
Tangle: Route-Oriented Dynamic Voltage Minimization
for Variation-Afflicted, Energy-Efficient On-Chip Networks ∗

Amin Ansari,† Asit Mishra,‡ Jianping Xu,‡ Josep Torrellas †

† University of Illinois at Urbana-Champaign ‡ Intel Corporation
amina,torrella@illinois.edu asit.k.mishra,jianping.xu@intel.com

Abstract
On-chip networks are especially vulnerable to within-die pa-

rameter variations. Since they connect distant parts of the chip,
they need to be designed to work under the most unfavorable
parameter values in the chip. This results in energy-inefficient
designs. To improve the energy efficiency of on-chip networks,
this paper presents a novel approach that relies on monitoring
the errors of messages as they traverse the network. Based
on the observed errors of messages, the system dynamically
decreases or increases the voltage (Vdd) of groups of network
routers. With this approach, called Tangle, the different Vdd val-
ues applied to different groups of network routers progressively
converge to their lowest, variation-aware, error-free values —
always keeping the network frequency unchanged. This saves
substantial network energy. In a simulated 64-router network
with 4 Vdd domains, Tangle reduces the network energy con-
sumption by an average of 22% with negligible performance
impact. In a future network design with one Vdd domain per
router, Tangle lowers the network Vdd by an average of 21%,
reducing the network energy consumption by an average of
28% with negligible performance impact.

1. Introduction
Although successive CMOS generations continue to enable
higher transistor integration, they have long deviated from
the energy density predicted by classical scaling. As a result,
energy and power consumption have emerged as the main
constraints for current chip designs [35]. It is therefore cru-
cial to devise techniques that substantially increase the energy
efficiency of multi- and many-cores.

At the same time, as feature sizes shrink, parameter varia-
tions are gaining prominence. Variations are the deviation of
process, temperature, and Vdd parameters from their nominal
specifications [3]. As the first line of defense against parameter
variations, designers increase guardbands, which make chips
less energy efficient.

A component of multi- and many-core chips that is espe-
cially vulnerable to variations is the on-chip interconnection
network. This is because the network connects distant parts
of the chip which, due to variations, exhibit different speed
and power characteristics. The network has to be designed
conservatively, to work under the most unfavorable parameter
values in the chip. This results in energy-inefficient designs.
On-chip networks can already consume a substantial fraction
of the on-chip power — potentially up to 30–40%, according

∗This work was supported in part by NSF under grant CCF-1012759

and a CCC Computing Innovation Fellowship; DARPA under UHPC Con-

tract HR0011-10-3-0007 and PERFECT Contract HR0011-12-2-0019; and

DOE ASCR under Award Numbers DE-FC02-10ER2599 and DE-SC0008717.

Amin Ansari is now with Qualcomm Inc., San Diego, CA.

to the literature [4, 6, 8, 13, 17, 29]. Conservative future net-
work designs, needed to tolerate parameter variations, may be
unable to reduce the value of this fraction much.

One of the most powerful knobs for energy-efficient design
is Vdd . This is because Vdd has a strong impact on both dynamic
and static energy. The Vdd guardbands present in the network
to tolerate parameter variations offer an opportunity for energy
savings: due to variations, the guardbands in some areas of the
chip are likely to be significantly over-provisioned. The insight
in our work is to reduce these guardbands to save energy, while
being mindful not to reduce Vdd so much to cause timing errors
in the network. Interestingly, well-known error detection and
tolerance mechanisms in the network can be used to find out
when Vdd has reached a tolerable lower bound.

Despite this observation, finding which groups of routers
should lower their Vdd and by how much in a distributed envi-
ronment is not trivial. Thus, this paper presents a mechanism,
called Tangle, that dynamically measures the errors of mes-
sages and scales the Vdd of groups of routers to an error-free
minimum. The frequency of the network remains unchanged.

Tangle augments a multi- or many-core chip that has mul-
tiple Vdd domains and the capability to perform dynamic Vdd
scaling. Tangle monitors the errors of messages as they tra-
verse the network. If errors are observed, Tangle dynamically
increases the Vdd of the router groups used by the erroneous
messages. Tangle also periodically decreases the Vdd of all the
routers. With this approach, the Vdd values applied to differ-
ent groups of routers progressively converge to their lowest,
variation-aware, error-free values. This saves substantial net-
work energy. Tangle has no noticeable performance overhead
because it does not reduce frequencies and keeps the error rate
to a bare minimum.

We evaluate Tangle with simulations of a variation-afflicted
64-router network. With 4 Vdd domains in the network, Tangle
reduces the network energy consumption by an average of 22%
with negligible performance impact. In a future network de-
sign with one Vdd domain per router, Tangle lowers the network
Vdd by an average of 21%, reducing the network energy con-
sumption by an average of 28% with negligible performance
impact.

This paper is organized as follows. Section 2 presents a mo-
tivation and background; Sections 3 and 4 describe the Tangle
architecture and some associated design aspects; Sections 5
and 6 evaluate Tangle; and Section 7 covers related work.

2. Motivation and Background

2.1. Process Variations & Trading Energy for Resilience

As transistor feature sizes continue to decrease, process varia-
tions have become a major concern for chip manufacturers [3].



Variations manifest at many levels: wafer-to-wafer (W2W),
die-to-die (D2D), and within-die (WID). In this paper, we
focus on WID variations [31, 42], which are a challenge for
network-on-chip (NoC) designs. WID variations include both
random and systematic components. The former are primarily
due to varying dopant concentrations; the latter are typically
caused by the impreciseness of the manufacturing equipment.
Systematic variations show a strong spatial correlation, which
means that close-by devices have similar systematic values.

WID process variations result in chips that run at lower
frequencies and consume more static power than variation-free
ones. Indeed, while variation causes some paths to become
slower and others faster, the slowest paths determine the chip
frequency. Moreover, the exponential nature of the static power
dependence on a transistor’s threshold voltage (Vth) means
that transistors that leak little save less power than the power
consumed by those that leak a lot. Finally, given the resulting
uncertainties, variation-afflicted designs include wider Vdd and
frequency (f) guardbands, which make them even less efficient.

The wider guardbands present in variation-afflicted designs
open up the opportunity to improve energy efficiency by care-
fully trading it off for resilience. The idea involves aggressively
reducing the guardbands of the design while, at the same time,
providing the capability to detect and correct any resulting er-
rors. The advantage of this approach is that substantial energy
savings can be attained.

We see this approach as part of a wider trend of trading-
off energy efficiency for resilience. For example, some re-
searchers propose timing speculation in the pipeline, such as
in Razor [10] and BlueShift [15]. In these designs, a core is
clocked at an unsafe f while a special latch or an extra core
can detect and correct any resulting error. Other researchers
propose to save energy by reducing the refresh rate of on-
chip DRAM memories, while increasing the strength of their
ECC codes [51]. Finally, other designs are made tolerant to
approximate computations to save energy [11].

This paper is inspired by this trend. Our goal is to save
energy, while always keeping the execution correct.

2.2. Fault Model

We model a variation-afflicted NoC at an aggressive process
technology, as we progressively reduce its Vdd at a fixed f. We
use the VARIUS-NTV [21] model to model process variations
and the resulting timing faults that occur when the guardbands
of the devices are reduced.

As the Vdd decreases, some logic paths that, due to process
variation, are especially slow, start missing timing under cer-
tain logic values [42]. These are timing violations that can be
categorized as intermittent faults. As the Vdd keeps decreasing,
the fault rate increases. The model provides a certain prob-
ability of a timing fault for each path in the NoC. When a
fault in the NoC occurs, we assume that it causes an error in
the NoC that would result in an incorrect program execution.
Consequently, we need to detect it and handle it.

2.3. Enabling Technology: Inexpensive Vdd Regulation

To adapt the NoC to WID process variations, we design it with
multiple Vdd domains. In this way, the NoC regions whose
systematic variations make them slow can be operated at rel-

atively higher Vdd , while those that are fast are operated at
relatively lower Vdd . However, using many switching voltage
regulators (SVRs), either on- or off-chip, to support multiple
Vdd domains is expensive [7]. First, their power efficiency is
around 90% in the best case, and often lower under real oper-
ating conditions. Second, on-chip SVRs take substantial area,
while off-chip SVRs require many pins and board hardware.
For these reasons, with tried-and-tested current technology, it
is hard to justify more than a handful of on-chip SVRs, even
for a large chip — e.g., 4–8 SVRs.

