
Suppressing the Oblivious RAM Timing Channel
While Making Information Leakage and Program Efficiency Trade-offs

Christopher W. Fletcher†∗, Ling Ren†, Xiangyao Yu†, Marten Van Dijk‡, Omer Khan‡, Srinivas Devadas†

† Massachusetts Institute of Technology − {cwfletch, renling, yxy, devadas}@mit.edu
‡ University of Connecticut − {vandijk, omer.khan}@engr.uconn.edu

Abstract
Oblivious RAM (ORAM) is an established cryptographic

technique to hide a program’s address pattern to an un-
trusted storage system. More recently, ORAM schemes have
been proposed to replace conventional memory controllers
in secure processor settings to protect against information
leakage in external memory and the processor I/O bus.

A serious problem in current secure processor ORAM
proposals is that they don’t obfuscate when ORAM accesses
are made, or do so in a very conservative manner. Since
secure processors make ORAM accesses on last-level cache
misses, ORAM access timing strongly correlates to program
access pattern (e.g., locality). This brings ORAM’s purpose
in secure processors into question.

This paper makes two contributions. First, we show how
a secure processor can bound ORAM timing channel leak-
age to a user-controllable leakage limit. The secure proces-
sor is allowed to dynamically optimize ORAM access rate
for power/performance, subject to the constraint that the
leakage limit is not violated. Second, we show how chang-
ing the leakage limit impacts program efficiency.

We present a dynamic scheme that leaks at most 32 bits
through the ORAM timing channel and introduces only 20%
performance overhead and 12% power overhead relative to
a baseline ORAM that has no timing channel protection. By
reducing leakage to 16 bits, our scheme degrades in per-
formance by 5% but gains in power efficiency by 3%. We
show that a static (zero leakage) scheme imposes a 34%
power overhead for equivalent performance (or a 30% per-
formance overhead for equivalent power) relative to our dy-
namic scheme.

1 Introduction
As cloud computing becomes increasingly popular, pri-

vacy of users’ sensitive data is a huge concern in compu-
tation outsourcing. In an ideal setting, users would like to
“throw their encrypted data over the wall” to a cloud ser-
vice that can perform arbitrary computation on that data,
yet learn no secret information from within that data.

One candidate solution for secure cloud computing is to

∗Christopher Fletcher was supported by a DoD National Defense Sci-
ence and Engineering Graduate Fellowship. This research was partially
supported by the DARPA Clean-slate design of Resilient, Adaptive, Secure
Hosts (CRASH) program under contract N66001-10-2-4089. The opinions
in this paper don’t necessarily represent DARPA or official US policy.

use tamper-resistant/secure processors. In this setting, the
user sends his/her encrypted data to trusted hardware, in-
side which the data is decrypted and computed upon. After
the computation finishes, the final results are encrypted and
sent back to the user. Many such hardware platforms have
been proposed, including Intel’s TXT [11] (which is based
on the TPM [34, 1]), eXecute Only Memory (XOM) [18],
Aegis [33] and Ascend [7, 39].

While it is assumed that adversaries cannot look inside
tamper-resistant hardware, secure processors can still leak
information through side channels. Preventing information
leakage over the memory I/O channel, for example, is a hard
problem. Even if all data stored in external memory is en-
crypted to hide data values, the memory access pattern (i.e.,
read/write/address tuples) can still leak information [41].

Completely preventing access pattern leakage requires
the use of Oblivious RAM (ORAM). ORAMs were first
proposed by Goldreich and Ostrovsky [9], and there has
been significant follow-up work that has resulted in more
efficient, cryptographically-secure ORAM schemes [24, 23,
5, 4, 10, 16, 37, 29, 32]. Conceptually, ORAM works
by maintaining all of memory in encrypted and shuffled
form. On each access, memory is read and then reshuf-
fled. Thus, any memory access pattern is computationally
indistinguishable from any other access pattern of the same
length.

Recently, ORAM has been embraced in secure proces-
sor designs [7, 26, 19]. These proposals replace a con-
ventional DRAM controller with a functionally-equivalent
ORAM controller that makes ORAM requests on last-level
cache (LLC) misses. This direction is promising, and al-
lows large secure computations (whose working sets do not
fit in on-chip cache) to be performed on the cloud with rea-
sonable overheads.

1.1 Problems

1.1.1. When ORAM is accessed leaks privacy. Consider
the malicious program that runs in an ORAM-enabled se-
cure processor in Figure 1 (a). In this example, at every
time step t that an ORAM access can be made, the mali-
cious program is able to leak the tth secret bit by coercing a
Last Level Cache (LLC) miss if the tth secret bit equals 1.
Even when the program is not intentionally malicious, how-
ever, the nature of on-chip processor caches make ORAM
access rate correlate to access pattern locality. See Fig-
ure 1 (b): clearly, when main memory is accessed in large

P1: Malicious program

 for (i = 0; i < |D|; i++)
 if (D[i]) wait
 else Mem[4*i]++

P2: SPEC benchmark
 if (function1(D)) stridestep=1

 if (function2(D)) arithmetic

 if (functionN(D)) stridestep=4

ORAM

Pj

Di $

Request
times

Secure processor

(a) (b)

1 0 1 1 0

1 0 0 0 1

Correlations

O
R

A
M

 r
at

e

TimeTime

D1:

D2: O
R

A
M

 r
at

e

Leakage: T bits in T time Leakage: ??? bits in T time

Figure 1: ORAM leakage over the timing channel. D1 and
D2 are two sets of secret data and equal 101102 and 100012,
respectively. Cache line size is assumed to be 4 words.

programs is program/data-dependent. Abstractly, we can
think of a large program as many phases (function1(D),
function2(D), etc.) where the access pattern of each phase
is data-dependent to some extent. A serious security issue
is that we don’t know how much leakage is possible with
these programs. If we place security as a first-order con-
straint, we have to assume the worst case (e.g., Figure 1 (a))
is possible.

An important point is that monitoring ORAM rate as-
sumes a similarly-capable adversary relative to prior works,
i.e., one who can monitor a secure processor’s access pat-
tern can usually monitor its timing. We describe a mecha-
nism to measure a recent ORAM scheme’s timing in § 3.2.
1.1.2. Timing protection comes at high overheads. A re-
cent secure processor, called Ascend [7], prevents leakage
over the ORAM timing channel by forcing ORAM to be
accessed at a single, strictly periodic rate. For Ascend, this
rate is chosen offline, i.e., before the program runs. While
running, if the program needs ORAM before the next peri-
odic access, the program must wait — hurting performance.
If no request is needed when one is forcibly made, an in-
distinguishable dummy1 access is made instead — wasting
energy.

While secure, this approach incurs high overheads. We
will show in § 9.3 that forcing a static ORAM rate incurs
an over 50% performance/power overhead across a range
of SPEC programs. These overheads are in addition to the
∼ 2× overhead to use ORAM without timing protection
[26]. This is not surprising considering that main memory
pressure changes dramatically across programs and across
inputs to the same program [12]. For example, in Figure 2

1A dummy ORAM access is an access made to a fixed program address.
By ORAM’s security definition, this access looks indistinguishable from a
real access.

0 20 40 60 80 100103

104

105
perlbench

diffmail splitmail

0 20 40 60 80 100101
102
103
104
105 astar

rivers biglakes

Time (in 100s of millions of instructions)

Av
er

ag
e

in
st

ru
ct

io
ns

 b
et

w
ee

n
2

OR
AM

 a
cc

es
se

s

Figure 2: ORAM access rate for perlbench and astar across
different inputs, using a 1 MB LLC.

(top) perlbench accesses ORAM 80 times more frequently
on one input relative to another. In Figure 2 (bottom), for
one input to astar a single rate is sufficient whereas the rate
for the second input changes dramatically as the program
runs.

