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Abstract—Researchers have proposed numerous directory
techniques to address multicore scalability whose behavior de-
pends on the CPU’s particular configuration, e.g. core count
and cache size. As CPUs continue to scale, it is essential to
explore the directory’s architecture dependences. However, this
is challenging using detailed simulation given the large number
of CPU configurations that are possible.

This paper proposes to usemulticore reuse distance analysis to
study coherence directories. We develop a framework to extract
the directory access stream from parallel LRU stacks, enabling
rapid analysis of the directory’s accesses and contents across
both core count and cache size scaling. We also implement
our framework in a profiler, and apply it to gain insights into
multicore scaling’s impact on the directory.

Our profiling results show that directory accesses reduce by
3.5x across data cache size scaling, suggesting techniquesthat
tradeoff access latency for reduced capacity or conflicts become
increasingly effective as cache size scales. We also show the
portion of on-chip memory devoted to the directory cache canbe
reduced by 53.3% across data cache size scaling, thus lowering the
over-provisioning needed at large cache sizes. Finally, wevalidate
our RD-based directory analyses, and find they are within 13%
of cache simulations in terms of access count, on average.

I. I NTRODUCTION

The trend for multicore CPUs is towards integrating an
increasing number of cores on-chip. Today, energy-efficient
CPUs, such as Intel’s Phi [18] and Tilera’s Tile processors [1],
already implement 10s of cores on a single die. In the future,
processors with 100s of cores,i.e. large-scale chip multipro-
cessors [17], [36], will be possible.

To enable scaling, architects have investigated directory-
based cache coherence. An important factor in the scalability
of these protocols is the design of their coherence directories.
Duplicate tag directories [4] are impractical because they
require high associativity as CPUs scale. In contrast, sparse
directories [16] maintain an explicit sharer list per cachetag
which can be stored in arrays with low associativity, so they
are more scalable. The main problem with sparse directories
is capacity. Because both sharer lists and cache tags tend
to increase with core count, the directory size can grow
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superlinearly. Worse yet, sparse directories incur conflicts, so
they require over-provisioning to keep conflicts at a minimum.

Researchers have investigated numerous techniques to im-
prove the capacity scaling of directories. One approach is to
reduce the sharer lists. For example, sharers can be tracked
imprecisely using limited pointers [2], [7], [8], [9], coarse
vectors [16], or tagless arrays [35]. Also, the directory can be
implemented hierarchically [15], [29], resulting in logarithmic
sharer list growth. More recently, SCD [25] combines limited
pointers with hierarchical lists to compactly encode both nar-
row and wide sharing patterns. In addition to these techniques,
researchers have also tried toreduce conflicts. For example,
Cuckoo [14] and SCD [25] use multiple hash functions and
iterative re-insertion to increase associativity.

Another important approach isexploiting private data.
Cuesta’s work [11], [10] detects pages that are accessed by
a single core, and omits tracking their cache blocks. PS-
Dir [28] devotes a separate directory to track private data using
minimally-sized sharer lists. And, SCT [3] and MGD [34]
recognize private data tend to occur in large contiguous
regions. Hence, they coalesce consecutive privately accessed
cache blocks, and track them as a single coherence unit.

Finally, instead of reducing the directory’s footprint, yet
another approach is to implement directories inasymmetric
storage. For example, PS-Dir [28] provides a fast directory in
SRAM for frequently accessed directory entries, and a slow
directory in denser eDRAM for infrequently accessed entries.
Also, WayPoint [20] evicts infrequently accessed entries that
do not fit in the on-chip directory to off-chip DRAM.

The effectiveness of these techniques depends in large
part on how applications exercise the directory. One crucial
factor is programs’sharing patterns–e.g., the degree of sharing
across different cache blocks, as well as the type of sharing–
readvs. write. Another important factor is programs’ impact
on directory access patterns, including access frequency and
distribution over different directory entries.