However, upcoming technology will change this. Voltage
regulators for a large chip may be hierarchical [14]. The first
level is composed of one or a handful of SVRs, placed on a
stacked die with devices optimized for the SVR inductances.
The second level is composed of many on-chip low-drop-out
(LDO) voltage regulators. Each LDO is connected to one of the
first-level SVRs and provides the Vdd for, say, a single router.
LDOs have a very high efficiency if the ratio of their output
(VO) to input (VI) voltages is close to 1. Thanks to systematic
variation, the LDOs in a region of the chip will need to provide
very similar VO. Since they take their VI from the same first-
level SVR and their VO is similar, their efficiency can be close
to 95%. In addition, their area is negligible: their hardware
reuses a power-gating circuit. Such circuit is already likely to
be present to power-gate the router. Finally, level converters
between the resulting Vdd domains can be designed efficiently,
by combining them with the latches [20].

Therefore, we propose two designs of Tangle. The first one
applies to current chips and uses only a handful of Vdd domains
in the NoC; the second applies to a future chip that uses one
LDO (and hence one Vdd domain) per NoC router.

3. Tangle Architecture
In this section, we first present the high-level idea behind
Tangle. Then, we describe the architecture in detail.

3.1. Key Idea

Given a large multi-core chip where the NoC has multiple
Vdd domains, our goal is to operate the NoC at the minimum
possible Vdd values for these domains, without sacrificing cor-
rectness or incurring any noticeable performance penalty. As
discussed in Section 2, reducing Vdd can cause timing errors
in the logic paths. Therefore, we are interested in an effec-
tive architectural mechanism that finds the lowest possible Vdd
at which groups of routers can operate with very low error
rates. For this, we will take advantage of inexpensive NoC
mechanisms to detect and tolerate errors.

Tangle is our proposed low-cost solution for finding the
Vdd of the NoC domains. Rather than using static Vdd values,
Tangle determines these Vdd dynamically, adapting to the work-
load and temperature conditions. In this way, Tangle avoids
exhaustive, expensive testing at manufacturing time [38]. Fur-
thermore, dynamic Vdd setting also enables Tangle to adapt to
aging effects [48, 50].

To guarantee the correct operation of the system, Tangle
sets the initial Vdd of all the NoC routers to the nominal Vdd
of the target process technology (e.g., 800mV ). This nominal
Vdd guarantees fault-free operation. Then, Tangle gradually
decreases the Vdd of groups of routers, and monitors the opera-



tion to maintain correctness. To monitor the system behavior,
Tangle uses error detection codes, which can detect errors
when critical paths in the circuit become too slow.

Error detection can happen at different levels. We can ei-
ther perform end-to-end (network level) checking or switch-to-
switch (link level) checking. In end-to-end checking, encoding
happens at a message’s source node and the check at the des-
tination node. In contrast, in switch-to-switch checking, an
error check is performed at every single router. The main ad-
vantage of end-to-end checking is the overall low cost of error
checking, both in terms of energy and area [36]. This gives us
the opportunity to use stronger error detection codes as well.
On the other hand, switch-to-switch checking improves the
error detection latency and reduces retransmission buffer size.
Given that our overriding goal is energy efficiency, Tangle
performs end-to-end error detection. For this purpose, we use
the end-to-end error detection and retransmission scheme pro-
posed in [23]. We account for all the scheme’s overheads and
do not extend it with new routing algorithms or flow control
schemes. As shown in [23], for low error rates, which is cer-
tainly the case for our scheme, the performance overhead and
buffer requirements are not drastically different between end-
to-end and switch-to-switch error detection and retransmission
techniques.

In Tangle, Vdd tuning is performed by a Reliability Manage-
ment Unit (RMU). The RMU manages the Vdd of the domains
in the NoC. Whenever an error is detected at an end node, a
signal is sent to the RMU, requesting an increase in the Vdd of
the router groups in the path taken by the erroneous message.
For this, we take advantage of deterministic routing. Given the
source and destination of a flit, the RMU knows which routers
this flit went through. Therefore, the error has happened in
one of the routers in the path. After the Vdd increase, the flit is
retransmitted from the source node.

In the next few sections, for simplicity and without loss of
generality, we will assume that each NoC router has a Vdd do-
main of its own. Later, we describe the small changes required
when each Vdd domain has a group of routers.

3.2. Supply Voltage Tuning

Tangle starts with a high Vdd value and gradually reduces it
until it observes errors in the NoC. To achieve this, we first
introduce the concept of epoch. An epoch is the fixed time
interval between two consecutive reductions of the Vdd of all of
the routers in the NoC. At the beginning of each epoch, Tangle
reduces the Vdd of all the routers in the system by ΔVdec. Then,
for the rest of the epoch, Tangle monitors the errors that occur
in the system. If it observes an error, it increases the Vdd for a
subset of the routers by ΔVinc, as will be described later.

An epoch needs to be large enough so that the performance
overhead of Vdd tunings is minimal. At the same time, it
should be short enough to allow routers to attain their target
Vdd with a short delay. As will be discussed in the evaluation,
we choose an epoch of 50,000 cycles, which allows the routers
to reach their target Vdd after a few tens of epochs (i.e., in a
few milliseconds).

Figure 1 shows an example of the changes in the Vdd of a
router over time. The figure shows nine consecutive epochs.
The initial Vdd is around 800mV , and it gradually reduces. At

Time 

Vdd (mV) 

800 

700 

600 

500 

ΔVdec 

Figure 1: Changes to the Vdd of a router over time in Tangle.

the beginning of each epoch, Vdd is reduced by ΔVdec. However,
ΔVdec is not constant; it is determined dynamically depending
on the current Vdd value as follows:

ΔVdeci =
{

0mV if Vi < 500mV
Max{VMinStep,

Vi−VAvgTest
5 } if Vi > 500mV

where VMinStep is the minimum Vdd tuning step for the Vdd
regulator. In this formula, if the Vdd for router i (i.e., Vi) is
lower than 500mV , we do not allow it to get any lower. The
reason why we pick 500mV is that, as we will see, our process
variation analysis shows that no router can operate correctly
below this Vdd . For this low Vdd , we set the step size of Vdd
increase (ΔVinci ) to VMinStep.

For Vdd higher than 500mV , ΔVdeci is determined dynami-
cally based on the current Vdd of the router (i.e., Vi). In this
formula, VAvgTest stands for the average sustainable Vdd of
all the routers in the system, which is measured during the
manufacturing-testing time. For instance, as we will see, given
our variation profile, this VAvgTest is around 650mV .

We can also derive VAvgTest without relying on measurements
at manufacturing-testing time. In this case, we start the system
at 800mV and use a fixed ΔVdeci equal to VMinStep. Then, as
the Vdd of the routers decrease, when they become stable after
a certain number of epochs, we set VAvgTest to the average
value of all of them. Once we have VAvgTest , we can use a
dynamic value of ΔVdeci according to the formula from that
point forward.

Finally, for the higher values of Vi, we set ΔVinci to be equal
to ΔVdeci (we will discuss this aspect later). Hence, ΔVinci also
gradually shrinks, as we get closer to lower Vdd values, and
finally becomes equal to VMinStep.