2 Our Solution: Leakage Aware Processors
Given that complete timing channel protection is prohib-

itely expensive (§ 1.1.2) yet no protection has unknown se-
curity implications (§ 1.1.1), this paper makes two key con-
tributions. First, we develop an architecture that, instead
of blocking information leakage completely, limits leakage
to a small and controllable constant. We denote this con-
stant L (where L ≥ 0), for bit leakage Limit. Second, we
develop a framework whereby increasing/decreasing L, a
secure processor can make more/less user data-dependent
performance/power optimizations. In short, we propose
mechanisms that allow a secure processor to trade-off infor-
mation leakage and program efficiency in a provably secure
and disciplined way.

L can be interpreted in several ways based on the litera-
ture. One definition that we will use in this paper is akin to
deterministic channels [31]: “given an L-bit leakage limit,
an adversary with perfect monitoring capabilities can learn
no more than L bits of the user’s input data with probability
1, over the course of the program’s execution.” Crucially,
this definition makes no assumption about which program
is run on the user’s data. It also makes no assumption about
which L bits in the user’s input are leaked.

Importantly, L should be compared to the size of the en-
crypted program input provided by the user – typically a
few Kilobytes – and not the size of the secret symmetric
key (or session key) used to encrypt the data. As with other
secure processor proposals (e.g., Ascend or Aegis [33]), we
assume all data that leaves the processor is encrypted with a
session key that is not accessible to the program (§ 5). This
makes the ORAM access rate (for any program and input
data) independent of the session key.

To simplify the presentation, we assume a given proces-
sor is manufactured with a fixed L. We discuss (along with
other bit leakage subtleties) how users can set L per-session
in § 10.

$Pipe

Secure processor

Epoch
Timer

Leakage
limit (L)

$Pipe
Rate

Learner
Discretizer$

(LLC)

Core(s)

Candidate rates (R)

ORAM Controller
(owns session key)

Adversary sees:
leakage-enforced ORAM access times

Epoch 0 Epoch 1

High
Power

Low IPC

$ Hierarchy

Epoch 2

Le
ar

ner

co
m

pute
s:

Figure 3: Our proposal: novel hardware mechanisms
(shaded grey) to limit and enforce leakage while optimiz-
ing for performance/power.

2.1 Calculating & Bounding Bit Leakage

At any time while the program is running, a bound on
the number of bits the program has leaked can be calculated
by counting the number of possible observable traces (re-
ferred to as traces) the program could have generated up
to that point ([31] calls these equivalence classes). In our
setting, an observable trace is a timing trace that indicates
when each ORAM access has been made. Using informa-
tion theory, the worst-case bit leakage is then given by the
logarithm base 2 of the number of traces [31, 15]. For the
rest of the paper, lg implies log2.

Example 2.1. Consider the malicious program (P1) from
Figure 1 (a). We will use the following notation: an ORAM
rate of r cycles means the next ORAM access happens r
cycles after the last access completes. Then, the trace for
D1 can be read as “slow, fast, slow, slow, fast.” In general,
given T time to run, P1 can generate 2T distinct traces of
this type (i.e., a distinct trace for each distinct input). Using
information theory, the worst-case bit leakage of P1 after T
time is lg 2T = T bits. This matches Figure 1 (a), which
shows P1 leaking T bits in T time. On the other hand, ac-
cessing ORAM at an offline-selected, periodic rate (§ 1.1.2)
yields exactly 1 distinct trace, leaking lg 1 = 0 bits through
the ORAM timing channel as expected.

As architects, we can use this leakage measure in several
ways. First, we can track the number of traces using hard-
ware mechanisms, and (for example) shut down the chip if
leakage exceeds L before the program terminates. Second
(our focus in this paper), we can re-engineer the proces-
sor such that the leakage approaches L asymptotically over
time.

2.2 An Overview of Our Proposal

At the implementation level, our proposal can be viewed
as two parts. First, using ideas similar to those presented
in [2] and [20], we split program execution into coarse-grain
time epochs. Second, we architect the secure processor with
learning mechanisms that choose a new ORAM rate out of a
set of allowed rates only at the end of each epoch. Figure 3
illustrates the idea. We denote the list of epochs, or the
epoch schedule (§ 6), as E; the list of allowed ORAM rates
is denoted R. Each epoch is denoted by its length, in cycles.

2.2.1. Leakage Dependent Factors. Importantly, |R| and
|E| impact leakage growth. Specifically, if we have |E|
epochs, and allow the secure processor to choose one of
the |R| ORAM rates for each epoch, the number of pos-
sible rate combinations is |R||E|, resulting in a leakage of
|E| ∗ lg |R| bits. For perspective, § 9.3 shows that our dy-
namic scheme, setting |R| = 4 and |E| = 16, achieves >
30% speedup/power efficiency over static schemes (§ 1.1.2).
Plugging in, this configuration can leak≤ 16∗lg 4 = 32 bits
over the ORAM timing channel.
2.2.2. Leakage Independent Factors. A key observation
is that the values in R, and which new rate is chosen at the
end of each epoch, does not impact leakage growth.

To choose a good ORAM rate in R for each epoch, we
architect a learning module (§ 7) inside the secure processor
called a rate learner (see Figure 3). Rate learners are cir-
cuits that, while the program is running, determine how well
(in terms of power/performance) the system would perform
if it ran using different ORAM rates. In Figure 3, the rate
learner is able to decide that in Epoch 0, the program is ac-
cessing ORAM too frequently (i.e., we are wasting energy).
Correspondingly, we slow down the rate in Epoch 1.

3 Background: Path ORAM
To provide background we summarize Path ORAM [32],

a recent Oblivious-RAM (ORAM) scheme that has been
built into secure processors. For more details, see [26, 19].
We will assume Path ORAM for the rest of the paper, but
point out that our dynamic scheme can be applied to other
ORAM protocols.

Path ORAM consists of an on-chip ORAM controller
and untrusted external memory (we assume DRAM). The
ORAM controller exposes a cache line request/response in-
terface to the processor like an on-chip DRAM controller.
Invisible to the rest of the processor, the ORAM controller
manages external memory as a binary tree data structure.
Each tree node (a bucket) stores up to a fixed number (set
at program start time) of blocks and is stored at a fixed lo-
cation in DRAM. In our setting, each block is a cache line.
Each bucket is encrypted with probabilistic encryption2 and
is padded with dummy blocks to the maximum/fixed bucket
size.

At any time, each block stored in the ORAM is mapped
(at random) to one of the leaves in the ORAM tree. This
mapping is maintained in a key-value memory that is inter-
nal to the ORAM controller. Path ORAM’s invariant is: If
block d is mapped to leaf l, then d is stored on the path from
the root of the ORAM tree to leaf l (i.e., in one of a sequence
of buckets in external memory).

3.1 ORAM Accesses

The ORAM controller is invoked on LLC misses and
evictions. We describe the operation to service a miss here.
On an LLC miss, the ORAM controller reads (+ decrypts)

2With probabilistic encryption, the same data encrypted multiple times
will yield a completely different looking ciphertext each time.

and writes-back (+ re-encrypts) the path from the root of
the ORAM tree to the leaf that the block is mapped to at
the beginning of the access. After the path is read, the re-
quested block is forwarded to the LLC and remapped to a
new random leaf. Block remapping is the critical security
step and ensures that future ORAM accesses to the same
block occur to randomly/independently chosen paths. Note
that with Path ORAM, we can make an indistinguishable
dummy ORAM access (§ 1.1.2) by reading/writing a path
to a random leaf.

Overheads. [26] demonstrates how the ORAM con-
troller can be built with < 200 KB of on-chip storage. We
assume similar parameters (specified in § 9.1.2). To give
readers a sense upfront, we note that each ORAM access
returns a single cache line, transfers 24.2 KB over the chip
pins and has a 1488 cycle latency. This bit movement is due
to ORAM reading/writing tree paths on each access.

