do dct) (workspace);
11
12r e g i s t e r DCTELEM temp , q v a l ;
13r e g i s t e r i n t i ;
14r e g i s t e r JCOEFPTR o u t p u t p t r = c o e f b l o c k s [b i] ;
15
16f o r (i = 0 ; i < DCTSIZE2 ; i ++) {
17q v a l = d i v i s o r s [i] ;
18temp = workspace[i];
19
20if (temp < 0) {
21temp = −temp ;
22temp += qval >>1;
23DIVIDE BY (temp , q v a l) ;
24temp = −temp ;
25} e l s e {
26temp += qval >>1;
27DIVIDE BY (temp , q v a l) ;
28}
29o u t p u t p t r [i] = (JCOEF) temp ;
30}
31}

2 Motivating Examples

2.1 Example 1: Data-Dependent Direct
Branches

We will use cjpeg benchmark from eembc-consumer
suite as a motivating example. The benchmark performs
standard JPEG compression on a given image. Input im-
age is broken into block of 8x8 pixels, and each block goes
through discrete cosine transform (DCT), quantization and
entropy coding steps. As shown in listing 2, do dct function
(line 10) populates an array, workspace, with DCT coeffi-
cients whose values range between -1024 to 1023. During
quantization, each DCT coefficient is read (line 18), com-
pared (line 20) to see if it is positive or negative, and quan-
tized accordingly. The branch ‘if (temp < 0)’ (line 20) is

2

Listing 3. ST execution sequence (cjpeg)
1 GLOBAL(void)
2 j p e g f d c t i s l o w (DCTELEM * data)
3 {
4 DCTELEM ∗ d a t a p t r ;
5 dataptr = data;
6
7 f o r (c t r = DCTSIZE−1; c t r >= 0 ; c t r −−) {
8 dataptr[DCTSIZE*0] = ... ;

9 dataptr[DCTSIZE*4] = ... ;
10 . . .
11 d a t a p t r ++;
12 }
13 }

an example of a hard-to-predict data-dependent branch. Ta-
ble 1 (row 3) shows branch characteristics and prediction
accuracy of this branch using short and long history pre-
dictors. It shows that using longer history TAGE predictor
does not improve prediction accuracy for this branch. In-
stead, if branch condition flags are computed and buffered
while populating array workspace in do dct function1 (see
listing 3, lines 8-9), a simple buffer lookup can yield perfect
branch prediction.

2.2 Example 2: Data-Dependent Indirect
Branches

Indirect branches are generally harder to predict than di-
rect branches as they may have multiple targets correspond-
ing to a single static indirect branch.

Listing 4 shows a ray tracer program, Eon, taken from
SPECint2000 suite. Each ray must be tested for intersec-
tion with all the objects in the scene. A scene consists
of several different types of objects with a common base
class mrSurface, as shown in the listing 4 (lines 1-8). While
reading the scene, these objects are stored into a 3D data-
structure called grid using its mrGrid::insert method (line
10). The grid is later traversed in the mrGrid::viewingHit
method (line 21), to see if the incoming ray hits any object
in the grid. During each iteration of the while loop, the next
object’s pointer (oPtr) is read from the grid (line 36), and
depending on the type of the object, corresponding view-
ingHit() method is invoked (line 41). Since the sequence
of objects stored in the grid does not have a repeatable pat-
tern, predicting target address for virtual function call (line
41) using history-based indirect branch predictor results in
lower prediction accuracy (see table 1, row 4). Instead, if
viewingHit() function addresses corresponding to different
types of objects in the grid are buffered while inserting ob-

1do dct is a pointer function, and is assigned as: fdct→do dct =
jpeg fdct islow;

jects in the grid (line 15 and 18), a buffer lookup during
grid traversal yields correct function address correspond-
ing to the read object. Note that, in addition to accurately
predicting target address for ‘oPtr→viewingHit()’ function
call (line 41), another hard-to-predict branch at line 37, ‘if
(oPtr)’, can also be accurately predicted since it also de-
pends on the same object read from the grid.

Listing 4. ST-LD-BR execution sequence (eon)
1c l a s s mrBox : p u b l i c mrSur face {
2}
3
4c l a s s mrSphere : p u b l i c mrSur face {
5}
6
7c l a s s m r S o l i d T e x t u r e : p u b l i c mrSur face {
8}
9
10void mrGrid::insert (double t ime1 , double t ime2 ,
11mrSurface *obj ptr) {
12/ / o t h e r p i e c e o f code
13i f (g r i d (i , j , k) == 0) {
14g r i d (i , j , k) = new m r S u r f a c e L i s t () ;
15((mrSurfaceList*)grid(i, j, k))→Add(obj ptr);
16}
17e l s e
18((mrSurfaceList*)grid(i, j, k))→Add(obj ptr);
19}
20
21ggBoolean mrGrid::viewingHit (
22c o n s t ggRay3& r ,
23double t ime ,
24double tmin ,
25double tmax ,
26mrViewingHi tRecord& VHR,
27g g M a t e r i a l R e c o r d& MR
28) c o n s t
29{
30double t C e l l M i n = 0 ;
31double tCe l lMax = 0 ;
32mrSurface *oPtr = 0;
33
34g g G r i d I t e r a t o r <mrSur face∗> i t e r a t o r (r , g r i d , tmin) ;
35
36whi le (iterator.Next (oPtr , tCe l lMin , tCe l lMax)) {
37if(oPtr) {
38tCel lMax = ggMin (tmax , tCe l lMax) ;
39t C e l l M i n = ggMax (tCe l lMin , tmin) ;
40
41i f (oPtr→viewingHit (r , t ime , tCe l lMin ,
42tCel lMax , VHR, MR))
43re turn ggTrue ;
44}
45}
46re turn g g F a l s e ;
47}