The reason why we reduce ΔVdec as we lower the Vdd of a
router is to minimize the oscillations around the optimal Vdd
value. We start to reduce Vdd fast and, as we get to lower values,
we slow down the process. In Figure 1, in the first epoch, we
reduce the Vdd of the router by around 60mV , whereas in the
next epoch we reduce it by 50mV . However, ΔVdec cannot be
reduced beyond a certain threshold that is determined by the
physical properties of the voltage regulator. During epoch 4,
after we reduce the Vdd to around 620mV , the system observes
an error and we increase the Vdd back to its value before this
epoch starts. In our design space exploration (Section 6.2.1),
we show that setting the value of ΔVinc to be equal to ΔVdec
gives us the best results. This is mainly because an equal value
allows the complete cancellation of a wrong Vdd decrement. In
epoch 5, no error happens. Nonetheless, in epoch 6, two errors
happen, and we increase Vdd by two ΔVinc. As will be described



in Section 3.5, because of our Vdd tuning algorithm, the Vdd of
a router could be increased many times during an epoch. Thus,
we introduce a threshold for the maximum number of times
that the Vdd of a router can be increased in a single epoch. In
Section 6.2.2, we sweep this parameter and decide to allow
at most 2 Vdd increases per epoch. In epoch 8, we observe 3
errors. However, only 2 Vdd increases are performed during
this epoch. Finally, in epoch 9, the Vdd of the router is increased
again due to two errors.

As we can see, with Tangle, the Vdd of the routers converge
to a state with tiny oscillations. Such oscillations are tolerable
because the cost of error detection and tolerance is very small.

3.3. Error Detection

We merely rely on error detection because error correction is
not an attractive choice for our application. This is because
most error correction codes have the ability to fix a very limited
number of errors in a word. For example, Single Error Correc-
tion Double Error Detection (SECDED), a form of Hamming
codes which is widely used in memory systems, can only fix
a single bit error in each word. In our system, as we reduce
Vdd , there may be flits with multiple bit errors. Consequently,
to guarantee correct operation, SECDED and other relatively
simple ECCs would not be appropriate. We would need an
ECC that has the ability to fix errors in several of the bits of a
transmitting flit. Applying a strong ECC such as Orthogonal
Latin Square Codes (OLSCs) [18] or BCH codes [5] is not
practical for several reasons. First, the cost of the extra code
bits that need to be transferred is comparable to the size of
the flit itself. Second, the error checking and correction is too
costly in terms of energy consumption. Third, the encoder and
decoder for such a strong code have high complexity and area
overhead [22]. Finally, the latency of such a complex error
detection and correction would have a non-trivial impact on
the performance of the system.

For these reasons, we employ error detection codes, which
have lower overheads. Low-cost end-to-end error detection
with Cyclic Redundancy Codes (CRCs) is attractive. CRCs
are commonly used in embedded systems and networks for
detecting data corruption [26]. However, we need to use a
CRC polynomial that suits our design. We use WCDMA-8
with the following polynomial: x8 + x7 + x4 + x3 + x+1. This
is divisible by x+1, meaning that it can catch any odd number
of errors [26]. In addition, assuming a 100-core chip with
a 1GHz clock and one message every 10 cycles per core, the
system can operate without any undetected errors for thousands
of centuries. This means that even a 7-bit CRC code might
be enough for our purpose. However, we choose WCDMA-
8 since there has been a lot of empirical and mathematical
analysis on the strength of the code.

3.4. Voltage Tuning Invocation

When a destination node detects an error, it drops the mes-
sage and waits for a retransmission from the source node. The
source node has a watchdog timer for each message. A mes-
sage is removed from the source node’s outgoing buffer only
when the response for it is received. Otherwise, after the watch-
dog timer reaches a certain value, the source node assumes
that the message could not get to the destination because of

an error, or that the message was faulty when it was received
by the destination node. At this point, the source node sends a
signal to the RMU to initiate a Vdd increase for the routers in
the expected message path. While the Vdd of a router (e.g., R j)
is adjusted, the network is not disabled. Instead, the routers
connected to R j get a signal as if the incoming buffers in R j
are full and cannot accept any more flits. Hence, such routers
temporarily buffer the flits to be sent to R j.

3.5. Voltage Tuning Algorithm

When the RMU is notified of an error, it obtains the message
path information from the source node. Given deterministic
routing, the RMU knows what are the routers that the message
was supposed to go through. Then, the RMU only increases the
Vdd of the routers in that path. After the Vdd of these routers is
increased by ΔVinc, since there may still be faulty messages in
the network, the Vdd of these routers is not increased again for a
short period. The duration of such a Hold period is determined
based on the average length of a path in the NoC, depth of the
input/output buffers, number of virtual channels, and number
of stages in a router (Section 5).

Figure 2 shows an example of how Tangle works for a 4x4
mesh NoC. In the figure, the routers with darker colors are
slower due to process variations. Figure 2a shows the initial
state, where all the routers receive the nominal Vdd of 800mV .
All messages are transmitted without errors. In the next few
epochs, the Vdd of all the routers is reduced while there are
no errors. Figure 2b shows the NoC when the Vdd of all the
routers is 700mV . At this point, when a message is transferred
from R1,1 to R4,4, two faults happen along the way in the
slowest routers R1,4 and R4,4. At the destination node, the
CRC check detects an error and the RMU increases the Vdd of
all the routers in this path by one ΔVinc to 730mV (Figure 2c).
Figure 2d shows the next epoch, where first the Vdd of all the
routers is reduced by 20mV . Then, a flit transmitted from R3,1

to R4,4 suffers an error in two routers. Therefore, the Vdd of all
the routers in this path is increased by 20mV . Next, Figure 2e
shows a retransmission of the message. However, the Vdd of
R3,1 is still too low and an error occurs. Hence, the Vdd of
all the routers in that path is raised by another 20mV . Tangle
continues to change the Vdd of the routers while gradually
reducing the ΔVinc and ΔVdec so that the system becomes stable
around the optimal Vdd for all the routers. Figure 2f shows
the steady state, where all the routers operate at low Vdd while
observing minimal error rates and performance loss.

Slow routers will be at the intersection of many faulty paths.
This is shown in Figure 3. In the figure, the route that goes
from R1,1 to R4,2 first fails. Hence the Vdd of all the routers in
this path is increased. However, since the Vdd of R2,2 is not
high enough, the route that goes from R2,1 to R3,4 encounters
an error. The overlap of these faulty paths causes the Vdd of
R2,2 to raise at a faster rate than in the other routers. Therefore,
in Tangle, the Vdd of the slowest routers increases faster than
that of other routers.

3.6. Multiple Routers per Vdd Domain

In a chip with current-technology voltage regulators, each NoC
Vdd domain will include multiple routers — e.g., 8 routers. In
this case, the Tangle algorithm remains largely the same. The



R1,1 

800 mV 

R1,2 

800 mV 

R1,3 R1,4 

800 mV 

R2,1 

800 mV 

R2,2 

800 mV 

R2,3 

800 mV 

R2,4 

800 mV 

R3,1 

800 mV 

R3,2 

800 mV 

R3,3 

800 mV 

R3,4 

800 mV 

R4,1 

800 mV 

R4,2 

800 mV 

R4,3 

800 mV 

R4,4 

800 mV 

800 mV 

Core1,1 

(a) Initial state.

R1,1

700 mV

R1,2

700 mV

R1,3 R1,4

700 mV

R2,1

700 mV

R2,2

700 mV

R2,3

700 mV

R2,4

700 mV

R3,1

700 mV

R3,2

700 mV

R3,3

700 mV

R3,4

700 mV

R4,1

700 mV

R4,2

700 mV

R4,3

700 mV

R4,4

700 mV

700 mV

Core1,1

(b) State after a few epochs.

R1,1

730 mV

R1,2

730 mV

R1,3 R1,4

730 mV

R2,1

700 mV

R2,2

700 mV

R2,3

700 mV

R2,4

730 mV

R3,1

700 mV

R3,2

700 mV

R3,3

700 mV

R3,4

730 mV

R4,1

700 mV

R4,2

700 mV

R4,3

700 mV

R4,4

730 mV

730 mV

Core1,1

(c) After Vdd increase in the faulty path.

R1,1

710 mV

R1,2

710 mV

R1,3 R1,4

710 mV

R2,1

680 mV

R2,2

680 mV

R2,3

680 mV

R2,4

710 mV

R3,1

680 mV

R3,2

680 mV

R3,3

680 mV

R3,4

710 mV

R4,1

680 mV

R4,2

680 mV

R4,3

680 mV

R4,4

710 mV

710 mV

Core1,1

(d) State in the next epoch.