3.2 Measuring Path ORAM Timing

If the adversary and secure processor share main mem-
ory (e.g., a DRAM DIMM), a straightforward way to mea-
sure ORAM access frequency is for the adversary to mea-
sure its own average DRAM access latency (e.g., use perfor-
mance counters to measure resource contention [20, 35]).

Even in the absence of data-dependent contention and
counters, however, the adversary can accurately determine
Path ORAM access frequency by repeatedly performing
reads to a single DRAM address. Since all ORAM accesses
write an ORAM tree path to main memory using probabilis-
tic encryption (§ 3), each ORAM access causes bits to flip
in main memory. Further, every Path ORAM tree path con-
tains the root bucket and all buckets are stored at fixed loca-
tions. Thus, by performing two reads to the root bucket at
times t and t′ (yielding data d and d′), the adversary learns
if ≥ 1 ORAM access has been made by recording whether
d = d′.

This attack assumes that the secure processor’s main
memory can be remotely read (i.e, through software) by an
adversary, which we believe is a realistic assumption. Much
focus is given to protecting physical DRAM pages in [11]
(i.e., in the presence of DMA-capable devices, GPUs, etc.
that share DRAM DIMMS). This indicates that completely
isolating DRAM from malicious software is a challenging
problem in itself. For example, bugs in these protection
mechanisms have resulted in malicious code performing
DMAs on privileged memory [38]. Of course, an insider
that is in physical proximity can measure access times more
precisely using probes.

4 Threat Model
Our goal is to ensure data privacy while a program is

running on that data in a server-controlled (i.e., remote) se-
cure processor. The secure processor (hardware) is assumed
to be trusted. The server that controls the processor is as-
sumed to be curious and malicious. That is, the server wants
to learn as much as possible about the data and will interfere
with computation if it can learn more about the user’s data

by doing so.

4.1 Secure Processor Assumptions

The secure processor runs a potentially malicious/buggy
program, provided by the server or the user, on the user’s
data. The secure processor is allowed to share exter-
nal resources (e.g., the front-side bus, DRAM DIMMs)
with other processors/peripherals. As with prior ORAM
work [7, 26, 19], we assume that the secure processor runs a
program for one user at a time. Thus adversaries that mon-
itor shared on-chip resources (e.g., pipeline [6], cache [35])
are out of our scope. We give insight as to how to extend
our scheme to cache timing attacks in § 10.

ORAM ensures that all data sent on/off chip is automat-
ically encrypted with a symmetric session key. We assume
that this key cannot be accessed directly by the program.
For timing protection, we additionally require that all en-
cryption routines are fixed latency.

4.2 Monitoring The Secure Processor

The server can monitor the processor’s I/O pins, or any
external state modified through use of the I/O pins (i.e., us-
ing techniques from § 3.2). I/O pins contain information
about (a) when the program is loaded onto the processor
and eventually terminates, (b) the addresses sent to the main
memory and data read from/written to main memory, and
(c) when each memory access is made. For this paper, we
will focus on (a) and (c): we wish to quantify ORAM timing
channel leakage and how a program’s termination time im-
pacts that leakage. We remark that ORAM, without timing
protection, was designed to handle (b).

4.3 Malicious Server Behavior

We allow the server to interact with the secure processor
in ways not intended to learn more about the user’s data.
In particular, we let the server send wrong programs to the
secure processor and perform replay attacks (i.e., run pro-
grams on the user’s data multiple times). Our L-bit leakage
scheme (without protection) is susceptible to replay attacks:
if the server can learn L bits per program execution, N re-
plays will allow the server to learn L∗N bits. We introduce
schemes to prevent this in § 8. Finally, we do not add mech-
anisms to detect when/if an adversary tampers with the con-
tents of the DRAM (e.g., flips bits) that stores the ORAM
tree (§ 3). This issue is addressed for Path ORAM in [25].

4.4 Attacks Not Prevented

We only limit leakage over the digital I/O pins and any
resulting modified memory. We do not protect against phys-
ical/hardware attacks (e.g., fault, invasive, EM, RF). An
important difference between these and the ORAM tim-
ing channel is that the ORAM channel can be monitored
through software, whereas physical and invasive attacks
require special equipment. For this same reason, physi-
cal/hardware attacks are not covered by Intel TXT [11].

5 User-Server Protocols
We now describe an example protocol for how a user

would interact with a server. We refer to the program run
on the user’s data as P , which can be public or private. Be-
fore we begin, we must introduce the notion of a maximum
program runtime, denoted Tmax. Tmax is needed to calcu-
late leakage only, and should be set such that all programs
can run in < Tmax cycles (e.g., we use Tmax = 262 cycles
at 1 GHz, or ≈ 150 years). The protocol is then given by:

1. The user and secure processor negotiate a symmetric
session key K. This can be accomplished using a con-
ventional public-key infrastructure.

2. The user sends encryptK(D) to the server, which is
forwarded to the processor. encryptK(D) means “D
encrypted under K using symmetric, probabilistic en-
cryption”. Finally, the server sends P and leakage pa-
rameters (e.g., R; see § 2.2) to the processor.

3. Program execution (§ 6-7). The processor decrypts
encryptK(D), initializes ORAM with P and D (as
in [7, 26]) and runs for up to Tmax cycles. During
this time, the processor can dynamically change the
ORAM rate based on E and R (§ 2.2).

4. When the program terminates (i.e., before Tmax), the
processor encrypts the final program return value(s)
encryptK(P (D)) and sends this result back to the user.

6 Epoch Schedules and Leakage Goals
A zero-leakage secure processor architecture must, to

fully obfuscate the true termination time of the program, run
every program to Tmax cycles. On the contrary, the protocol
in § 5 has the key property that results are sent back to the
user as soon as the program terminates instead of waiting
for Tmax. We believe this early termination property, that a
program’s observable runtime reflects its actual runtime, is
a requirement in any proposal that claims to be efficient and
of practical usage.

The negative side effect of early termination is that it can
leak bits about the private user input just like the ORAM
timing channel. If we consider termination time alone, pro-
gram execution can yield Tmax timing traces (i.e., one for
each termination time). Further applying the theoretic argu-
ment from § 2.1, at most lg Tmax bits about the inputs can
leak through the termination time per execution.

In practice, due to the logarithmic dependence on Tmax,
termination time leakage is small. As we discussed in § 5,
lg Tmax = 62 should work for all programs, which is very
small if the user’s input is at least few Kilobytes. Further,
we can reduce this leakage through discretizing runtime.
(E.g., if we “round up” the termination time to the next 230
cycles, the leakage is reduced to lg 262−30 = 32 bits.)

6.1 O(lg Tmax) Epochs→ O(lg Tmax) Leakage
Since programs leak ≤ lg Tmax bits through early ter-

mination (§ 6), we will restrict our schemes to leak at most
that order (O(lg Tmax)) of bits through the ORAM access
timing channel. To obtain this leakage, we split program

runtime into at most lg Tmax epochs.
Recall the setup from § 2.2: First, we denote the list of

epoch lengths (the epoch schedule) as E and the set of al-
lowed ORAM access rates at each epoch as R. Second,
while running a program on the user’s secret data during
a given epoch, the secure processor is restricted to use a
single ORAM access rate. Given Tmax, lg Tmax epochs
and R, there are |R|lg Tmax distinct epoch schedules. An
upper bound3 on the number of timing traces (including
ORAM timing and early termination) is then given by the
number of epoch schedules times the number of termina-
tion times — i.e., |R|lg Tmax ∗ Tmax. Thus, bit leakage
is lg Tmax ∗ lg |R| + lg Tmax and our O(lg Tmax) leakage
bound holds. We note that in practice, |R| is a small con-
stant (e.g., |R| = 4 is sufficient; see § 9.5).