3

Benchmark Br. location Dynamic count Taken count Mispredict count Miss rate
Bi-Mode TAGE Bi-Mode TAGE

cjpeg line 20 576000 297216 (51.6%) 282816 274889 49.1% 47.7%
252.eon line 41 573306 573306 (100%) 251636 247841 43.8% 43.2%
252.eon line 37 884626 311320 (35.2%) 258697 120297 29.2% 13.5%

Table 1. Characteristics and prediction accuracy of hard-to-predict branches in motivating examples

3 Store-Load-Branch (SLB) Predictor

3.1 Overview

SLB predictor is a compiler-assisted dynamic branch
prediction technique specifically targeted at improving pre-
diction accuracy of data-dependent branches. Most data-
dependent branches are associated with program data struc-
tures such as array, linked list, tree etc. During traver-
sal, these branches operate on elements of data struc-
ture. Branch outcome depends on data values stored in the
structure, which, typically do not have repeatable patterns.
Therefore, instead of relying on branch history information,
we compute branch flags and use them for predicting branch
direction. Due to deep processor pipeline, data values (and
resulting branch flags) are often not available before branch
instruction gets fetch. Therefore, instead of using load val-
ues, we compute branch flags ahead of time using store val-
ues while updating the data structure.

3.2 Implementation Details

3.2.1 Compiler and Architecture Support

For a data-dependent branch, SLB scheme relies on
compiler to identify its store-load-branch (ST-LD-BR) se-
quence. Starting with branch instruction, compiler iden-
tifies load instruction(s) on which branch is dependent.
It then identifies store instruction(s) feeding load instruc-
tion(s). ST-LD-BR sequence for a branch is encoded and
passed down to hardware using special load hint (HLD) and
store hint (HST) instructions shown in figure 3.

HLD ld pc offsetstride br pc offset

31 25 24 21 20 9 8 0

31 25 24 21 20 9 8 0

HST st pc offsetunusedbr cond

Figure 3. load hint and store hint instruction format

Compiler inserts an HLD/HST instruction for every
static load/store associated with the branch. Lower 9 bits
encode load/store pc offset from HLD/HST instruction.
HLD bits 20:9 specify branch pc offset from HLD instruc-
tion. On seeing an HLD/HST instruction, hardware uses

pc offset values for computing absolute address for load
or store instruction associated with the branch instruction.
HLD bits 24:21 specify load stride value. HST bits 24:21
specify condition code for evaluating branch outcome at
store time.

3.2.2 Hardware Support

For identifying ST-LD-BR sequence at run time, hard-
ware provides three main tables, the store table, the load
table, and the branch table, as shown in figure 4.

Populating Load Table: On executing an HLD instruc-
tion, an entry is created in load table if it does not already
exist. ‘Tag’ field in load table is populated with lower 12
bits of load instruction address which is computed using ‘ld
pc offset’ in HLD instruction. ‘Br pc’ field is populated with
12 bits of branch instruction address which is computed us-
ing ‘br pc offset’ in HLD instruction. Rest of the fields in
load table are associated with load address predictor, and
are explained later.

Populating Store Table: Similar to load table, on exe-
cuting an HST instruction, an entry is created in store table.
‘Tag’ field is populated with lower 12 bits of store instruc-
tion address which is computed using ‘st pc offset’ in HST
instruction. ‘Br cond’ field is populated with 4-bit branch
condition code specified in HST instruction.

Populating Branch Table: ‘Tag’ field in branch table is
populated with lower 12 bits of branch instruction address
which is computed using ‘br pc offset’ in HLD instruction.

Once ST-LD-BR sequence is populated in the tables,
computing and consuming branch flags can begin.

Computing Branch Flags at Store Time: During code
generation, compiler inserts compare instruction prior to
store instruction for comparing store value with branch
condition. This compare instruction sets the flag register.
When store instruction executes and matches store table tag,
branch flag is computed using flag register value and corre-
sponding branch condition code in store table. Computed
branch flag is stored in T/NT prediction table at store ad-
dress. For more information on condition codes, flag reg-
ister and compare/branch instruction, see ARMv7-A archi-
tectural manual [2].

Consuming Branch Flags at Fetch Time: During data
structure traversal, when a data-dependent branch matches

4

Br flagTag

T/NT prediction

WB

Br cond Tag

store pc

store address

Br flag

Store Table

flag register

Stride

load pc

Br pc Last History

Link Table

Load Table

Fetch

Tag Link

Tag

Br pc

Tag Predicated load address

Branch Table

stride pred addr history pred addr

Load addr predictor [4]

Figure 4. SLB predictor block diagram

branch table tag, prediction table is looked up using pre-
dicted load address for making taken/not-taken prediction.
Predicted load address is generated using load instruction
which appears earlier in program order than branch instruc-
tion, therefore, load address prediction is not on critical path
of making branch prediction.

Generating Predicted Load Address: Since branch
prediction is made early in the pipeline, and data structure
traversal often occurs in tight loop, ‘predicted load address’
is used for accessing T/NT prediction table. Figure 4 (dot-
ted box) shows load address predictor, adapted from Beker-
man’s load address predictor [4]. Address prediction was
originally proposed for reducing load instruction latency.
In this paper, we propose an alternate use of load address
predictors: using predicted load addresses for predicting
data-dependent branches. For regular data structures (e.g.
arrays) that are traversed linearly, stride-based load address
predictor is sufficient [3][8]. Bekerman et al. proposed ad-
vance load address predictor for recursive data structures
(e.g. linked lists and trees) [4]. It uses a two-level scheme
for predicting the next load address. First level is a per-
static-load table, the load table, where each entry records
history of recent addresses seen by the associated load. The
history is then used to index a second level table, the link ta-
ble, which provides the predicted address. Typically, recur-
sive data structure addresses can be accurately predicated
by keeping last two addresses in the history. See [4] for
more details on load address predictor.

3.2.3 Support for Indirect Branches

As oppose to a direct branch, an indirect branch can
have multiple targets. Therefore, predicting an indirect
branch requires predicting branch target address as op-
pose to branch direction. Most indirect branch prediction
schemes maintain a history of recent targets taken by an in-
direct branch, and uses history to index into a ‘target cache’
for predicting the next target address [6] [9] [10] [17]. Simi-
lar to direct branches, data-dependent indirect branches typ-
ically do not follow history.