R1,1

710 mV

R1,2

710 mV

R1,3 R1,4

710 mV

R2,1

680 mV

R2,2

680 mV

R2,3

680 mV

R2,4

710 mV

R3,1

700 mV

R3,2

700 mV

R3,3

700 mV

R3,4

730 mV

R4,1

680 mV

R4,2

680 mV

R4,3

680 mV

R4,4

730 mV

710 mV

Core1,1

(e) After one Vdd increase in the faulty path.

R1,1

590 mV

R1,2

640 mV

R1,3 R1,4

720 mV

R2,1

620 mV

R2,2

700 mV

R2,3

660 mV

R2,4

630 mV

R3,1

730 mV

R3,2

620 mV

R3,3

600 mV

R3,4

650 mV

R4,1

590 mV

R4,2

630 mV

R4,3

640 mV

R4,4

710 mV

610 mV

Core1,1

(f) Steady state after enough epochs.

Figure 2: High-level example of Tangle’s Vdd tuning algorithm for a 4x4 mesh NoC. Here, darker routers are slower due to process variations.

one change is that, when Tangle increases the Vdd of the routers
in the path of a faulty message, it does so by increasing the
Vdd of the domains traversed by the message. Such domains
contain routers that were not in the path of the message.

With this design, the average steady-state Vdd of the routers
ends up being higher than if each router had its own domain.
This is because fast routers that could operate at a low Vdd now
have to use a Vdd as high as the one needed by the slowest
router in their domain. With higher steady-state Vdd values, the
energy savings will be lower. For the same reason, the time to
convergence to steady-state Vdd will be shorter. In all of our
experiments, the Vdd always converged to a steady-state value.

R1,1

670 mV

R1,2

670 mV

R1,3 R1,4

670 mV

R2,1 R2,2 R2,3 R2,4

R3,1 R3,2 R3,3 R3,4

R4,1 R4,2 R4,3 R4,4

670 mV

Core1,1

670 mV 670 mV 670 mV670 mV

670 mV 670 mV 670 mV670 mV

670 mV 670 mV 670 mV670 mV

Figure 3: Slow routers are at the intersection of many faulty paths.

4. Tangle Design Aspects

4.1. Dealing with Contention

In workloads with high network traffic, there will be contention.
Although long-duration message stalls are not very likely in
NoCs [34], it is conceivable that the watchdog timer in a sender
could time-out on a message because of contention. Conse-
quently, in Tangle, when a timeout occurs, the system first
checks that the message is not sitting in the network before it
increases the Vdd of the domains in the path of the potentially-
faulty message. Specifically, before the RMU initiates a Vdd
increase, the RMU checks if the routers in the message path
buffer the message locally (Figure 4). If they do, the RMU
instructs the sender to reset the watchdog timer to give more
time to the message delivery; otherwise, the RMU increases
the Vdd in the domains and the sender resends the message.

4.2. Reliability Management Unit (RMU)

The RMU is a logic module connected to all of the Vdd domains
in the NoC. At the beginning of each epoch, it sends a signal
to lower the Vdd of all of the domains. In addition, when
it receives information from a sender node on a timeout, it
computes the message path and checks if the routers in the
path have the message in their buffers. If they do, the RMU
tells the sender to give more time to the message delivery.
Otherwise, the RMU sends a signal to increase the Vdd of all of



R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4

R3,1 R3,2 R3,3 R3,4

R4,1 R4,2 R4,3 R4,4

Core1,1

RMU

Figure 4: Handling timeouts due to congestion.

the domains in the message path, and tells the sender to resend
the message.

The RMU uses a special network. The nework has very
narrow links, since it only needs to transfer a few small control
signals relatively infrequently. For scalability, in chips with
many Vdd domains, the RMU network should be built in a
hierarchical fashion with an H-tree structure (Figure 5). In the
figure, each building block is a 4x4 mesh network with a local
RMU. The local RMUs are connected to a global RMU.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RMU

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RMU

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RMU

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RMU

RMU

Figure 5: Hierarchical design of the RMU and its network.

4.3. Costs of Tangle Design

Tangle has four main costs that we analyze here.
4.3.1. Cost of Voltage Regulation. Tangle needs support for
multiple Vdd domains. Voltage regulation induces a power loss
of about 10% or more [24]. Consequently, to be conservative,
we assume as baseline a conventional NoC without Vdd do-
mains, and penalize our Tangle NoC with a 10% additional
power. All the numbers reported in this paper for the power
and energy consumption of a Tangle NoC always include this
additional 10% power and energy overhead. In the future,
we expect that, with a hierarchical, LDO-based Vdd regulator
system, the losses will be smaller (Section 2.3).
4.3.2. Cost of Error Detection and Correction. Tangle adds
an 8-bit CRC to each 128-bit flit (Section 3.3). There is energy
and performance overhead associated with sending these codes
over the network, encoding at the source node, and checking
at the destination node. In our experiments, we account for

these energy and performance overheads. Note, however, that
the performance overhead of CRC usage is negligible: it only
adds one extra cycle for the encoding, while the error checking
is done in a shadow path speculatively.
4.3.3. Cost of the RMU and its Network. As per Section 4.2,
the RMU operation is simple and the links of its network are
very narrow. Hence, the RMU and its network use very little
area. Moreover, since they are used relatively lightly, they add
a negligible energy overhead. To deal with contention timeouts
(Section 4.1), the RMU network can inspect whether a given
message is present in a router. For this purpose, we have
comparison logic in the router’s input and output buffers. This
logic is off the critical path. The comparisons to the elements in
a given buffer are performed sequentially, without the need for
additional buffer ports. Because of the relatively low frequency
of these comparisons, of message retransmission, and of Vdd
changes in general, we will see in the evaluation that the overall
performance overhead of the RMU and its network is very
small.
4.3.4. Cost of Message Retransmission. If we assume that a
network without Tangle operates with absolutely no observed
errors, then another cost of Tangle is retransmitting messages
that suffered an error. Note that the number of errors induced
by Tangle is small: the vast majority of the performance gains
in Tangle come from exploiting the Vdd safety guardband,
rather than from actually operating in the error region. Hence,
while we model the energy and execution overhead of retrans-
missions, the impact is minor.

There are no explicit acknowledgment messages beyond
the response messages provided by the cache coherence pro-
tocol. In typical protocols, there are always responses: a read
request is followed by a response with the data requested; a
write request is followed by a response with the write com-
pletion acknowledgment, and an invalidation is followed by
an acknowledgment. In case the protocol does not provide a
response for a transaction, we need to add it to Tangle. The
requests are temporarily kept in buffers at the network entry
ports. A buffer entry is deallocated when its corresponding
response is received. If the response does not come within a
certain time window, a timeout occurs. We model the energy
overhead of these buffers as part of Tangle’s overhead.

5. Experimental Methodology
To evaluate the potential of Tangle, we use a comprehensive
methodology involving CAD tools for synthesis and criti-
cal path extraction, architecture-level systematic and random
process-variation modeling, and microarchitectural simulation
of a multiprocessor chip with an NoC for performance and
energy. Details of each component follow, along with a de-
scription of the benchmarks.

We use the Verilog implementation of a virtual channel
router from [41]. We modify this wormhole-switched router
design to get a state-of-the-art 3-stage router similar to the one
used in [40]. Next, the Synopsys Design Compiler is used to
perform a timing analysis on this design. For each stage, we
extract the 32 slowest paths and their netlists. These paths can
potentially cause timing violations due to parameter variations.