6.2 Epoch Doubling

We now discuss how to set the cycle length for each of
the (at most) lg Tmax epochs. For the rest of the paper,
we assume a simple family of epoch schedules where each
epoch is≥ 2× the length of the previous epoch. We refer to
the special case where each epoch is twice the length of the
previous epoch as epoch doubling (whose inspiration came
from the slow-doubling scheme in [2]).

Example 6.1. Suppose we run the epoch doubling scheme
and set the first epoch’s length to 230 (≈ 1 billion) cycles.
If |R| = 4 and we run for up to Tmax = 262 cycles, we ex-
pend lg 262−30 = 32 epochs. Thus, the number of possible
traces is 432, resulting in a bit leakage of≤ lg 432 = 64 bits
(counting ORAM timing only) and ≤ 64 + lg Tmax = 126
bits with early termination. For perspective, the number of
possible traces with no ORAM timing protection is given by∑Tmax

t=1

∑bt/OLATc
i=1

(
t−i(OLAT−1)

i

)
, where OLAT is the cycle

latency per ORAM access.4 For secure processors, OLAT
will be in the thousands of cycles (§ 3.1), making the result-
ing leakage astronomical.

Clearly, epoch doubling and similar schemes with larger
epochs satisfy the O(lg Tmax) leakage requirement. They
also ensure that programs with very different runtimes will
still see epoch transitions throughout their execution. This
is important for efficiency — if any epoch schedule “runs
out of epochs” long before the program terminates, a later
phase change in the program may result in a suboptimal and
uncorrectable ORAM rate.

For the rest of the paper, we assume the first epoch’s
length is 230 cycles (as in Example 6.1). The initial epoch
should be large enough so that the rate learner has enough

3An interesting subtlety is that the exact number of traces depends on
the cycle length of each epoch (i.e., the values in E). During the ith epoch,
each termination time contributes |R|i−1 traces to the number of possi-
ble traces, whereas our bound assumes each termination time contributes
|R|lg Tmax traces. We will use this bound to simplify leakage calculations.
We note that the choice of rates in R does not impact leakage.

4Conceptually this is, for every termination time t, the number of t-
bit bit strings such that any 1 bit must be followed by at least OLAT − 1
repeated 0 bits.

time to determine the next rate (§ 7). A larger initial epoch
also means less epochs total, reducing leakage. The initial
epoch should be small enough to not dominate total run-
time; for the workloads we evaluate in § 9, 230 represents a
small fraction of execution time. During the initial epoch,
the ORAM rate can be set to any (e.g., a random) value.

7 Rate Learners
We now explain how rate learners select new ORAM

rates in R at the end of each epoch, and how these learn-
ers are built into hardware.

7.1 Performance Counters and Rate Prediction

Our rate learner is made up of three components: per-
formance counters, a mechanism that uses the performance
counters to predict the next ORAM rate and a discretization
circuit that maps the prediction to a value in R.

7.1.1. Performance counters. The performance counters
(called AccessCount, ORAMCycles and Waste) are added
at the ORAM controller and track LLC-ORAM queue state
over time. At each epoch transition, all counters are reset.
AccessCount tracks the number of real (i.e., not dummy;
see § 1.1.2) ORAM requests made during the current epoch.
ORAMCycles is the number of cycles each real ORAM re-
quest is outstanding, summed over all real ORAM accesses.
Waste represents the number of cycles that ORAM has real
work to do, but is either (a) waiting because of the current
rate or (b) performing a dummy access because of the cur-
rent rate. Conceptually, Waste counts the number of cycles
lost due to the current epoch’s ORAM rate.

We show what data the performance counters track in
Figure 4. Req 1 illustrates an overset rate, meaning that
we are waiting too long to make the next access. Recall our
notation from § 2.1: an ORAM rate of r cycles means the
next ORAM access happens r cycles after the last access
completes. If the rate is overset, Waste can increase per-
access by ≤ r. In our evaluation, ORAM latency is 1488
and rates in R range from 256 to 32768 cycles (§ 9.2). Thus,
oversetting the rate can lead to a much higher performance
overhead than ORAM itself.

Req 2 illustrates an underset rate, meaning that ORAM
is being accessed too quickly. When the rate is underset, the
processor generates LLC misses when a dummy ORAM re-
quest is outstanding (forcing the processor to wait until that
dummy access completes to serve the miss). This case is a
problem for memory bound workloads where performance
is most sensitive to the rate (§ 9.2).

Req 3 illustrates how multiple outstanding LLC misses
are accounted for. In that case, a system without timing pro-
tection should perform ORAM accesses back to back until
all requests are serviced. To model this behavior, we add
the rate’s cycle value to Waste.

7.1.2. Rate prediction. At each epoch transition, a ded-
icated hardware block computes the following averaging

Wait Real Access

Time increasing
Req Resp

Rate ORAM latency WasteORAMCycles Not tracked

Req Resp
1 2

Wait Dummy Access Wait Real Access Wait

Req
3

1 2 3

Figure 4: Example timing trace that illustrates what the per-
formance counters (§ 7.1.1) track. Req/Resp stand for re-
quest/response.

statistic based on the performance counters:

NewIntRaw =
EpochCycles−Waste− ORAMCycles

AccessCount
(1)

where EpochCycles denotes the number of cycles in the last
epoch. Conceptually, NewIntRaw represents the offered
load rate on the ORAM. Note that since ORAMCycles is
the sum of access latencies, this algorithm does not assume
that ORAM has a fixed access latency.
7.1.3. Rate discretization. Once the rate predic-
tor calculates NewIntRaw, that value is mapped to
whichever element in R is closest: i.e., NewInt =
argminr∈R(|NewIntRaw − r|). As we show in § 9.5, |R|
can be small (4 to 16); therefore this operation can be im-
plemented as a sequential loop in hardware.

7.2 Hardware Cost and Optimizations

As described, the learner costs an adder and a divider.
Since this operation occurs only once per epoch (where
epochs are typically billions of cycles each, see § 6.2),
it is reasonable to use a processor’s divide unit to imple-
ment the division operation. To make the rate matcher self-
contained, however, we round AccessCount up to the next
power of two (including the case when AccessCount is al-
ready a power of 2) and implement the division operation
using 1-bit shift registers (see Algorithm 1). This simplifi-
cation may underset the rate by as much as a factor of two
(due to rounding), which we discuss further in § 7.3.

Algorithm 1 Rate predictor hardware implementation.

NewIntRaw = EpochCycles−Waste− ORAMCycles
while AccessCount > 0 do

NewIntRaw = NewIntRaw� 1 {Right shift by 1}
AccessCount = AccessCount� 1

end while

In the worst case, this operation may take as many cycles
as the bitwidth of AccessCount — which we can tolerate by
starting the epoch update operation at least that many cycles
before the epoch transition.

7.3 Limitations of Prediction Algorithm

Our rate learner’s key benefit is its simplicity and its self-
containment (i.e., it only listens to the LLC-ORAM con-
troller queue and computes its result internally). That said,
the predictor (Equation 1) has two limitations. First, it is

oblivious to access rate variance (e.g., it may overset the rate
for programs with bursty behavior). The shifter implemen-
tation in § 7.2 helps to compensate for this effect. Second,
it is oblivious to how program performance is impacted by
ORAM rate.

We experimented with a more sophisticated predictor
that simultaneously predicts an upper bound on perfor-
mance overhead for each candidate rate in R and sets the
rate to the point where performance overhead increases
“sharply.” What constitutes “sharply” is controlled by a pa-
rameter, which gives a way to trade-off performance/power
(e.g., if the performance loss of a slower rate is small, we
should choose the slower rate to save power).

As we have mentioned, however, an important result in
§ 9.5 is that |R| can be small (recall: |R| = 4 is sufficient).
This makes choosing rates a course-grain enough operation
that the simpler predictor (§ 7.1) chooses similar rates as the
more sophisticated predictor. We therefore omit the more
sophisticated algorithm for space.