SLB indirect branch prediction scheme uses traditional
BTB to store multiple targets of an indirect branch at dif-
ferent BTB indices. Figure 5 shows the block diagram for
SLB indirect branch target address prediction (only neces-
sary changes from figure 4 are shown).

Populating Store Data Array: When a store instruction
executes and matches store table tag, lower 12 bits of store
data value is buffered in store data array at store address.

Predicting Branch Target Address: When an indirect
branch is fetch, it reads stored data value from store data
array using ‘predicted load address’, hash it with branch
pc, and index into branch target buffer (BTB) for predict-
ing branch target address. Different store data values cor-
respond to different targets of an indirect branch, which are
stored and subsequently accessed at different BTB indices.

Updating the BTB: If an indirect branch mispredicts,
either, because target address is seen for the first time, or it
is replaced by another branch target, BTB is updated. Same
index computed at BTB lookup time, is used for updating
the BTB.

0

1

BTB

Predicted target address

Branch Table

Br pc

Tag

Tag match &

indirect br

store data

Tag

Predicted load address

0

+

Fetch

Store Table

store hit?

Tag

 pc
store

WB

store addr

store data (12 bits)

Store Data
 Array

Figure 5. Support for indirect branches

3.2.4 Choosing Between TAGE and SLB Predictor

In a combined TAGE+SLB predictor configuration, not
every branch is predicted using SLB predictor. If a branch
address matches branch table tag in figure 4, prediction is

5

Load Address Predictor
Load Table 32 entries x (12+32+32+10+64) 4800 bits
Link Table 1k entries x (12+32) 45056 bits

SLB Conditional Branch Predictor
Branch Table 32 entries x (12+32) 1408 bits
Store Table 48 entries x (12+4) 768 bits

T/NT Prediction 1k entries x (12+1) 13312 bits
SLB Indirect Branch Predictor

St. Data Array 1k entries x (12+12) 24576 bits

Table 2. Implementation cost of SLB predictor

taken from SLB predictor, else prediction is taken from de-
fault TAGE predictor.

3.3 Implementation Cost

Load, store, and branch tables shown in figure 4 are all
per-static-instruction tables, while link table and T/NT pre-
diction table holds dynamic values. We have sized vari-
ous structures in SLB predictor based on number of SLB
branches observed in benchmarks. Table 4 shows number
of SLB branches identified in each benchmark along with
their associated load and store instructions. Table 2 shows
storage cost for implementing SLB predictor2. For reducing
implementation cost, link table, T/NT table, and store data
array in figures 4 and 5 can be made tagless. Total storage
required for implementing SLB conditional branch predic-
tor is 63.8 Kbits (39.8 Kbits, if tagless). An additional 24
Kbits (12 Kbits, if tagless) storage is needed for implement-
ing SLB indirect branch predictor.

4 Experimental Framework

4.1 Simulation Methodology

Results presented in this paper are collected from an
ARM performance simulator running benchmarks from
EEMBC, SPECint2000 suites [12][34]. In addition, top
mispredicting benchmark from SPECint2006 suite, 473.as-
tar, is also included in the experiment. Benchmarks are
compiled with ARM RealView compilation tool (RVCT
4.1) [28] with -O3 optimization flag. Our detailed cycle ac-
curate simulator models a superscalar out-of-order proces-
sor core with 4-wide, 15 stages integer pipeline, 32KB L1 I
and D cache, and 1MB L2 cache. Table 3 shows simulation
parameters for the front-end pipeline. We used Bi-Mode
branch predictor [21] as our baseline. We then compared
the baseline with 1) standalone TAGE predictor [32], and 2)
combined TAGE+SLB predictor. We obtain TAGE predic-
tor code from [31] and integrated with our timing simulator.

2We assume 32 bits for data and address, and 12 bits for tag.

Table 3. Front-end pipeline parameters

Instruction Fetch 4-wide, 5-deep;
BTB 2048-entry;
Return Address Pred 16-entry;

Conditional Branch Predictors
Bi-Mode (baseline) 48 Kbits, taken/not-taken/sel each 8k-entry;

13-bit global history register;
TAGE 64 Kbits, 14 components; 130 bit max hist;
SLB 68 Kbits, 32-entry load table;

32-entry branch table; 48-entry store table;
1K-entry T/NT table; 1K-entry link table;

Indirect Branch Predictors
Target Cache (baseline) 512-entry;
SLB 1k-entry store data array;

Listing 5. Identifying load/store instructions
1f o r e a c h dynamic i n s t r u c t i o n i , {
2i f (i i s s t o r e)
3s t o r e a r r a y . push (s t o r e p c , s t o r e a d d r e s s) ;
4e n d i f
5i f (i i s a hard−to−p r e d i c t b r a nc h)
6mark l o a d i n s t r u c t i o n (s) f e e d i n g i n t o
7t h e b r an ch (t h r o u g h r e g i s t e r ID match ing)
8e n d i f
9i f (i i s m a r k e d l o a d i n s t r u c t i o n)
10f o r e a c h (s t o r e a r r a y . r e a d s t o r e a d d r e s s ()
11== l o a d a d d r e s s) {
12mark t h e s t o r e i n s t r u c t i o n
13}
14e n d i f
15}

4.2 Identifying Relevant Load/Store In-
structions

SLB predictor relies on compiler to identify program
points where data structure associated with a data depen-
dent branch is referenced and modified. For experiments
in this paper, we have written a binary profiler for identify-
ing load/store instructions associated with a data-dependent
branch. Listing 5 shows pseudo code for our binary profiler.