We use a 3-stage router rather than a more aggressive single-
cycle one for two reasons. First, single-cycle routers tend



Core Architecture Parameters

Cores per chip; frequency 64; 1GHz

Fetch, issue, and commit 2 per cycle

ROB; Ld/St queue 64 entries; 16/16 entries

Issue queue; I-fetch queue 64 entries; 32 entries

Branch (BR) predictor Tournament (bimodal + 2-level)

BR target buffer; history table 1024 entries, 2-way; 2048 entries

Memory System Parameters

L1 data cache 32KB, 2-way, 2 cycles latency, 64B line

L1 instr. cache 32KB, 2-way, 2 cycles latency, 64B line

L2 cache 32MB shared, static 64-bank addressing

Bank: 8-way, 64B line, 6 cycles latency (local)

Main memory 260 cycles latency, 4 memory controllers

Tangle Network-on-Chip Parameters

Topology; routing 8x8 2D-mesh; X-Y (and Y-X) wormhole routing

Number virtual channels 2 per each physical channel

Buffer depth in router 8 flits

Min. Vdd tuning step 10mV , 20 cycles latency

Max. Vdd tunings per epoch 2 times

Retransmission buffer depth 8 messages

Nominal Vdd 825mV (includes guardband)

Length of an epoch 50,000 cycles

Num. routers per Vdd domain 16, 4, 1 (default)

Penalty to all Tangle NoCs 10% power and energy due to Vdd regulation

Process Variation Parameters

Tech. node; Vdd guardband 11nm; 10%

Total Vth (σ/μ) 12.5% (equal random & systematic)

Total Le f f (σ/μ) 6.25% (equal random & systematic)

Correlation range φ 0.1 (for both Vth and Le f f )

Table 1: Default architecture and variation parameters. The memory hierarchy

latencies refer to round-trip from the processor.

to operate at a slower clock rate, and single cycle per hop is
actually achieved only when the load is low. Second, these
routers often rely on speculative operation, which makes them
less energy efficient [28].

To account for process variation, we use an updated version
of VARIUS [42] called VARIUS-NTV [21]. Since we explore
a future chip design, we perform the variation modeling at
11nm. The baseline chip is composed of 64 nodes with private
L1, an NoC with 64 routers, and 64 banks of a shared L2. To
obtain the timing error rates due to process variation, we first
generate the chip floorplan. Next, the logic efforts, which we
extract from the synthesis phase, are used to enable a better
delay modeling of the different stages of routers.

We use a cycle-level microarchitectural simulator of a multi-
processor chip with an NoC [40]. The simulator models both
performance and energy consumption. As shown in Table 1,
the baseline design of the network has 64 routers in an 8x8
2D-mesh. Each router has 5 physical channels (PCs), includ-
ing the local port from the corresponding core to the router,
and 2 virtual channels (VCs) multiplexed onto each PC for
deadlock-free routing. A data message consists of six 128-bit
flits and we use a buffer depth of 8 flits per VC. We model a
wormhole-switched network with deterministic X-Y routing
and credit-based flow control. For response messages, we use
Y-X routing to overlap the forward and backward routes be-
tween a pair of source and destination nodes. The router, along
with the proposed modifications, is implemented in structural
RTL Verilog and synthesized using the Synopsys Design Com-

piler with Nangate 45nm open cell library. It is then scaled
down to 11nm based on rules given in [2] and technology
parameters from the ITRS report [19].

The simulator also models the processors and caches. The
processors are 2-issue out-of-order Alpha DEC EV4-like cores.
The frequency of the cores is set to 1GHz, to save power and
enable full-system operation under a typical power envelope.

We explore different network configurations. For example,
we perform experiments with 16, 4, or 1 router per Vdd domain
in the network. Given that we are examining a future chip
design, the default system in our evaluation has 1 router per Vdd
domain. We also vary the size of the network from 4x4 nodes to
10x10 nodes for scalability analysis. For each network size, we
employ VARIUS-NTV to generate chips with representative
parameter variation profiles.

After the Vdd of a router has been increased, its Vdd Hold
period (Section 3.5) is computed as follows. For an 8x8
mesh network, it is known that the average length of a path is
≈16/3. Therefore, the expected period until faulty messages
are drained from the network with no contention is: 2 (number
of VCs) × 8 (maximum buffer depth per VC) × 3 (number of
router stages) × 16/3 (average length of a path) = 256 cycles.
We conservatively set the Hold period to 300 cycles.

The dynamic and leakage power numbers are generated us-
ing Orion [49] or, for some important measures such as the
power in the buffers of the routers, using our synthesis exper-
iments. Recently, there have been some concerns about the
accuracy of Orion’s results [16, 46]. However, these concerns
primarily target Orion’s power consumption in router buffers,
and Orion’s router area estimation. We do not use either of
these estimations. For the power in the router buffers, our
synthesis experiments estimate about 6.54mW , compared to
the 6.93mW reported in [46] as generated by SPICE.

For our experiments, we run 15 multi-programmed work-
loads. They are a subset of those used in [34]. Of these work-
loads, 3 are commercial (sap, sjas, and tpcw), 9 are engineering
(429.mcf, 433.milc, 436.cactusADM, 437.leslie3d, 450.soplex,
459.GemsFDTD, 470.lbm, 471.omnetpp, and 483.xalancbmk)
and 3 are scientific (art, ocean, and swim). We use Sim-
Point [43] to select representative windows of instructions
for simulation. For each workload, we use 8-15 simpoints.
As a result, each core executes at least 5M instructions after
warm-up.

6. Evaluation
In this section, we start by evaluating different aspects of the
Tangle design. Then, we perform a design space exploration
and, finally, analyze the sensitivity of our results to several
circuit and technology-based parameters.

6.1. Main Results

6.1.1. Probability of a Timing Error. Figure 6 considers a
chip with a Tangle NoC and a given process variation profile.
It shows the probability of a timing error in each of the three
pipeline stages of the 64 routers, as a function of the Vdd
applied. Figures 6a, 6b, and 6c correspond to the first, second,
and third stages of the pipeline, respectively. In a figure, each
curve corresponds to a particular router in the NoC.



1.0E-18

1.0E-15

1.0E-12

1.0E-09

1.0E-06

1.0E-03

1.0E+00
Pr

ob
ab

ili
ty

 o
f E

rr
or

Supply Voltage (V)

(a) Probability of error as a function of Vdd in the first stage.

1.0E-18

1.0E-15

1.0E-12

1.0E-09

1.0E-06

1.0E-03

1.0E+00

Pr
ob

ab
ili

ty
 o

f E
rr

or

Supply Voltage (V)

(b) Probability of error as a function of Vdd in the second stage.

1.0E-18

1.0E-15

1.0E-12

1.0E-09

1.0E-06

1.0E-03

1.0E+00

Pr
ob

ab
ili

ty
 o

f E
rr

or

Supply Voltage (V)

(c) Probability of error as a function of Vdd in the third stage.

Figure 6: Impact of Vdd on the probability of a timing error in a particular

stage of the router pipeline across all 64 routers of the NoC.

In the figure, the Y-axes are logarithmic. Hence, there is a
rapid increase in the probability of a timing error as we reduce
the Vdd . We can observe that process variations induce a wide
distribution of the minimum error-free Vdd across the chip. For
Vdd values above 750mV , all the 64 routers are largely free
of error; the chance of error in any stage of any router is less
than 10−18 errors per cycle, which is equal to a few decades of
operation without errors. However, some routers can operate
in a Vdd as low as around 550mV without errors. Finally, as
can be seen in the figure, the first stage of the router pipeline
is the one that imposes the most restrictions on the timing
requirements. The reason is that it has relatively longer critical
paths.

6.1.2. Voltage of Routers over Time. Figure 7 shows the
Vdd of 4 routers under Tangle over time. The plot also shows
a curve for the average Vdd of all of the 64 routers in the
NoC. This experiment was conducted while running the sap
workload. The X-axis is shown in number of epochs. The
initial Vdd of all the routers starts at 825mV . The Vdd reduces
rapidly during the first few epochs. Then, the Vdd step size
gradually shrinks to limit the fluctuations around the optimal
values. After around 30 epochs, the Vdd of each router becomes
stable, with small oscillations. At that point, one of the routers
ends up operating below 600mV , while another operates above

700mV . The average Vdd of the routers converges to 650mV ,
which is a significant reduction from the initial Vdd value.

0.75

0.8

0.85

0.9

Vd
d�

(V
)

Router�1 Router�2 Router�3 Router�4 Average

0.5

0.55

0.6

0.65

0.7

Ro
ut

er
�V

Epoch�Number

Figure 7: Vdd of different routers stabilizing over time. There is wide variation

in the final Vdd of different routers across the system.