8 Preventing Replay Attacks
Clearly, the set of timing traces (denoted T) is a function

of the program P , the user’s data D, and the leakage pa-
rameters (e.g., E and R). If the server is able run multiple
programs, data or epoch parameters, it may be able to create
T1, T2, etc (i.e., one set of traces per experiment) such that
log
∏

i |Ti| > L — breaking security (§ 2.1).
One way to prevent these attacks is to ensure that once

the user submits his/her data, it can only be ‘run once.’ This
can be done if the secure processor “forgets” the session key
K after the user terminates the session. In that case, Step 1
in the user-server protocol (§ 5) expands to the following:

1. The user generates a random symetric key, call this K ′,
encrypts K ′ with the processor’s public key, and sends
the resulting ciphtertext of K ′ to the processor.

2. The processor decrypts K ′ using its secret key, gen-
erates a random symetric key K (where |K| = |K ′|)
and sends encryptK′(K) back to the user. The proces-
sor stores K in a dedicated on-chip register.

The user can now continue the protocol described in § 5 us-
ing K. When the user terminates the session, the processor
resets the register containing K.

The key point here is that once the user terminates the
session, K is forgotten and encryptK(D) becomes compu-
tationally un-decryptable by any party except for the user.
Thus, encryptK(D) cannot be replayed using a new pro-
gram/epoch schedule/etc. The downside is a restriction to
the usage model – the user’s computation can only proceed
on a single processor per session.

8.1 Broken Replay Attack Prevention Schemes
Preventing replay attacks must be done carefully, and we

now discuss a subtly broken scheme. A common mecha-
nism to prevent replay attacks is to make the execution en-
vironment and its inputs fixed and deterministic. That is,
the user can use an HMAC to bind (the hash of a fixed pro-
gram P , input data D, E, R) together. If the server runs

that tuple multiple times (with the corresponding program
P) in a system with a fixed starting state (e.g., using [11]),
the program will terminate in the same amount of time and
the rate learners (§ 7) will choose the same rates each time.
Thus, the observable timing trace should not change from
run to run, which (in theory) defeats the replay attack.

This type of scheme is insecure because of non-
deterministic timing on the main memory bus (e.g., FSB)
and DRAM DIMM. Different factors—from bus contention
with other honest parties to an adversary performing a de-
nial of service attack—will cause main memory latency to
vary. Depending on main memory timing, the secure pro-
cessor will behave differently, causing IPC/power to vary,
which causes the rate learner to [potentially] choose differ-
ent rates. Thus, the tuple described above (even with a de-
terministic architecture) does not yield deterministic timing
traces and the replay attack succeeds. This problem is exac-
erbated as the secure processor microarchitecture becomes
more advanced. For example, depending on variations in
main memory latency, an out-of-order pipeline may be able
to launch none or many non-blocking requests.

9 Evaluation
We now evaluate our proposal’s efficiency overheads and

information leakage.

9.1 Methodology

9.1.1. Simulator and benchmarks. We model secure pro-
cessors with a cycle-level simulator based on the public
domain SESC [27] simulator that uses the MIPS ISA. We
evaluate a range (from memory-bound to compute-bound)
of SPEC-int benchmarks running reference inputs. Each
benchmark is fast-forwarded 1-20 billion instructions to get
out of initialization code and then run for an additional 200-
250 billion instructions. Our goal is to show that even as
epochs occur at sparser intervals (§ 6.2), our efficiency im-
provements still hold (§ 9.4).
9.1.2. Timing model. All experiments assume the microar-
chitecture and parameters given in Table 1. We also experi-
mented with 512 KB - 4 MB LLC capacities (as this impacts
ORAM pressure). Each size made our dynamic scheme im-
pact a different set of benchmarks (e.g., omnetpp utilized
more ORAM rates with a 4 MB LLC but h264ref utilized
more with a 1 MB LLC). We show the 1 MB result only
as it was representative. We note that despite the simple
core model in Table 1, our simulator models a non-blocking
write buffer which can generate multiple, concurrent out-
standing LLC misses (like Req 3 in § 7.1.1).

In the table, ‘DRAM cycle’ corresponds to the SDR fre-
quency needed to rate match DRAM (i.e., 2 ∗ 667 MHz =
1.334 GHz). We model main memory latency for insecure
systems (base dram in § 9.1.6) with a flat 40 cycles. For
ORAM configurations, we assume a 4 GB capacity Path
ORAM (§ 3) with a 1 GB working set. Additional ORAM
parameters (using notation from [26]) are 3 levels of recur-
sion, Z = 3 for all ORAMs, and 32 Byte blocks for re-
cursive ORAMs. As in [26], we simulate our ORAM on

Table 1: Timing model; processor clock = 1 GHz.

Core
Core model in-order, single-issue
Pipeline stages per Arith/Mult/Div instr 1/4/12
Pipeline stages per FP Arith/Mult/Div instr 2/4/10
Fetch Buffer 256 B, 1-way
[Non-blocking] write buffer 8 entries

On-Chip Memory
L1 I/D Cache 32 KB, 4-way
L1 I/D Cache hit+miss latencies 1+0/2+1
L1 eviction buffers 8 entries
L1 I/D, L2 cache output bus width 256/64/256 bits
Unified/Inclusive L2 (LLC) Cache 1 MB, 16-way
L2 hit+miss latencies 10+4
Cache/ORAM block size 64 Bytes

Memory system
DRAM frequency/channels 667 MHz (DDR)/2
Off-chip pin bandwidth 16 Bytes/DRAM cycle

DDR3 SDRAM using DRAMSim2 [28]. Our ORAM pa-
rameters, coupled with our CPU/DRAM clock and DRAM
channel count (Table 1), gives us an ORAM latency of 1488
cycles per cache line. Further, each ORAM access transfers
24.2 KB (12.1 KB for each of the path read/write) over the
chip pins.
9.1.3. Power model. To estimate the relationship between
the energy of on-chip components (e.g., pipeline, cache)
and ORAM, we account for energy-per-component in Ta-
ble 2. We account for energy from the pipeline to the on-
chip DRAM/ORAM controller and do not model external
DRAM power consumption. To calculate Power (in Watts):
we count all accesses made to each component, multiply
each count with its energy coefficient, sum all products and
divide by cycle count.

We account for dynamic power only except for parasitic
leakage in the L1/L2 caches (which we believe will domi-
nate other sources of parasitic leakage). To measure DRAM
controller energy, we use the peak power reported in [3]
to calculate energy-per-cycle (.076 nJ). We then multiply
this energy-per-cycle by the number of DRAM cycles that
it takes to transfer a cache line’s worth of 16 Byte chunks
(our pin bandwidth; see Table 1) over the chip pins.
9.1.4. Path ORAM power consumption. During each Path
ORAM access (§ 3.1), we count the energy consumption of
the ORAM controller and on-chip DRAM controller (that
would serve as a backend for the ORAM controller). For
every 16 Bytes (the AES-128 chunk size) read along the
accessed path, the ORAM controller performs AES decryp-
tion and writes the plaintext data to an SRAM internal to
the ORAM controller ([26] calls this memory the stash).
For every 16 Bytes written, the operation is reversed: the
stash is read and the chunk is re-encrypted.

See Table 2 for AES/stash energy coefficients. AES
energy is taken from [21], scaled down to our clock fre-
quency and up to a 1 AES block/DRAM cycle through-
put. Stash read/write energy is approximated as the energy
to read/write a 128 KB SRAM modeled with CACTI [30].
We assume the ORAM’s DRAM controller constantly con-

Table 2: Processor energy model; technology = 45 nm.