5 Results and Analysis

5.1 Store to Branch Delay

SLB predictor uses store data for computing branch
flags, therefore, store data should be available before branch
instruction gets fetched. Table 4 shows cycle count be-
tween store data becoming available and branch flags com-
puted using store data getting consumed. Following two
program characteristics explain high cycle count between
store-branch instruction pair. Firstly, data structure update
and traversing typically happen in different program phases.
Secondly, even when update and traversal are adjacent to
each other, dynamic instructions created by update loop

6

 0

 5

 10

 15

 20

 25

 30

 35

A
v
er

ag
e

ro
u
te

lo
o
k
u
p

te
x
t0

1

ro
ta

te
0
1

co
re

m
ar

k

o
sp

f

d
it

h
er

0
1

cm
y

ca
n
rd

r0
1

A
u
tC

o
rP

u
ls

e

cj
p
eg

m
at

ri
x
0
1

tb
lo

o
k
0
1

tt
sp

rk
0
1

d
jp

eg

fB
it

A
lS

te
p

a2
ti

m
e0

1

ii
rf

lt
0
1

b
it

m
n
p
0
1

ai
fi

rf
0
1

id
ct

rn
0
1

ca
ch

eb
0
1

V
it

er
b
Z

er
o
s

p
u
w

m
o
d
0
1

F
F

T
P

u
ls

e

p
n
tr

ch
0
1

b
as

ef
p
0
1

rs
p
ee

d
0
1

ai
if

ft
0
1

ai
ff

tr
0
1

p
k
tf

lo
w

5
1
2

h
p
g

C
o
n
v
E

n
2

M
is

p
re

d
ic

ti
o
n
s

p
er

 1
K

 i
n
st

ru
ct

io
n
s

53

BiMode

TAGE

TAGE+SLB

Figure 6. MPKI (EEMBC)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

G
eo

m
ea

n

ro
u
te

lo
o
k
u
p

te
x
t0

1

ro
ta

te
0
1

co
re

m
ar

k

o
sp

f

d
it

h
er

0
1

cm
y

ca
n
rd

r0
1

A
u
tC

o
rP

u
ls

e

cj
p
eg

m
at

ri
x
0
1

tb
lo

o
k
0
1

tt
sp

rk
0
1

d
jp

eg

fB
it

A
lS

te
p

a2
ti

m
e0

1

ii
rf

lt
0
1

b
it

m
n
p
0
1

ai
fi

rf
0
1

id
ct

rn
0
1

ca
ch

eb
0
1

V
it

er
b
Z

er
o
s

p
u
w

m
o
d
0
1

F
F

T
P

u
ls

e

p
n
tr

ch
0
1

b
as

ef
p
0
1

rs
p
ee

d
0
1

ai
if

ft
0
1

ai
ff

tr
0
1

p
k
tf

lo
w

5
1
2

h
p
g

C
o
n
v
E

n
2

S
p
ee

d
U

p

2.32.6

TAGE

TAGE+SLB

Perfect

Figure 7. Speedup over baseline predictor. (EEMBC)

generates necessary cycles between the first store operation
of update loop and the first load-branch operation of traver-
sal loop.

5.2 Branch MPKI

Table 4 shows that only a handful of static branch in-
structions are predicted using SLB predictor. Yet, these
hard-to-predict, data-dependent branches are top contrib-
utors to overall misprediction (see table 7 and 8 for top
mispredicting branches in each benchmark). Figure 6 and
8 compares MPKI of baseline Bi-Mode predictor with 1)
standalone TAGE predictor, and 2) combined TAGE+SLB
predictor. As shown in these figures, MPKI remains high
for several benchmarks even when using state-of-the-art
TAGE predictor. On average, combined TAGE+SLB pre-
dictor reduces MPKI for EEMBC suite from 4.48 to 2.21,
a reduction of 51%. Similarly, for SPECint suite, MPKI is
reduced from 9.56 to 7.50, a reduction of 21%.

Table 7 and 8 show up to 10 top mispredicting branches
in benchmarks we have studied. In most cases, except core-
mark and text01, SLB predictor is able to accurately predict
top mispredicting branches of Bi-Mode and TAGE predic-
tor. Branches not handled by SLB predictor are marked as
’x’. In coremark, top mispredicting branch is an indirect

 0

 5

 10

 15

 20

 25

A
v
er

ag
e

1
7
6
_
g
cc

1
7
5
_
v
p
r_

p
la

ce

1
7
5
_
v
p
r_

ro
u
te

4
7
3
_
as

ta
r

3
0
0
_
tw

o
lf

2
5
6
_
b
zi

p
2

1
9
7
_
p
ar

se
r

1
8
1
_
m

cf

1
8
6
_
cr

af
ty

1
6
4
_
g
zi

p

2
5
2
_
eo

n

2
5
4
_
g
ap

2
5
5
_
v
o
rt

ex

2
5
3
_
p
er

lb
m

k

M
is

p
re

d
ic

ti
o
n
s

p
er

 1
K

 i
n
st

ru
ct

io
n
s

BiMode

TAGE

TAGE+SLB

Figure 8. MPKI (SPECint)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

G
eo

m
ea

n

1
7
6
_
g
cc

1
7
5
_
v
p
r_

p
la

ce

1
7
5
_
v
p
r_

ro
u
te

4
7
3
_
as

ta
r

3
0
0
_
tw

o
lf

2
5
6
_
b
zi

p
2

1
9
7
_
p
ar

se
r

1
8
1
_
m

cf

1
8
6
_
cr

af
ty

1
6
4
_
g
zi

p

2
5
2
_
eo

n

2
5
4
_
g
ap

2
5
5
_
v
o
rt

ex

2
5
3
_
p
er

lb
m

k

S
p
ee

d
U

p

TAGE

TAGE+SLB

Perfect

Figure 9. Speedup over baseline predictor. (SPECint)

branch resulting from a switch-case statement inside a for
loop. In some case statements, control variable on which
the indirect branch is dependent is also updated. This up-
date is not available before next iteration of the for loop.
As a result, SLB predictor reads stale value from store data
array, therefore, mispredicts branch target address.