But in addition to applications, directory techniques are
also highly sensitive to architecture–i.e., the CPU’s configura-
tion. For instance, varying core count will affect the amount
and frequency of sharing, and hence, the directory’s behav-
ior. But also, varying the data cache hierarchy can have a
significant impact as well. This is because the directory’s
access stream is defined by data cache misses, so changing
the caches–in particular, scaling capacity–will change the
directory’s behavior. Specifically,it can alter the perceived



sharing patterns. While sharing is inherently an application
behavior, whether or not a program’s sharing patterns manifest
themselves in the data caches–and hence, become visible to the
directory–in fact depends on the data cache size.

To understand the efficacy of directory techniques, it is
essential to explore their application and architecture de-
pendences. Unfortunately, this is challenging with existing
methodologies. The problem is architectural simulation–the
primary method for evaluating directory techniques–is ex-
tremely slow when modeling large core counts. Moreover, each
simulation only evaluates one configuration, so fully explor-
ing application- and architecture-dependent behaviors requires
running simulation sweeps. Given finite simulation bandwidth,
researchers often limit the number of configurations explored.
While it is common practice to vary applications (i.e., using
entire benchmark suites), architectural scaling is usually ne-
glected. Among the myriad directory studies mentioned above,
only a few have simulated different core counts or cache
sizes [3], [14], [20]. And even in those cases, only a small
number of configurations were explored.

Recently, there has been significant interest in evaluating
multicore cache hierarchies via locality analysis [5], [12], [19],
[27], [26], [13], [32], [33]. These techniques acquirereuse
distance (RD) profiles. A program’s RD profile is its memory
reuse distance histogram, capturing the memory reference
locality that determines the program’s cache performance.
In recent work, researchers have extended uniprocessor pro-
filing to handle multicore CPUs by modelinginter-thread
interactions. For example, private-stack reuse distance (PRD)
profiling [27], [26], [32] uses per-thread coherent LRU stacks
to model the interactions that occur across private data caches.
The key is such profiles are architecture independent across
cache size scaling, and highly predictable across core count
scaling [32]. So, a few profiles can analyze caching behavior
across a large number of CPU configurations without having
to simulate them.1

In this paper, we apply multicore RD analysis to study
coherence directories. Our goal is to enable for coherence
directories the powerful analyses that reuse distance has al-
ready demonstrated for multicore data caches. To accomplish
our goal, we develop a framework for extracting the directory
access stream from PRD stacks to allow analysis of the
directory’s access patterns and contents. A key notion we
develop is relative reuse distance between sharers, which
quantifies sharing in a capacity-sensitive fashion. Due to the
cache-size independence of PRD, we can perform analyses at
every possible private data cache size from a single profile.
Also, using existing insights on PRD profiles [33], we can
analyze the directory’s behavior across core count scalingas
well.

We implement our analyses in a PIN-based profiler [21],
and use it to study directory behavior. Our profiling results
show a 3.5x drop in directory accesses occurs when data
cache size scales from 16KB to 1MB, despite an increase in
sharing-based directory accesses. We also find elevated sharing

1PRD is sensitive to reference interleaving, so strictly speaking, it is
architecture dependent. But research has shown that changes in interleaving are
benign for programs with symmetric threads and loop-level parallelism [19],
[32]. So, PRD is accurate for these programs.

reduces the number of active directory entries needed to track
all sharers, allowing the portion of on-chip memory devoted
to the directory to decrease by 53.3% across data cache size
scaling. This trend is accompanied by a significant reduction
in the number of directory entries for private data relativeto
shared data. In addition to cache size scaling, we find core
count scaling at a fixed capacity only increases the directory’s
accesses by 38% despite a 16x increase in core count and
decreases the directory size by 2.6% despite a 4x increase in
core count.