Component Energy (nJ) Source
Dynamic energy

ALU/FPU (per instruction) .0148 [8] (FM add)
Reg File Int/FP (per instruction) .0032/.0048 [8]
Fetch buffer (256 bits) .0003 [30] (CACTI)
L1 I Cache hit/refill (1 cache line) .162 “ ”
L1 D Cache hit (64 bits) .041 “ ”
L1 D Cache refill (1 cache line) .320 “ ”
L2 Cache hit/refill (1 cache line) .810 [17]
DRAM Controller (1 cache line) .303 § 9.1.3

Parasitic leakage
L1 I Cache (per cycle) .018 [30]
L1 D Cache (per cycle) .019 [30]
L2 Cache (per hit/refill) .767 [17]

On-chip ORAM Controller
AES (per 16 Byte chunk, 170 Gbps) .416 [21]
Stash (per 16 Byte rd/wr) .134 [30]
Total (1 cache line) 984 § 9.1.4

sumes the peak power from [3] during the entire ORAM
access (1488 processor cycles, or 1984 DRAM cycles).

Thus, the energy-per-ORAM-access is given as the
chunk count × (AES energy + Stash energy) + Cycle la-
tency × DRAM controller cycle energy. Each ORAM ac-
cess moves 24.2 KB of data (§ 9.1.2) which is 2 ∗ 758 16-
Byte chunks. Given the power coefficients from Table 2,
energy-per-access is then 2 ∗ 758 ∗ (.416 + .134) + 1984 ∗
.076 ≈ 984 nJ.
9.1.5. Baseline information leakage. To calculate leakage,
we fix Tmax = 262. Thus, the baseline leakage through the
early termination channel (without ORAM) is 62 bits and
we will compare our scheme’s additional leakage to this
number. Of course, the SPEC programs run for a signifi-
cantly smaller time and leak fewer bits as a result.
9.1.6. Baseline architectures. We compare our proposal to
five baselines:

1. base dram: All performance overheads are relative
to a baseline insecure (i.e., no security) DRAM-based
system. We note that a typical SPEC benchmark run-
ning base dram with our timing/power model (§ 9.1.2-
9.1.3) has an IPC between 0.15-0.36 and a power con-
sumption between 0.055-0.086 Watts.

2. base oram: A Path ORAM-based system without tim-
ing channel protection (e.g., [26]). This can be viewed
as a power/performance oracle relative to our proposal
and is insecure over the timing channel.

3. static 300: A Path ORAM-based system that uses a
single static rate for all benchmarks. This follows
[7] and can be viewed as a secure (zero leakage over
the ORAM timing channel) but strawman design. We
swept a range of rates and found that the 300 cycle rate
minimized average performance overhead relative to
base dram. This point demonstrates the performance
limit for static schemes and the power overhead needed
to attain that limit.

4. static 500 and static 1300: To give more insight, we
also compare against static rate schemes that use 500

100 101 102 103 104 1050
2
4
6
8

10
12
14

ra
te

=
25

6

ra
te

=
32

76
8

base_dram

mcf

100 101 102 103 104 105 1060
2
4
6
8

10
12
14

ra
te

=
25

6

ra
te

=
32

76
8

base_dram

h264

ORAM rate (larger is slower)

Ov
er

he
ad

 (X
)

Performance PowerPerformance Power

Figure 5: The relationship between power and performance
overhead for a memory bound (mcf) and compute bound
(h264ref) benchmark.

and 1300 cycle ORAM rates. static 500/static 1300
has roughly the same performance/power (respec-
tively) as the dynamic configuration we evaluate in
§ 9.3. Thus, static 500 conveys the power overhead
needed for a static scheme to match our scheme in
terms of performance (and vice versa for static 1300).

All static schemes assume no protection on the early
termination channel and therefore leak ≤ 62 bits (§ 9.1.5).

9.2 Choosing the Spread of Values in R

To select extreme values in R, we examine a mem-
ory (mcf) and compute bound (h264ref) workload (Fig-
ure 5). In the figure, we sweep static rates and report
power/performance overhead relative to base dram for each
point. For our timing/energy model, rates below 200 cycles
lead to unstable performance for mcf as the rate becomes
underset on average (§ 7.1.1). On the other hand, rates much
larger than 30000 cycles cause h264ref’s power to drop be-
low that of base dram, telling us that the processor is wait-
ing for ORAM (idling) a majority of the time. Thus, for
our experiments we will use a 256/32768 cycle lower/upper
bound for rates.

Once the high and low rates are chosen, we select
ORAM rate candidates in between that are spaced out
evenly on a lg scale. For example if |R| = 4, R =
{256, 1290, 6501, 32768}. Intuitively, the lg scale gives
memory-bound (ORAM-sensitive) workloads more rates to
choose from; whereas 32768 is a suitable rate for all com-
pute bound workloads. During the first epoch, we set the
rate to 10000 for all benchmarks (§ 6.2).

9.3 Comparison to Baselines

Our main result in Figure 6 shows the perfor-
mance/power benefits that dynamically adjusting ORAM
access rate can achieve. Performance results are normal-
ized to base dram. Power results are actual values in Watts.
The white-dashed bars at the bottom represent power con-
sumption from non-main-memory components, which is
similar across different systems because instructions-per-
experiment is fixed; the colored bars indicate the power con-
sumption of the DRAM and ORAM controllers.

base oram has the lowest overhead—3.35× perfor-

mcf omnet libq bzip2 hmmer astar gcc gobmk sjeng h264 perl Avg0
2
4
6
8

10
12
14

Pe
rfo

rm
an

ce

 O
ve

rh
ea

d
(X

)

19.2

base_oram
dynamic_R4_E4
static_300

static_500
static_1300

mcf omnet libq bzip2 hmmer astar gcc gobmk sjeng h264 perl Avg0.0
0.1
0.2
0.3
0.4
0.5
0.6

Po
w

er
 (W

at
t)

Figure 6: Performance overhead and power breakdown
(§ 9.3) of baseline ORAM, global average access rates and
our dynamic scheme.

mance and 5.27× power relative to base dram—but can
leak an unbounded amount of information through the tim-
ing channel (§ 1.1). Our dynamic scheme is given by
dynamic R4 E4, where R4 means |R| = 4 and E4 means
epoch i is 4× as long as epoch i − 1. This configura-
tion represents a high performance, low leakage point in
§ 9.5. Given our choice of Tmax, dynamic R4 E4 expends
16 epochs, giving us a leakage of 16∗ lg |R| = 32 bits. This
dynamic configuration has a performance/power overhead
of 4.03×/5.89×. Compared with base oram, this is 20%
performance overhead and 12% power overhead.

static 300 incurs 3.80×/8.68× performance/power
overhead. This is 6% better performance and 47% higher
power consumption relative to dynamic R4 E4. Also
compared to the dynamic scheme, static 500 incurs a 34%
power overhead (breaking even in performance) while
static 1300 incurs a 30% performance overhead (breaking
even in power). Thus, through increasing leakage by
≤ 32 bits (giving a total leakage of 62 + 32 = 94 bits;
§ 9.1.5) our scheme can achieve 30% / 34% perfor-
mance/power improvement depending on optimization
criteria.

9.4 Stability

Figure 7 shows that our dynamic scheme has stable
performance as epoch length increases. The figure com-
pares the IPC of dynamic R4 E2 (our dynamic scheme with
epoch doubling), base oram and static 1300 over time in
1-billion instruction windows. We discuss three represen-
tative benchmarks: libquantum, gobmk and h264ref. To
complete 200 billion instructions, these benchmarks ran
for 1 ∼ 5 trillion cycles and completed 9-11 epochs.
libquantum is memory bound and our scheme consis-
tently incurs only 8% performance overhead relative to
base oram. gobmk has erratic-looking behavior but con-
sistently selects the same rate after epoch 6 (marked e6).
After epoch 6, our dynamic scheme selects the 1290 cycle
rate (see § 9.2 for rate candidates) which is why its perfor-
mance is similar to that of static 1300. We found that astar
and gcc behaved similarly.