Figure 8 shows a snapshot of the Vdd map of the routers in
our 8x8 Tangle system, running sap, after the Vdd values sta-
bilize. The systematic component of process variation causes
a spatial correlation in the Vdd of the routers. As can be seen,
Tangle enables the routers to operate at a wide range of Vdd val-
ues, ranging from 590mV to 730mV . This wide range provides
an excellent opportunity for power savings. If we used a single
Vdd for the whole NoC, the system would have to operate at
730mV . It is also interesting to compare these Vdd values to
the curves in Figure 6. We see that Tangle attains Vdd values
that are close to the minimum Vdd values of the routers.

730 630 650 700 690 680 620 720

630 670 600 620 660 680 600 590

660 650 680 660 670 640 660 660

700 590 610 630 680 610 630 690

680 640 660 610 640 600 690 730

640 650 640 620 670 610 630 660

630 620 600 610 710 630 650 630

700 660 670 670 670 680 640 660

Figure 8: Vdd of the routers in an 8x8 Tangle NoC after the Vdd stabilize. The

lighter colors show lower Vdd values.

In all the experiments, we observe that Tangle settles the
Vdd in just a few milliseconds. Application phases tend to
be at least 100ms long [43]. This gives Tangle ample time to
stabilize the Vdd . Furthermore, temperature changes occur at
the granularity of seconds. Hence, Tangle can easily adapt Vdd
to temperature changes as well.
6.1.3. Energy Savings for Different Voltage Domain Sizes.
The primary objective of Tangle is to reduce the energy con-
sumption of the NoC by variation-aware reduction of Vdd with-
out changing the frequency. Figure 9 shows the relative energy
consumption of the Tangle NoC over a conventional NoC (i.e.,
one with no Vdd reduction and no Vdd domains) for different
applications. In the figure, we keep the NoC fixed with 64
routers, and vary the size of the Vdd domains, from 1 router per
domain to 4, and to 16. Recall that we penalize the Tangle NoC
with a 10% extra energy due to Vdd regulation inefficiencies.

The figure shows that Tangle attains substantial energy re-
ductions for all the workloads. For the future chip with one
router per Vdd domain, Tangle reduces the energy by 28%
on average. As we increase the Vdd domain size, the energy
saved decreases. The reason is that, when an error is detected,



0.5 

0.6 

0.7 

0.8 

0.9 

1 
N

or
m

al
iz

ed
 E

ne
rg

y 
Co

ns
um

pt
io

n 1 router/domain 4 routers/domain 16 routers/domain 

Figure 9: Normalized energy consumption of a 64-router Tangle NoC with

different numbers of routers per Vdd domain.

Tangle increases the Vdd for a larger number of routers. This
causes some routers to have a higher Vdd than they strictly
need. Nonetheless, Tangle is robust in the presence of multiple
routers per Vdd domain. For 16 routers per domain, which
can be easily supported with current technology, the average
energy reduction of Tangle is 22%.

6.1.4. Energy Savings for Different NoC Sizes. Figure 10
shows the relative energy consumption of the Tangle NoC over
a conventional NoC for different mesh NoC sizes. The figure
shows bars for NoCs with 16, 36, 64, and 100 routers. Each
router is associated with one processor. We use our default of
one router per Vdd domain.

0.5 

0.6 

0.7 

0.8 

0.9 

1 

N
or

m
al

iz
ed

 E
ne

rg
y 

Co
ns

um
pt

io
n 16 routers 36 routers 64 routers 100 routers 

Figure 10: Normalized energy consumption of a Tangle NoC with different

numbers of routers.

As shown in the figure, Tangle obtains substantial energy
reductions across different NoC sizes. The average energy
saved for 16, 36, 64, and 100 router NoCs is 35%, 32%, 28%,
and 26%, respectively. We can see that Tangle is a scalable
scheme. However, the relative energy savings reduce as the
NoC increases in size. The reason is that the average distance
between communicating nodes increases with the NoC size.
This means that, on an error, Tangle will modify the Vdd of a
larger number of routers. Effectively, the granularity of Vdd
tuning becomes coarser, and there is less control over the exact
Vdd of each router. To overcome this issue, in very large NoCs,
we can split long paths into several shorter paths, and perform
error checking more frequently as a message travels in the
network. For instance, if a path from source to destination is
20 hops, we can split it into two paths and perform the error
checking at the tenth hop and at the destination.

6.1.5. Performance Overhead. Tangle can add performance
overhead to the execution — the result of message timeouts
and retransmissions, and of periods of stall due to Vdd tuning.
This overhead, however, is very small. Figure 11 shows the
execution time of the applications using the Tangle NoC nor-
malized to the execution time using a conventional NoC. The
figure shows the data while varying the number of routers in
the NoC from 16 to 100. We can see that the average perfor-

mance overhead of Tangle for all the NoC sizes is around 1%.
This is a negligible overhead.

1.04

1.06

1.08

ec
ut

io
n�

Ti
m

e 16�routers 36�routers 64�routers 100�routers

0.98

1

1.02

N
or

m
al

iz
ed

�E
xe

Figure 11: Normalized execution time of the applications running on a Tangle

NoC with different numbers of routers.

It can be shown that the performance overhead of Tangle
NoCs with multiple routers per Vdd domain is also negligible.

6.2. Design Space Exploration

There are many hardware and policy parameters involved in
the design of Tangle. However, due to space considerations,
we only present the exploration of a few parameters that have
especially interesting behaviors. They are: the size of Vdd
step increases in a router, the maximum number of Vdd step
increases allowed per epoch, and the use of variable- versus
fixed-sized Vdd step changes. To reasonably determine the best
value of each parameter, we study the impact of that parameter
on the average Vdd of all the routers, after they stabilize in
an 8x8 Tangle mesh. Further, we study the impact of each
parameter on the number of epochs needed for the Tangle
system to converge to stable Vdd values.

6.2.1. Size of Voltage Step Increases in a Router. In this sec-
tion, we analyze the best ratio of ΔVinc to ΔVdec. This analysis
is shown in Figure 12. Given a certain Vdd tuning epoch, we
want to know, for a δ decrease of Vdd (at the beginning of the
epoch), how many δ s we should increase the Vdd by, as soon as
an error is detected. We varied the ΔVinc from δ to 3δ s in this
experiment. As we increase ΔVinc, Vdd values can be changed
at a faster rate, and fewer steps are required to get to higher
Vdd values. However, there is less control over the Vdd of each
router. This results in higher average Vdd values (Figure 12a),
although it reduces the number of epochs that it takes for the
convergence of the algorithm (Figure 12b). In practice, our
main concern is to keep the Vdd low, while the performance
overhead of our design is already low enough that reducing the
number of epochs needed for the convergence of the algorithm
will not make any difference in performance. Consequently,
we set ΔVinc to be equal to ΔVdec.

6.2.2. Maximum Number of Voltage Step Increases per
Epoch. The next parameter that we study is the maximum
number of Vdd step increases allowed in an epoch. As shown
in Figure 13, we vary this parameter from 2 to 8. We did not try
allowing only a single Vdd increase per epoch because, in such
a scenario, the increase can at most undo the Vdd reduction that
occurred at the beginning of the epoch — never bring the Vdd
higher than that. This eventually results in intolerable over-
heads. From the figure, we see that, when we allow many Vdd
increases per epoch, the average Vdd of the routers increases
slightly (Figure 13a). This is because, due to the end-to-end
error detection used, we may induce several consecutive Vdd



0.6

0.65

0.7

0.75

0.8

0.85
Av

er
ag

e 
Vo

lta
ge

 o
f R

ou
te

rs 1xDelta 2xDelta 3xDelta

(a) Average Vdd of all the routers after they stabilize.

0

10

20

30

40

N
um

be
r o

f E
po

ch
s

1xDelta 2xDelta 3xDelta

(b) Number of epochs needed to achieve stable Vdd values.

Figure 12: Effect of varying ΔVinc on the average Vdd obtained, and the number of epochs needed to obtain stable Vdd for the routers in an 8x8 Tangle NoC.

0.6

0.63

0.66

0.69

0.72

0.75

Av
er

ag
e 

Vo
lta

ge
 o

f R
ou

te
rs 2 times 4 times 8 times

(a) Average Vdd of all the routers after they stabilize.