There are several benchmarks where combined
TAGE+SLB predictor has same MPKI as that of the
standalone TAGE predictor. This is because we have
excluded these benchmarks from SLB analysis due
to one of the following three reasons: 1) Benchmark
MPKI is already low (e.g. EEMBC benchmarks on
the left), 2) Mispredicting branches do not follow ST-
LD-BR execution sequence (e.g. EEMBC/dither01,
SPECint/164.gzip, SPECint/256.bzip2), and 3) Identifying
ST-LD-BR sequence without compiler analysis is hard (e.g.
SPECint/176.gcc, SPECint/197.parser).

5.3 SLB Performance Impact

Figure 7 and 9 compares performance improve-
ment when using standalone TAGE predictor, combined
TAGE+SLB predictor, and perfect predictor. For EEMBC
suite, combined TAGE+SLB predictor doubled the speedup
of standalone TAGE predictor over the baseline Bi-Mode
predictor. A perfect predictor shows a potential of another

7

cacheb cjpeg canrdr cmy core- rotate text route 252. 300. 473. 175.vpr 175.vpr
01 01 -mark 01 01 lookup eon twolf astar route place

Num of SLB BR 1 1 3 2 11 2 4 1 8 9 17 3 7
Num of SLB LD 1 1 3 1 10 2 5 1 4 9 9 2 4
Num of SLB ST 4 2 21 3 9 2 11 3 24 14 12 9 36

ST-BR Delay (cycles) 1241 774 71 3626 16K 785 1004 53 799 556 256 534 1445K

Table 4. Number of SLB-enabled branches, and associated load/store instructions

7% performance improvement over the baseline. Similarly,
for SPECint suite, combined TAGE+SLB predictor shows
performance improvement of 11% over baseline Bi-Mode
predictor. This is almost double the speedup of standalone
TAGE predictor over the same baseline. Perfect predictor
shows a potential for 29% performance improvement.

5.4 SLB Area and Power Analysis

Area and power overhead of SLB scheme was estimated
using McPAT [22], a framework for modeling processor
area and power. Parameters of a generic McPAT RISC core
(Alpha21364) were adjusted to match simulated ARM core.
TAGE and SLB predictor components were added for esti-
mating their area and power overhead. Table 5 shows area
and power overhead of SLB predictor for a 32 nm process
technology node.

Table 5. SLB area and power overhead (at 32 nm)

Metric Core Fetch Unit TAGE SLB SLB
overhead (%)

Area (mm2) 13.99 1.64 0.10 0.07 0.5
Dy. Power (W) 8.61 1.13 0.013 0.015 0.17
St. Power (W) 6.66 0.74 0.023 0.028 0.42

5.5 SLB Timing Analysis

Figure 10 shows critical timing paths in fetch unit. First
two paths are through TAGE and SLB branch direction pre-
dictor, while the third path is through BTB for branch target
address computation. Table 6 shows access time for vari-
ous structures in fetch unit for a 32 nm technology process
using CACTI [19].

Table 6. Access time for branch predictor structures

BTB TAGE SLB Tables MUX
Component Branch T/NT

Access Time (ns) 0.458 0.22 0.203 0.187 0.041

• Access Time for TAGE Predictor (ns)
= TAGE component delay + 4*(MUX delay)
= 0.22 + 4*(0.041)
= 0.384

• Access Time for SLB Predictor (ns)
= Branch table delay + T/NT table delay
= 0.203 + 0.187
= 0.39

Tag Br target address

BTB

Predicted target address

Base

C1 C2 C3 C4

Tag Br flagTag Predicated load address

PC

Final prediction

TAGE or SLB ?

TAGE

Branch Table

SLB T/NT Table

Figure 10. Comparing critical timing paths in fetch unit

• Access Time for BTB (ns)
= BTB delay
= 0.458

5.5.1 Critical Timing Path in Fetch Unit

Computing next instruction address after a branch in-
struction involves a) determining if branch is taken or not
taken, i.e branch direction prediction, and b) if branch is
indeed taken, computing branch target address. Therefore,
critical path for fetch unit is the maximum delay between
branch direction prediction and branch target address pre-
diction, as shown below:

• Critical Timing Path in Fetch Unit (ns)
= Max{Br. dir. pred. delay, Br. target pred. delay}
= Max{Max{TAGE, SLB}+mux delay, BTB delay}
= Max{Max{0.384, 0.39} + 0.041, 0.458}
= Max{0.431, 0.458}
= 0.458

6 Related Work

Branch prediction research can be categorized into three
classes: static branch prediction, dynamic branch predic-
tion, and compiler-assisted dynamic branch prediction.

Static Branch Predictors: In static branch prediction,
branch direction is predicted before program is executed,

8

Benchmarks Br. Id Br. Func Dy. Count Mispred Rate MPKI
Bi-Mode TAGE SLB Bi-Mode TAGE SLB

cache01 1 t run test 10k 46.2% 46.2% 0 2.65 2.65 0

cjpeg

1 forward DCT 576k 48% 48% 0 3.68 3.66 0
2 encode mcu huff 567k 12% 9% x 0.91 0.67 x
3 emit bits 207k 29% 14% x 0.81 0.39 x
4 encode mcu huff 90k 40% 38% x 0.48 0.45 x
5 encode mcu huff 90k 40% 32% x 0.48 0.38 x

canrdr01

1 t run test 2k 32% 32% 0 2.62 2.62 0.03
2 t run test 2k 27% 22% 0 2.26 1.86 0.02
3 t run test 2k 20% 24% 0 1.61 1.99 0.02
4 t run test 0.5k 28% 18% x 0.60 0.38 x
5 t run test 0.3k 31% 20% x 0.36 0.24 x
6 t run test 0.3k 20% 24% x 0.21 0.24 x
7 t run test 0.3k 19% 13% x 0.19 0.14 x

cmy 1 t run test 768k 24% 22% 0 8.81 8.29 0
2 t run test 464k 11% 10% 0 2.45 2.33 0.14