50 100 150 2000.02
0.04
0.06
0.08
0.10
0.12 libquantum

base_oram dynamic_R4_E2 static_1300

50 100 150 2000.05
0.10
0.15
0.20
0.25
0.30

IP
C

gobmk

50 100 150 200
Time (in billions of instructions)

0.05
0.10
0.15
0.20
0.25
0.30

e6

e8
h264ref

Figure 7: IPC in 1-billion instruction windows over time
on selected benchmarks (§ 9.4). Vertical black lines mark
epoch transitions for dynamic R4 E2.

h264ref is initially compute bound (choosing the 32768
cycle rate) but becomes memory bound in epoch 8 (marked
e8). At the next epoch transition, the rate learner switches to
the 6501 cycle rate. To give insight into trade-offs, we ran
h264ref fixing the rate to different values in R after epoch
8. If the rate learner had not switched to the 6501 cycle
rate, h264ref would have incurred a 2.88× performance hit
but only decreased power by 2.38×. On the other hand,
selecting the next fastest rate (1290 cycles) would have im-
proved performance by 52% (relative to the 6501 rate), but
increased power consumption by 2.36×. Thus, we believe
the 6501 cycle rate to be a reasonable trade-off.

9.5 Reducing the Leakage Bound

We can control leakage by changing the number of can-
didate access rates |R| and the epoch frequency |E|.

Figure 8a shows the impact of changing |R|, given the
lg spread of rates (§ 9.2) and the epoch doubling scheme.
Varying |R| = 16 to |R| = 4, performance improves by
2% and power consumption increases by 7% — but leak-
age drops by 2× bits. Small |R| improve performance
more for benchmarks that are neither compute nor mem-
ory bound (e.g., gobmk, gcc). This makes LLC misses less
regular, which the rate learner’s averaging mechanism does
not account for (§ 7.3). Note that when |R| = 2, power
increases significantly for these same benchmarks. In that
case, R = {256, 32768}— neither of which match well to
non-extreme workloads.

Using |R| = 4, we next study the effect of less fre-
quent epochs in Figure 8b. Over 200 billion instructions,
dynamic R4 E2 expends 8-12 epochs and dynamic R4 E16
expends 2-3 epochs. Most benchmarks do not lose perfor-
mance with less epochs. h264ref is the largest exception,
which chooses a slow rate before the memory bound region
(see § 9.4) and is stuck with that rate for a longer time. It is

mcf omnet libq bzip2 hmmer astar gcc gobmk sjeng h264 perl Avg0
2
4
6
8

10
12
14

Pe
rfo

rm
an

ce

 O
ve

rh
ea

d
(X

) dynamic_R16_E2
dynamic_R8_E2

dynamic_R4_E2
dynamic_R2_E2

mcf omnet libq bzip2 hmmer astar gcc gobmk sjeng h264 perl Avg0.0
0.1
0.2
0.3
0.4
0.5
0.6

Po
w

er
 (W

at
t)

(a) Varying rate count (|R|).

mcf omnet libq bzip2 hmmer astar gcc gobmk sjeng h264 perl Avg0
2
4
6
8

10
12
14

Pe
rfo

rm
an

ce

 O
ve

rh
ea

d
(X

) dynamic_R4_E2
dynamic_R4_E4

dynamic_R4_E8
dynamic_R4_E16

mcf omnet libq bzip2 hmmer astar gcc gobmk sjeng h264 perl Avg0.0
0.1
0.2
0.3
0.4
0.5
0.6

Po
w

er
 (W

at
t)

(b) Varying epoch count (|E|).

Figure 8: Leakage reduction study (§ 9.5).

possible that running the workload longer will fix this prob-
lem; e.g., we saw the same behavior with gobmk but the
200 billion instruction runtime was enough to smooth out
the badly performing epoch. Despite this, dynamic R4 E16
(8 epochs in Tmax = 262 cycles) reduces ORAM timing
leakage to 16 bits (from 32 bits) and only increases aver-
age performance overhead by 5% (while simultaneously de-
creasing power by 3%) relative to dynamic R4 E4.

10 Discussion
Letting the user choose L (the bit leakage limit, see

§ 2). So far, we have assumed that L is fixed at manufactur-
ing time for simplicity. To specify L per session, the user
can send L (bound to the user’s data using a conventional
HMAC) to the processor during the user-server protocol
(§ 5). When the server forwards leakage parameters (e.g.,
R, E) to the processor, the processor can decide whether to
run the program by computing possible leakage as in § 6.1.

Supporting additional leakage channels. A key im-
plication of § 6.1 is that bit leakage across different chan-
nels is additive, making our proposal scalable to additional
leakage channels. Suppose we wish to protect N chan-
nels (early program termination and ORAM timing being
two). If channel i can generate traces Ti in isolation, then
the whole processor can generate

∏N
i=1 |Ti| trace combina-

tions, resulting in a leakage of
∑N

i=1 lg |Ti| bits. This prop-
erty allows our work to be extended to others that calculate
bit leakage—e.g., [40] which studies interactive programs

and [14] which studies cache timing attacks.
Can our scheme work without ORAM? Our scheme

can be used without ORAM if dummy memory operations
are indistinguishable from real memory operations.5 If this
property holds, the adversary’s view of the memory timing
channel is a single periodic rate per epoch and the number of
measurable timing traces is as we calculated in § 2.2. With
ORAM, this property holds by definition (§ 3). With com-
modity DRAM, it may be possible for this property to hold
by adding additional mechanisms. For example, we must
prevent an adversary from using DRAM state to tell dummy
from real operations—e.g., by disabling DRAM row buffers
or placing them in a public state after each access. We must
also ensure that the adversary cannot scan DRAM to de-
termine access frequency (§ 3.2)—e.g., by physically parti-
tioning DRAM between devices.

Bit leakage interpretation subtleties. As stated in § 2,
the adversary can learn any L bits of the user’s data. This
is an issue if (a) some of the user’s bits are more “impor-
tant” than others (e.g., if the user’s data itself contains a
cryptographic key) and (b) the adversary can run any pro-
gram of its choosing on the user’s data. For example, in
Figure 1 (a) the program writer chooses what bits to leak.
The user can mitigate this issue somewhat by binding a cer-
tified program hash to its data with an HMAC, which re-
stricts the processor to run that program only. This strategy
assumes (a) that the program can be re-written to not reveal
important bits, (b) that ORAM is integrity verified [25] and
(c) that the adversary cannot arbitrarily influence the well-
written program by introducing traffic to main memory (as
in § 8.1).

A second subtlety is that bit leakage can be probabilis-
tic [31]. That is, the adversary may learn > L bits of the
user’s data with some probability < 1. Suppose a program
can generate 2 timing traces. Our leakage premise from
§ 2.1 says we would leak ≤ lg 2 = 1 bit. The adversary
may learn L′ bits (where L′ > L) per trace with the follow-
ing encoding scheme: if L′ bits of the user’s data matches
a complete, concrete bit assignment (e.g., if L′ = 3 one as-
signment is 0012) choose trace 1; otherwise choose trace 2.
If the user’s data is uniformly distributed bits, the adversary
learns all L′ bits with probability 2L−1

2L′ .

11 Related Work
11.1 Foundational Work

This paper builds on recent work on Path ORAM and
information-theoretic approaches to bounding leakage.

Path ORAM’s theoretic treatment is given in [32]. Path
ORAM has been studied in secure processor settings using
software simulation [26] and FPGA implementation [19].
Path ORAM integrity protection mechanisms are covered
in [25]. None of above works protect the ORAM timing
channel. To our knowledge, the only work to protect against

5For perspective, in Figure 6 an average of 34% of ORAM accesses
made by our dynamic scheme are dummy accesses.

the ORAM timing channel is [7], which imposes a strict,
periodic rate that we evaluate against (§ 9).