0

10

20

30

40

N
um

be
r o

f E
po

ch
s 2 times 4 times 8 times

(b) Number of epochs needed to achieve stable Vdd values.

Figure 13: Effect of varying the maximum number of times that we allow a Vdd step increase in an epoch.

increases for routers that are already operating above their op-
timal Vdd value. As the same time, when we allow many Vdd
increases per epoch, the system takes relatively fewer epochs
to converge (Figure 13b). This is mainly due to the fact that the
set of Vdd values that Tangle will converge to is higher. Overall,
we set the maximum number of Vdd step increases to two. The
reason behind this is that we get a lower average Vdd .

6.2.3. Variable- vs Fixed-Sized Voltage Step Changes. The
last design parameter that we study is whether to use variable-
sized or fixed-sized Vdd step changes. With variable-sized
changes, we start with a relatively large step (i.e., 50mV for
ΔVinc and ΔVdec) and gradually reduce it as Vdd gets to low
values. For our experiment, we set the minimum Vdd step
change to 10mV for both approaches. Hence, the fixed-sized
approach always uses 10mV changes. Through experimenta-
tion, we find that both approaches achieve almost the same
average Vdd values after stabilization. However, as can be seen
in Figure 14, the variable-sized approach reaches these Vdd
values considerably faster. Hence, we use the variable-sized
approach in our design.

0

10

20

30

40

N
um

be
r o

f E
po

ch
s fixed variable

Figure 14: Number of epochs needed to achieve stable Vdd values with

variable-sized or fixed-sized Vdd step changes.

6.3. Sensitivity Analysis

We now analyze the sensitivity of our energy and performance
results to the Vdd tuning latency, the minimum Vdd tuning step
size, and the Vdd guardband.

6.3.1. Voltage Tuning Latency. We study the sensitivity of
Tangle to the latency of Vdd changes (in 10mV steps). We
set the latency to 5, 20, 50 or 100 cycles. Based on what
has been proposed in the literature, we use 20 cycles as the
default latency for Tangle — although even faster approaches
are being currently explored [24]. As we increase the latency
to 50 and 100 cycles, we get only small changes in the energy
savings and the performance overhead. Specifically, with 100
cycles, the energy savings of Tangle decrease to 26% of the
conventional NoC energy (rather than 28%). In addition, the
performance overhead over the conventional NoC reaches 2%.
6.3.2. Minimum Voltage Tuning Step Size. Figure 15 exam-
ines the impact of the minimum Vdd tuning step size on the
energy savings of Tangle. We vary this parameter from 5mV
to 20mV . As the step size increases, the control over the Vdd of
each router becomes coarser. This reduces the stability on the
Vdd values across the system, and eventually results in higher
Vdd values. Based on the state-of-the-art Vdd regulation tech-
niques [27], we set the default minimum step size in Tangle
to 10mV . If we had to set the minimum step size to 20mV ,
the energy savings of Tangle would decrease to 21% of the
conventional NoC energy (rather than 28%). The performance
overhead remains almost the same across the different Vdd
tuning step sizes.

0.5 

0.6 

0.7 

0.8 

0.9 

1 

N
or

m
al

iz
ed

 E
ne

rg
y 

Co
ns

um
pt

io
n 5 mV 10 mV 20 mV 

Figure 15: Varying the minimum Vdd tuning step in Tangle.

6.3.3. Voltage Guardband. Finally, we consider the impact
of the Vdd guardband on the energy savings of Tangle. Fig-



ure 16 shows the energy consumption of the Tangle NoC over
a conventional NoC for different Vdd guardbands. We consider
guardbands of 5%, 10% (our default one), 15%, and 20%. As
expected, the more conservative the conventional NoC is (i.e.,
the higher its Vdd guardband is), the higher the gains of Tangle
are. For a 20% guardband, the average energy reduction of
Tangle is nearly 40%.

0.8

0.9

1

on
su

m
pt

io
n 5%�Guardband 10%�Guardband 15%�Guardband 20%�Guardband

0.5

0.6

0.7

N
or

m
al

iz
ed

�E
ne

rg
y�

Co

Figure 16: Normalized energy consumption of a Tangle NoC for different

Vdd guardbands.

Figure 17 shows similar data when the 64-router NoC is
organized with different numbers of Vdd domains. Specifically,
it shows the energy consumption of the Tangle NoC over a
conventional NoC for 1 router per Vdd domain, 4, and 16. To
reduce the number of bars, the figure only shows the average
across all the workloads. As expected, as we increase the
number of routers per Vdd domain, the energy savings decrease
slowly. Overall, however, Tangle’s gains are robust across a
variety of environments.

0 8

0.9

1

Co
ns

um
pt

io
n 1�router/domain 4�routers/domain 16�routers/domain

0.5

0.6

0.7

0.8

5%�Guardband 10%�Guardband 15%�Guardband 20%�Guardband

N
or

m
al

iz
ed

�E
ne

rg
y�

C

Figure 17: Normalized energy consumption of a 64-router Tangle NoC for

different Vdd guardbands and different numbers of routers per Vdd domain.

7. Related Work
There have been many proposals for reliable NoC designs.
Some have focused on the impact of wearout and process
variations. Nicopoulos et al. evaluated the impact of process
variations on NoCs with rigorous circuit analysis [37]. Their
analysis does not include a fault model or the impact of faults
at the system level. Vicis is a redundancy-based microarchitec-
tural technique that provides system-level fault-tolerance for
routers in an NoC when dealing with a few hard faults caused
by gradual wearout [12]. Fu et al. consider both process varia-
tions and negative bias temperature instability (NBTI) effects
on NoC router pipelines [13]. Li et al. studied the design of an
NoC under process variations and realized that a high degree
of process variations can force major design modifications to
the underlying network architecture [29]. Ogras et al. explored
the effectiveness of multiple voltage-frequency domains when
dealing with deep sub-micron process variations in NoCs [39].

Orthogonal to these efforts, there are studies that focus on
network links and try to compensate for the timing variations

of the links by automatic detection and time borrowing or cy-
cle tuning [33, 44]. Time borrowing or stealing is a technique
that has been used to tackle process variations in the processor
pipeline [30, 32, 47]. However, this class of techniques, if
applied to routers, requires circuit-level modification to the
underlying router design, and it is mostly done statically dur-
ing manufacturing time. This prevents these techniques from
adapting to the runtime conditions of the system. Additionally,
for high degrees of process variations, these proposals require
changes to the timing characteristics of the circuit.

A bus-encoding technique has been proposed to decrease
the crosstalk between communication wires and prevent adver-
sarial switching patterns [45]. In addition, many techniques
have been proposed which look at the fault tolerance of both
links and routers in the presence of permanent and transient
faults [1, 9, 40]. This class of solutions incur higher overheads
as they are proactive and deal with all types of faults in the
same way. Instead, our goal is to adjust the circuit parame-
ters to avoid these failures in the NoC. To enhance the energy
efficiency and reduce the buffering requirements in an NoC,
Kodi et al. advocate multi-purposing repeater logic on links as
storage elements [25].

8. Conclusion
This paper presented a novel approach to save energy in an
on-chip network in the presence of process variations. The
proposal, called Tangle, monitors the errors of messages as
they traverse the network and, based on the observations, dy-
namically decreases or increases the Vdd of groups of network
routers. With Tangle, the different Vdd values applied to dif-
ferent groups of network routers progressively converge to
their lowest, variation-aware, error-free values — always keep-
ing the network frequency unchanged. This saves substantial
network energy.

In a simulated 64-router network with 4 Vdd domains, Tangle
reduced the network energy consumption by an average of 22%
with negligible performance impact. In a future network design
with one Vdd domain per router, Tangle lowered the network
Vdd by an average of 21%, reducing the network energy con-
sumption by an average of 28% with negligible performance
impact.

References
[1] D. Bertozzi, L. Benini, and G. de Micheli. Low Power Error Resilient

Encoding for On-Chip Data Buses. DATE, 2002.

[2] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro,
19(4):23–29, July 1999.

[3] S. Y. Borkar. Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation. IEEE Micro,
25(6):10–16, 2005.