coremark

1 core state transit 457k 52% 41% 32% 7.21 5.64 4.39
2 core state transit 535k 12% 0 0 1.92 0 0
3 core state transit 121k 23% 0 0 0.85 0 0
4 core state transit 156k 16% 0 0 0.77 0 0
5 core state transit 174k 13% 0 0 0.69 0 0
6 core bench list 694k 2% 0 x 0.61 0 x
7 core state transit 48k 34% 0 0 0.49 0 0
8 core list mergeso 31k 42% 22% x 0.40 0.21 x
9 core state transit 560k 2% 0 x 0.33 0 x
10 core state transit 154k 6% 4% 0 0.28 0.22 0

rotate01
1 rotateImage 648k 18% 17% 0 16.77 15.50 0
2 rotateImage 726k 3% 2% x 3.05 2.72 x
3 rotateImage 34k 31% 18% 0 1.47 0.89 0

text01

1 parseRule 222k 19% 17% x 4.57 4.15 x
2 parseRule 45k 59% 57% 20% 2.87 2.74 0.99
3 parseRule 93k 23% 12% x 2.30 1.28 x
4 strcmp 128k 12% 7% x 1.75 1.07 x
5 strncpy 45k 32% 22% x 1.58 1.08 x
6 strncpy 46k 26% 15% x 1.30 0.78 x
7 parseRule 26k 44% 41% x 1.24 1.17 x
8 parseRule 42k 24% 15% x 1.09 0.67 x
9 parseRule 47k 20% 16% 2% 1.01 0.80 0.14
10 parseRule 24k 26% 19% 0 0.70 0.52 0

routelookup 1 pat search 177k 41% 29% 0 40.57 28.50 0
2 pat search 177k 12% 1% x 12.47 1.78 x

Table 7. Top mispredicting branches and their prediction accuracy for different predictors (EEMBC)

9

Benchmarks Br. Id Br. Func Dy. Count Mispred Rate MPKI
Bi-Mode TAGE SLB Bi-Mode TAGE SLB

252.eon

1 ggSpectrumSet 20m 7% 6% 0 1.46 1.33 0
2 ggGridIterator 1789k 37% 35% x 0.68 0.65 x
3 mrMaterialshad 1232k 51% 51% 3% 0.65 0.65 0.04
4 ggGridIterator 1537k 38% 36% x 0.60 0.58 x
5 mrGridviewingH 573k 59% 57% 1% 0.34 0.33 0
6 mrGridviewingH 1113k 28% 2% x 0.32 0.02 x
7 mrGridshadowHi 634k 48% 46% 0 0.31 0.30 0
8 mrMaterialboun 580k 49% 48% x 0.29 0.28 x
9 mrSurfaceListv 830k 34% 33% x 0.29 0.28 x
10 mrGridviewingH 950k 26% 20% 0 0.25 0.20 0

300.twolf

1 new dbox a 3144k 31% 24% 0 1.46 1.12 0
2 new dbox 2473k 29% 18% 0 1.10 0.69 0.01
3 new dbox a 3175k 23% 15% 0 1.08 0.74 0
4 new dbox a 3004k 20% 13% 0 0.91 0.58 0
5 XPICK INT 780k 62% 1% x 0.73 0.01 x
6 new dbox a 1140k 29% 21% 0 0.50 0.36 0
7 new dbox 1084k 26% 7% x 0.42 0.12 x
8 term newpos 928k 25% 18% 4% 0.35 0.25 0.06
9 add penal 645k 30% 16% x 0.29 0.16 x
10 term newpos a 657k 30% 17% 0 0.29 0.16 0

473.astar

1 makebound2 424k 34% 34% 3% 1.20 1.21 0.11
2 makebound2 399k 28% 24% 0 0.93 0.81 0
3 makebound2 424k 25% 22% 12% 0.90 0.79 0.43
4 makebound2 393k 26% 25% 10% 0.88 0.83 0.33
5 makebound2 430k 21% 17% 3% 0.75 0.64 0.10
6 makebound2 400k 22% 20% 6% 0.74 0.67 0.21
7 makebound2 370k 22% 21% 3% 0.69 0.65 0.09
8 makebound2 232k 35% 33% 0 0.68 0.64 0
9 makebound2 390k 18% 16% 13% 0.59 0.53 0.44
10 makebound2 213k 32% 30% 0 0.57 0.54 0

175.vpr route

1 route net 8365k 32% 36% 4% 5.19 5.84 0.75
2 route net 11m 14% 13% 0 3.26 2.91 0.13
3 node to heap 4105k 39% 33% x 3.05 2.63 x
4 route net 1247k 80% 3% x 1.91 0.08 x
5 node to heap 2982k 31% 28% x 1.80 1.62 x
6 route net 5084k 16% 17% 0 1.64 1.66 0.07
7 route net 939k 40% 41% x 0.73 0.75 x
8 route net 8880k 3% 3% x 0.64 0.62 x

175.vpr place

1 get non update 4088k 43% 38% 5% 1.76 1.59 0.22
2 try swap 3007k 43% 39% 2% 1.29 1.18 0.08
3 get non update 2321k 44% 40% 10% 1.02 0.94 0.23
4 get non update 2320k 44% 40% 10% 1.02 0.94 0.24
5 try swap 2381k 41% 36% 0 0.99 0.87 0
6 try swap 3446k 23% 16% 0 0.79 0.55 0
7 update bb 1814k 39% 33% x 0.72 0.60 x
8 try swap 3082k 20% 16% x 0.64 0.50 x
9 get bb from s 2801k 21% 18% x 0.60 0.50 x
10 get bb from s 2784k 21% 17% x 0.59 0.49 x

Table 8. Top mispredicting branches and their prediction accuracy for different predictors (SPECint)

10

and same prediction is used for all dynamic instances of
that branch. Profiling is used in [13]. Simple heuristics
such as predict all backward branches taken, and predict all
forward branch not-taken were proposed in [33]. Machine
learning was using in [5] to infer branch behavior of new
program using existing programs.