The most relevant information theoretic work is Predic-
tive Mitigation [2] and leakage bounding techniques for
on-chip caches [14]. We use ideas similar to Predictive
Mitigation to break programs into epochs (§ 6.1), although
our setting is somewhat different since [2] does not permit
dummy accesses to fool an adversary. [14] applies the same
information-theoretic framework to bound leakage in on-
chip caches. The key difference to our work is that [14] fo-
cuses on quantifying the leakage of different schemes. Our
focus is to develop hardware mechanisms to bound leakage
and trade-off that leakage to get efficiency.

More generally, timing channel attacks and related pro-
tections have been a hot topic since it was discovered that
RSA and other crypto-algorithms could be broken through
them [13]. We cannot list all relevant articles, but two re-
lated papers are Time Warp [20] and Wang et al. [35]. Time
Warp also uses epochs to fuzz architectural mechanisms
(e.g., the RDTSC instruction) and, using statistical argu-
ments, decrease timing leakage. Wang et al. propose novel
cache mechanisms to defeat shared-cache timing attacks.

11.2 Secure processors

The eXecute Only Memory (XOM) architecture [18]
mitigates both software and certain physical attacks by re-
quiring applications to run in secure compartments con-
trolled by the program. XOM must be augmented to protect
against replay attacks on memory. Aegis [33], a single-chip
secure processor, provides integrity verification and encryp-
tion on-chip so as to allow external memory to be untrusted.
Aegis therefore is protected against replay attacks.

A commercialized security device is the TPM [34] — a
small chip soldered onto a motherboard and capable of per-
forming a limited set of secure operations. One represen-
tative project that builds on the TPM is Flicker [22], which
describes how to leverage both AMD/Intel TPM technology
to launch a user program while trusting only a very small
amount of code (as opposed to a whole VMM).

The primary difference between our setting and these
works is the threat model: none of them require main
memory address or timing protection. Address leakage is
a widely acknowledged problem (outside of ORAM, [41]
shows how program control flow can be determined through
memory access pattern). Although main memory timing
leakage has not been addressed, a lesson from prior work
(§ 11.1) is that when there is a timing channel, attackers
will try to exploit it.

11.3 Systems that enforce non-interference
There is a large body of work that is built around sys-

tems that provably enforce non-interference between pro-
grams ([36] is a represenative paper). Non-interference is
the guarantee that two programs can coexist, yet any ac-
tions taken by one program will be invisible (over the tim-
ing channel in particular) to the other program. In our set-
ting, non-interference is akin to a single, strict rate that per-

mits no leakage [31]. We believe that our proposal, which
permits some interference, may be applicable and useful to
these works.

12 Conclusion
We propose mechanisms that provably guarantee a

small upper-bound on timing channel leakage and achieves
reasonable performance overheads relative to a baseline
ORAM (with no timing channel protection). Our schemes
are significantly more efficient than prior art which was re-
stricted to choosing a static rate of accessing memory.

References
[1] W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable

Bootstrap Architecture. In S&P, 1997.
[2] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box

mitigation of timing channels. In CCS, 2010.
[3] M. N. Bojnordi and E. Ipek. Pardis: a programmable memory

controller for the ddrx interfacing standards. In ISCA, 2012.
[4] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious

storage: Making oblivious RAM practical. MIT-CSAIL-TR-
2011-018, 2011.

[5] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure
oblivious RAM without random oracles. In TCC, 2011.

[6] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan.
Side-channel vulnerability factor: A metric for measuring in-
formation leakage. In ISCA, 2012.

[7] C. Fletcher, M. van Dijk, and S. Devadas. Secure Pro-
cessor Architecture for Encrypted Computation on Un-
trusted Programs. In STC, 2012; an extended ver-
sion is located at http://csg.csail.mit.edu/pubs/memos/Memo-
508/memo508.pdf (Master’s thesis).

[8] S. Galal and M. Horowitz. Energy-efficient floating-point unit
design. IEEE Transactions on Computers, 60:913–922, 2011.

[9] O. Goldreich and R. Ostrovsky. Software protection and sim-
ulation on oblivious rams. In J. ACM, 1996.

[10] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via state-
less oblivious RAM simulation. In SODA, 2012.

[11] D. Grawrock. The Intel Safer Computing Initiative: Building
Blocks for Trusted Computing. Intel Press, 2006.

[12] A. Jaleel. Memory characterization of workloads using
instrumentation-driven simulation. Web Copy: http://www.
glue. umd. edu/ajaleel/workload, 2010.

[13] P. C. Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In CRYPTO, 1996.

[14] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic quantifi-
cation of cache side-channels. In CAV, 2012.

[15] B. Köpf and G. Smith. Vulnerability bounds and leakage
resilience of blinded cryptography under timing attacks. In
CSF, 2010.

[16] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious RAM and a new balancing scheme.
In SODA, 2012.

[17] S. Li, K. Chen, J.-H. Ahn, J. Brockman, and N. Jouppi.
Cacti-p: Architecture-level modeling for sram-based struc-
tures with advanced leakage reduction techniques. In ICCAD,
2011.

[18] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for Copy
and Tamper Resistant Software. In ASPLOS, 2000.

[19] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. Phantom: Practi-
cal oblivious computation in a secure processor. CCS, 2013.

[20] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp:
rethinking timekeeping and performance monitoring mecha-
nisms to mitigate side-channel attacks. SIGARCH Comput.
Archit. News, 40(3):118–129, June 2012.

[21] S. Mathew, F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu,
H. Kaul, M. Anders, and R. Krishnamurthy. 53gbps na-
tive gf(24)2 composite-field aes-encrypt/decrypt accelerator
for content-protection in 45nm high-performance micropro-
cessors. In VLSIC, 2010.

[22] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb mini-
mization. SIGOPS Oper. Syst. Rev.

[23] R. Ostrovsky. Efficient computation on oblivious rams. In
STOC, 1990.

[24] R. Ostrovsky and V. Shoup. Private information storage (ex-
tended abstract). In STOC, 1997.

[25] L. Ren, C. Fletcher, X. Yu, M. van Dijk, and S. Devadas.
Integrity verification for path oblivious-ram. In HPEC, 2013.

[26] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas.
Design space exploration and optimization of path oblivious
ram in secure processors. In ISCA, 2013.

[27] J. Renau. Sesc: Superescalar simulator. Technical report,
UIUC ECE department, 2002.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A
cycle accurate memory system simulator. Computer Architec-
ture Letters, 10(1):16 –19, jan.-june 2011.

[29] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram
with o((logn)3) worst-case cost. In Asiacrypt, 2011.

[30] P. Shivakumar and N. J. Jouppi. CACTI 3.0: An integrated
cache timing, power, and area model. Technical report, Feb.
2001.

[31] G. Smith. On the foundations of quantitative information
flow. In FOSSACS, 2009.

[32] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path oram: An extremely simple oblivious
ram protocol. In CCS, 2013.

[33] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas. AEGIS: Architecture for Tamper-Evident and Tamper-
Resistant Processing. In ICS, 2003.

[34] Trusted Computing Group. TCG Specification Architecture
Overview Revision 1.2, 2004.

[35] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In ISCA, 2007.

[36] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kast-
ner, F. T. Chong, and T. Sherwood. Surfnoc: a low latency
and provably non-interfering approach to secure networks-on-
chip. In ISCA, 2013.

[37] P. Williams and R. Sion. Round-optimal access privacy on
outsourced storage. In CCS, 2012.

[38] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way
to circumvent intel trusted execution technology: Tricking
senter into misconfiguring vt-d via sinit bug exploitation.

[39] X. Yu, C. Fletcher, L. Ren, M. van Dijk, and S. Devadas.
Generalized external interaction with tamper-resistant hard-
ware with bounded information leakage. In CCSW, 2013.

[40] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitiga-
tion of timing channels in interactive systems. In CCS, 2011.

[41] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure
for efficiently protecting information leakage on the address
bus. In ASPLOS, 2004.