[4] S. Y. Borkar. Future of interconnect fabric: a contrarian view. In SLIP,
2010.

[5] R. C. Bose and D. K. Ray-Chaudhuri. On A Class of Error Correcting
Binary Group Codes. Information and Control, 3(1):68–79, 1960.

[6] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning,
J. Fryman, I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meis-
ter, A. K. Mishra, W. R. Pinfold, J. Teller, J. Torrellas, N. Vasilache,
G. Venkatesh, and J. Xu. Runnemede: An Architecture for Ubiquitous
High-Performance Computing. In HPCA, Feb. 2013.

[7] L. Chang, R. Montoye, B. Ji, A. Weger, K. Stawiasz, and R. Dennard. A
Fully-Integrated Switched-Capacitor 2:1 Voltage Converter with Regu-
lation Capability and 90% Efficiency at 2.3A/mm2. In Symposium on
VLSI Circuits, June 2010.



[8] S. Dighe, S. R. Vangal, P. A. Aseron, S. Kumar, T. Jacob, K. A. Bow-
man, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. K. De, and
S. Borkar. Within-Die Variation-Aware Dynamic-Voltage-Frequency-
Scaling With Optimal Core Allocation and Thread Hopping for the
80-Core TeraFLOPS Processor. J. Solid-State Circuits, 46(1):184–193,
2011.

[9] T. Dumitras, S. Kerner, and R. Marculescu. Towards on-chip fault-
tolerant communication. ASP-DAC, pages 225–232, 2003.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Zeisler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In MICRO, Dec. 2003.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In ASPLOS, pages
301–312, 2012.

[12] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester.
Vicis: A reliable network for unreliable silicon. DAC, pages 812–817,
2009.

[13] X. Fu, T. Li, and J. A. B. Fortes. Architecting reliable multi-core network-
on-chip for small scale processing technology. In DSN, pages 111–120,
2010.

[14] H. R. Ghasemi, A. Sinkar, M. Schulte, and N. S. Kim. Cost-Effective
Power Delivery to Support Per-Core Voltage Domains for Power-
Constrained Processors. In Design Automation Conference, June 2012.

[15] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen,
and C. B. Zilles. Blueshift: Designing processors for timing speculation
from the ground up. In HPCA, 2009.

[16] M. Hayenga, D. Johnson, and M. Lipasti. Pitfalls of ORION-based
Simulation. In WDDD, 2012.

[17] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-
guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, and R. Van Der Wijngaart. A 48-Core IA-32
Processor in 45 nm CMOS Using On-Die Message-Passing and DVFS
for Performance and Power Scaling. J. Solid-State Circuits, 46(1):173–
183, 2011.

[18] M. Y. Hsiao, D. C. Bossen, and R. T. Chien. Orthogonal latin square
codes. IBM J. Res. Dev., 14(4):390–394, July 1970.

[19] International Technology Roadmap for Semiconductors (ITRS),. 2012
Update.

[20] F. Ishihara, F. Sheikh, and B. Nikolic. Level Conversion for Dual-Supply
Systems. In IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, February 2004.

[21] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas. VARIUS-
NTV: A Microarchitectural Model to Capture the Increased Sensitivity
of Manycores to Process Variations at Near-Threshold Voltages. DSN,
2012.

[22] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe. Multi-bit Error
Tolerant Caches Using Two-Dimensional Error Coding. MICRO, pages
197–209, 2007.

[23] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C. R. Das. Design
and analysis of an NoC architecture from performance, reliability and
energy perspective. ANCS, pages 173–182, 2005.

[24] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core DVFS using on-chip switching regulators. In HPCA,
pages 123–134, 2008.

[25] A. K. Kodi, A. Sarathy, and A. Louri. iDEAL: Inter-router Dual-Function
Energy and Area-Efficient Links for Network-on-Chip (NoC) Architec-
tures. In ISCA, pages 241–250, 2008.

[26] P. Koopman and T. Chakravarty. Cyclic Redundancy Code (CRC) Poly-
nomial Selection For Embedded Networks. In DSN, 2004.

[27] S. Kose and E. G. Friedman. On-chip point-of-load voltage regulator for
distributed power supplies. GLSVLSI, 2010.

[28] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha. A 4.6Tbits/s
3.6GHz single-cycle NoC router with a novel switch allocator in 65nm
CMOS. In ICCD, pages 63–70, 2007.

[29] B. Li, L.-S. Peh, and P. Patra. Impact of Process and Temperature
Variations on Network-on-Chip Design Exploration. In NOCS, 2008.

[30] X. Liang and D. Brooks. Mitigating the impact of process variations on
processor register files and execution units. In MICRO, pages 504–514,
2006.

[31] X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Replacing 6T SRAMs
with 3T1D DRAMs in the L1 Data Cache to Combat Process Variability.
IEEE Micro, 28(1):60–68, Jan. 2008.

[32] X. Liang, G.-Y. Wei, and D. Brooks. Revival: A Variation-Tolerant
Architecture Using Voltage Interpolation and Variable Latency. IEEE
Micro, 29(1):127–138, Jan. 2009.

[33] A. K. Mishra, R. Das, S. Eachempati, R. R. Iyer, N. Vijaykrishnan, and
C. R. Das. A case for dynamic frequency tuning in on-chip networks. In
MICRO, pages 292–303, 2009.

[34] A. K. Mishra, N. Vijaykrishnan, and C. R. Das. A case for heterogeneous
on-chip interconnects for CMPs. ISCA, 2011.

[35] T. N. Mudge. Power: A First-Class Architectural Design Constraint.
IEEE Computer, 34(4):52–58, 2001.

[36] S. Murali, T. Theocharides, L. Benini, G. D. Micheli, N. Vijaykrishnan,
and M. J. Irwin. Analysis of error recovery schemes for networks on
chips. Design and Test of Computers, IEEE, 22:434–442, 2005.

[37] C. Nicopoulos, S. Srinivasan, A. Yanamandra, D. Park, V. Narayanan,
C. R. Das, and M. J. Irwin. On the Effects of Process Variation in
Network-on-Chip Architectures. IEEE Trans. Dependable Secur. Com-
put., 7(3):240–254, July 2010.

[38] M. Nourani and A. Radhakrishnan. Testing On-Die Process Variation in
Nanometer VLSI. IEEE Des. Test, 23(6):438–451, Nov. 2006.

[39] Ü. Y. Ogras, R. Marculescu, and D. Marculescu. Variation-adaptive
feedback control for networks-on-chip with multiple clock domains. In
DAC, pages 614–619, 2008.

[40] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das. Explor-
ing Fault-Tolerant Network-on-Chip Architectures. DSN, pages 93–104,
2006.

[41] L.-S. Peh and W. J. Dally. A Delay Model and Speculative Architecture
for Pipelined Routers. In HPCA, 2001.

[42] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas. VARIUS: A model of process variation and resulting timing
errors for microarchitects. Trans. on Sem. Man., (1):3–13, Feb. 2008.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. ASPLOS, 30(5):45–57, Oct.
2002.

[44] M. Simone, M. Lajolo, and D. Bertozzi. Variation tolerant NoC design
by means of self-calibrating links. DATE, 2008.

[45] S. R. Sridhara and N. R. Shanbhag. Coding for system-on-chip networks:
a unified framework. DAC, pages 103–106, 2004.

[46] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic. DSENT - A Tool Connecting Emerging Photon-
ics with Electronics for Opto-Electronic Networks-on-Chip Modeling.
In NOCS, 2012.

[47] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle: Pipeline adaptation
to tolerate process variation. ISCA, 2007.

[48] A. Tiwari and J. Torrellas. Facelift: Hiding and Slowing Down Aging in
Multicores. In MICRO, November 2008.

[49] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-
performance simulator for interconnection networks. MICRO 35, pages
294–305, 2002.

[50] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and
Y. Cao. The impact of NBTI on the performance of combinational and
sequential circuits. DAC, pages 364–369, 2007.

[51] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and
S.-L. Lu. Reducing cache power with low-cost, multi-bit error-correcting
codes. In ISCA, pages 83–93, 2010.