To validate our profiling results, we compare them against
cache simulations. Our validation experiments show the pro-
filed directory access counts are within 9.3% of simulation
across cache size scaling on average, and 13% across core
count scaling. Moreover, the profiled directory sizes are within
3.0% of simulation across cache size scaling on average,
and 3.7% across core count scaling. Finally, we discuss the
implications of our profiling results for existing directory
techniques. One implication is that reducing directory size at
the expense of more costly lookups is a desirable tradeoff
as CPUs scale. Another implication is the fraction of on-
chip memory needed for the directory varies significantly
with scaling, especially cache size scaling. We show for most
benchmarks, a Cuckoo directory only needs to provide entries
for 37.5–87.5% of cache blocks in the private data caches.

The rest of this paper is organized as follows. Section II
discusses the directory accesses we analyze. Then, SectionIII
presents our analysis framework, and Section IV implementsit.
Next, Section V reports our profiling results while Section VI
validates them and discusses their implications for directory
techniques. Finally, Section VII covers related work and Sec-
tion VIII concludes the paper.

II. D IRECTORY ACCESSES

Figure 1 illustrates the on-chip cache hierarchy of a typical
multicore CPU. At the top of the hierarchy are the cores and
their private data caches, with multiple levels of private cache
per core (only the last level is shown in the figure). Below the
private caches is the CPU’ssharing pointwhere the directory
sits, which is labeled “Directory Cache.” Optionally, there may
also be a shared data cache at the sharing point. Finally, off-
chip main memory appears below the cache hierarchy.

The directory cache is accessed on data cache misses. To
illustrate, Figure 1 shows three types of cache transactions,
labeled “T1”–”T3.” First, a transaction may miss all the way
to main memory (T1), causing a new data block to be brought
on-chip. T1 transactions access the directory, but do not find
the requested address tag–i.e., they are directory cache misses.
Second, a transaction may miss to the sharing point, but find its
data on-chip in a remote private cache (T2). T2 transactionsare
“sharing-based” transactions that require directory lookups to
determine the kind of remote actions needed and the sharers
involved. They are directory cache hits. Third, a transaction
may hit in a core’s private data cache (T3). T3 transactions
do not access the directory. Besides data cache misses, the
directory cache is also accessed on evictions that notify the
directory. These are labeled “E” in Figure 1.

In addition to accessing the directory, data cache misses
and evictions also change the directory’s contents. T1 transac-
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Fig. 1. Directory accesses in a multicore cache hierarchy.

tions allocate directory entries in the directory cache, initiating
new directory entry lifetimes. Each directory entry starts out
with a single sharer, but during its lifetime in the directory
cache, its sharer list can be modified by T2 transactions. A T2
for a read request may add a sharer to the entry’s sharer list,
whereas a T2 for a write request sets the entry’s sharer list
to a single sharer (assuming invalidation on writes). Eviction
notifications also change the entry’s sharing degree, subtracting
a sharer from the entry’s sharer list. Finally, a directory entry’s
lifetime ends after all copies of its associated cache blocks have
been evicted from the private data caches, potentially allowing
the directory entry to be deallocated.

Notice, the T1–T3 and E accesses in Figure 1, as well
as their modifications to the directory, are determined by the
private data caches. Hence, they are architecture dependent.
Specifically, scaling the number of private caches (i.e., cores)
and their capacity will affect the volume and distribution of T1,
T2, T3, and E accesses. In turn, this will change the directory
entry lifetimes within the directory cache as well as the entries’
sharer lists. The goal of our work is to provide techniques for
analyzing the directory’s accesses and contents, especially as
the private data cache hierarchy scales.

For some cache coherence protocols, our analyses are
imprecise. In particular, there are protocols that do not notify
the directory after certain data cache evictions–e.g., eviction
of shared (and clean) cache blocks. In this case, the directory
cache may retain entries whose lifetimes have ended, increas-
ing the number of allocated entries which we do not analyze.
Section III-C will discuss the impact of this on our analyses.