Dynamic Branch Predictors: Dynamic branch predic-
tion techniques propose hardware that attempts to learn
branch behavior at run-time. While most dynamic schemes
use branch taken/not-taken history information for training
the branch predictor, few schemes have explored adding
other information to the prediction process.

(i) Short History Predictors: James. E. Smith first pre-
sented bimodal branch prediction scheme [33]. Re-
peatedly taken branches will be predicted to be taken,
and repeatedly not-taken branches will be predicted
as not-taken. Two-level adaptive branch prediction
scheme was presented in [37]. It is based on the ob-
servation that a branch can have multiple repetitive
patterns. The two-level scheme differentiates among
these patterns by keeping a record of direction taken
by last m instances of each branch, and using it to in-
dex into a table of k-bit counter. Combining branch
predictor was proposed in [24] which combines and
takes advantage of different predictors types.

(ii) Anti-aliasing Predictors: Several schemes proposed
different indexing mechanism for reducing branch
aliasing effect. gselect predictor concatenates branch
history and branch address, and uses it to index into
counter table [27]. gshare predictor uses exclusive
OR of branch address with branch history to index
into counter table [24]. gskewed predictor uses mul-
tiple counter tables indexed by different hash func-
tions [26]. Bi-Mode [21] and YAGS [11] predictors
partitioned counter table into two halves − taken and
not-taken. It reduces negative interference by keep-
ing branches biased towards ‘taken’ direction in the
taken array, and those biased towards ‘not-taken’ di-
rection in the not-taken array. Agree predictor [35]
updates prediction counter based on whether or not
branch bias matches branch outcome, irrespective of
branch direction.

(iii) Long History Predictors: Recent research has shown
that prediction accuracy can further be improved by
utilizing longer branch history, and using different his-
tory length for predicting different branches. Using
perceptrons instead of two-bit saturating counter was
proposed in [16]. It is based on the observation that
not all branches in history are important. O-GEHL
[29], PPM-like [25] and TAGE [32] use multiple pre-
dictor tables, each indexed by an increasing length of
branch history. In O-GEHL, final prediction is com-
puted by summing predictions read from each predic-

tor table. In PPM-like and TAGE final prediction is
provided by the longest table that matches the tag.

(iv) Non-History Based Dynamic Branch Predictors:
Available Register Value Information (ARVI) predic-
tor [7] hashes register values with branch pc to index
into prediction table. Branch prediction through Value
prediction was proposed in [15]. Address-Branch
Correlation (ABC) predictor [14] observed that val-
ues inside a data structure tend to be stable, therefore,
branch outcome can be correlated simply with address
of data structure instead of value inside data structure.
We argue that if values inside data structure are stable,
multiple iterations over data structure should gener-
ate same branch outcome every time, and should be
predictable with a history-based predictor. Correlat-
ing load address with branch outcome is also used in
[1], however, unlike [14], they update predictor in case
there are stores to those addresses.

Compiler-Assisted Dynamic Branch Predictors:
Compiler-assisted dynamic branch prediction combines
strengths of static and dynamic approaches − the low
overhead of compiler-time analysis with the effectiveness
of dynamic prediction. Wish branch was proposed in [18].
It combines strengths of conditional branches and predica-
tion. Compiler generate code for predicated execution, but
leaves conditional branches intact. At run-time, if branch
turns out to be an easy-to-predict, branch prediction is
used, else predicated code is executed. In [23], compiler
defines a prediction function for each branch, and inserts
instructions for computing prediction function.

7 Conclusion and Future Work

Data-dependent branches are single biggest source of re-
maining branch mispredictions. These branches are com-
monly associated with program data structures such as ar-
rays, linked lists, trees etc., and follow store-load-branch
execution sequence. A set of memory locations is writ-
ten while building and updating the data structure. During
data structure traversal, these locations are read, and used
for evaluating branch condition. Branch outcome depends
on data values stored in the data structure, which, typically
do not have repeatable pattern. Therefore, in addition to
history-based predictors, we need a different kind of pre-
dictor for data-dependent branches.

Taking advantage of store-load-branch execution se-
quence, we propose a compiler-assisted Store-Load-Branch
(SLB) predictor. For every data-dependent branch, com-
piler identifies all store instructions that modify the data
structure associated with the branch. These store instruc-
tions are dynamically tracked, and stored values are used for
computing branch flags ahead of time. These branch flags

11

are temporarily buffered in a hardware structure, and later
used for making predictions. Section 5.2 shows that com-
pared to standalone TAGE predictor, a hybrid TAGE+SLB
predictor reduces branch MPKI by 21% for SPECint bench-
mark suite, and by 51% for EEMBC benchmark suite. Esti-
mated power and area overhead of SLB predictor is 0.28%
and 0.5% respectively (section 5.4), with no timing over-
head (section 5.5).

Finally, we are working on a compiler implementa-
tion for identifying relevant load/store instructions using
LLVM’s Data Structure Analysis (DSA) [20]. In contrast
to other alias analysis that operates on individual memory
references, DSA operates at the level of entire instance of
data structure, and provides context-sensitive mod/ref anal-
ysis.

References

[1] M. Al-Otoom, E. Forbes, and E. Rotenberg. EXACT: Explicit
Dynamic-Branch Prediction with Active Updates. In Proceedings
of the 7th ACM international conference on Computing frontiers,
CF ’10, pages 165–176, New York, NY, USA, 2010. ACM.

[2] ARM. ARM Architecture Reference Manual. infocenter.
arm.com.

[3] J. L. Baer and T. F. Chen. An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty. In Proceedings of the
1991 ACM/IEEE conference on Supercomputing, Supercomputing
’91, pages 176–186, New York, NY, USA, 1991. ACM.

[4] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rap-
poport, A. Yoaz, and U. Weiser. Correlated Load-Address Predic-
tors. In Proceedings of the 26th annual international symposium on
Computer architecture, ISCA ’99, pages 54–63, Washington, DC,
USA, 1999. IEEE Computer Society.

[5] B. Calder, D. Grunwald, D. Lindsay, J. Martin, M. Mozer, and
B. Zorn. Corpus-based Static Branch Prediction. In Proceedings
of the ACM SIGPLAN 1995 conference on Programming language
design and implementation, PLDI ’95, pages 79–92, New York, NY,
USA, 1995. ACM.

[6] P. Chang, E. Hao, and Y. N. Patt. Target Prediction for Indirect
Jumps. In ISCA-24, pages 274–283, 1997.

[7] L. Chen, S. Dropsho, and D. H. Albonesi. Dynamic Data Depen-
dence Tracking and its Application to Branch Prediction. In HPCA-
9, page 65, 2003.

[8] T. F. Chen and J. L. Baer. Effective Hardware-based Data Prefetch-
ing for High-Performance Processors. IEEE Transactions on Com-
puters, 44:609–623, 1995.

[9] K. Driesen and U. Hölzle. Accurate Indirect Branch Prediction. In
ISCA-25, pages 167–178, 1998.

[10] K. Driesen and U. Hölzle. The Cascaded Predictor: Economical and
Adaptive Branch Target Prediction. In MICRO-31, pages 249–258,
1998.

[11] A. N. Eden and T. Mudge. The YAGS Branch Prediction Scheme. In
Proceedings of the 31st annual ACM/IEEE international symposium
on Microarchitecture, MICRO 31, pages 69–77, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press.

[12] EEMBC. The Embedded Microprocessor Benchmark Consortium.
http://www.eembc.org.

[13] J. A. Fisher and S. M. Freudenberger. Predicting Conditional
Branch Directions From Previous Runs of a Program. SIGPLAN
Not., 27(9):85–95, Sept. 1992.

[14] H. Gao, Y. Ma, M. Dimitrov, and H. Zhou. Address-Branch Correla-
tion: A Novel Locality for Long-Latency Hard-to-Predict Branches.
In HPCA, pages 74–85. IEEE Computer Society, 2008.

[15] J. Gonzalez and A. Gonzalez. Control-flow Speculation through
Value Prediction. IEEE Transactions on Computers, 50(12):1362–
1376, 2001.

[16] D. A. Jiménez and C. Lin. Dynamic Branch Prediction with Per-
ceptrons. In HPCA-7, page 197, 2001.

[17] J. Kalamatianos and D. R. Kaeli. Predicting Indirect Branches via
Data Compression. In MICRO-31, pages 272–281, 1998.

[18] H. Kim, O. Mutlu, J. Stark, and Y. Patt. Wish Branches: Combin-
ing Conditional Branching and Predication for Adaptive Predicated
Execution. In MICRO-38, pages 12 pp.–54, Nov. 2005.

[19] H. Labs. CACTI 5.3. http://quid.hpl.hp.com:9081/
cacti/.

[20] C. A. Lattner. Macroscopic Data Structure Analysis and Optimiza-
tion. PhD thesis, Champaign, IL, USA, 2005. AAI3182303.

[21] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge. The Bi-Mode Branch
Predictor. In MICRO-30, pages 4–13, 1997.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An Integrated Power, Area, and Timing Mod-
eling Framework for Multicore and Manycore Architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 42, pages 469–480, New York,
NY, USA, 2009. ACM.

[23] S. Mahlke and B. Natarajan. Compiler Synthesized Dynamic
Branch Prediction. In Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture, MICRO 29, pages
153–164, Washington, DC, USA, 1996. IEEE Computer Society.

[24] S. McFarling. Combining Branch Predictors. Technical Report TN-
36, Digital Western Research Laboratory, 1993.

[25] P. Michaud. A PPM-like, Tag-based Branch Predictor. In In Pro-
ceedings of the First Workshop on Championship Branch Prediction
(in conjunction with MICRO-37, 2004.

[26] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Ca-
pacity Aliasing in Conditional Branch Predictors. In Proceedings of
the 24th annual international symposium on Computer architecture,
ISCA ’97, pages 292–303, New York, NY, USA, 1997. ACM.

[27] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the Accuracy of Dy-
namic Branch Prediction using Branch Correlation. In Proceedings
of the fifth international conference on Architectural support for
programming languages and operating systems, ASPLOS-V, pages
76–84, New York, NY, USA, 1992. ACM.

[28] RVCT. Realview Compilation Tools. http://www.keil.com/
arm/realview.asp.

[29] A. Seznec. Genesis of the O-GEHL Branch Predictor. http://
www.jilp.org/vol7, 2005.

[30] A. Seznec. The L-TAGE Branch Predictor. http://www.jilp.
org/vol9, 2007.

[31] A. Seznec and P. Michaud. Championship Branch Prediction. ftp:
//ftp.irisa.fr/local/caps/TAGE.tar.gz.

[32] A. Seznec and P. Michaud. A Case for (Partially)-Tagged Geomet-
ric History Length Predictors. http://www.jilp.org/vol7,
2006.

[33] J. E. Smith. A Study of Branch Prediction Strategies. In Proceed-
ings of the 8th annual symposium on Computer Architecture, ISCA
’81, pages 135–148, Los Alamitos, CA, USA, 1981. IEEE Com-
puter Society Press.

[34] SPEC. Standard Performance Evaluation Corporation. http://
www.spec.org.

[35] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The Agree
Predictor: A Mechanism for Reducing Negative Branch History In-
terference. In Proceedings of the 24th annual international sym-
posium on Computer architecture, ISCA ’97, pages 284–291, New
York, NY, USA, 1997. ACM.

[36] T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Training Branch Pre-
diction. In MICRO-24, pages 51–61, 1991.

[37] T.-Y. Yeh and Y. N. Patt. Alternative Implementations of Two-Level
Adaptive Branch Prediction. In IN PROCEEDINGS OF THE 19TH
ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER AR-
CHITECTURE, pages 124–134, 1992.

12