III. A NALYSIS FRAMEWORK

This section presents our RD-based framework for ana-
lyzing multicore scaling’s impact on directory caches. Sec-
tion III-A reviews multicore RD techniques. Then, Sec-
tions III-B and III-C develop new analyses to identify the
directory accesses and modifications discussed in Section II.

A. Multicore RD Analysis

Reuse distance has been used to analyze uniprocessor
locality. For a sequential program, a reuse distance (RD)
profile is a histogram of RD values for all memory references
where each RD value is the number of unique data blocks
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referenced since the last reference to the same data block.2

For a fully associative cache of sizeCS with an LRU eviction
policy, references with RD< CS are cache hits; hence, the
cache miss count is the sum of all references in an RD
profile above the RD value for capacityCS. (This calculation
accurately predicts misses in set associative caches too, as
long as capacity misses dominate conflict misses). One of
the major benefits of RD profiles is that they are architecture
independent, so a single profile can predict the misses forany
cache sizeCS.

More recently, RD profiling has been extended for multi-
core processors by using parallel LRU stacks. For example,
private-stack reuse distance(PRD) profiling [27], [26], [32],
[33] replicates LRU stacks, one per core, and plays each
core’s memory references on its local stack while maintaining
coherence between all of the stacks. This technique can predict
the cache misses occurring within private data caches.

To illustrate, Figure 2 shows the memory references from
two cores, C1 and C2, performed on data blocksA–J , and
Figure 3 shows the corresponding LRU stacks at different
times. In Figure 3(a), we see C1’s re-reference ofA at t = 10,
assuming all references in Figure 2 are reads. BlockA is found
below blocksB–E in C1’s LRU stack, so we say its PRD =
4. A cache of size 5 or more blocks would capture this reuse;
otherwise, a cache miss would occur from C1’s private cache.
Like sequential RD analysis, the histogram of all PRD values
can predict a thread’s private cache misses foranycache size.

In addition to intra-thread reuse, PRD profiling also cap-
tures inter-thread interactions, such as sharing. For readshar-
ing, PRD captures the resulting replication effects acrossLRU
stacks. In Figure 2, both C1 and C2 access data blockC.
Assuming these are both reads, Figure 3(a) shows theC block
is replicated in the cores’ stacks. Such shared replicas increase
the capacity pressure within the affected stacks.

PRD also captures write sharing effects by maintaining
coherence between LRU stacks. For example, suppose C2’s
reference toC at t = 7 is a write instead of a read.
Then, invalidation would occur in C1’s stack, as shown in

2Reuse distance has also been referred to as “stack distance”because RD
calculations are performed on memory reference stacks [22].



Figure 3(b). To prevent promotion of blocks further down the
LRU stack, invalidated blocks leave behind “holes” [27]. Holes
are unaffected by references to blocks above the hole, but a
reference to a block below the hole moves the hole to where
the referenced block was found. In our example, when C1 re-
referencesA at t = 10, E andD in Figure 3(b) will be pushed
down and the hole will move to depth 4 (A’s old position),
preserving the stack depth ofB. After the invalidation, C1’s
re-reference ofC at t = 12 will miss regardless of the cache
capacity–i.e. a coherence miss–so we say its PRD =∞.

Besides analyzing cache misses under capacity scaling,
PRD can also analyze core count scaling effects. As the
number of cores increases, PRD profiles often change system-
atically: they shift to larger RD values in a shape-preserving
fashion [32], [33]. At small cache sizes, profile shift is linear in
the amount of core count scaling. But as cache size increases,
the shift reduces, and becomes minimal for very large caches.
This is because memory references with small RD values tend
to access private data, whereas shared references tend to exhibit
large RD values. Thus, core count scaling increases cache
pressure more at small cache capacities. (Details on these
effects can be found in prior work [32]).

In the remainder of this section, we extend multicore
RD analysis to handle directory caches. We develop several
techniques for analyzing directory caches when scaling pri-
vate cache capacity. We do not develop new techniques for
analyzing core count scaling. Instead, in Section V, we will
use existing insights on core count scaling of PRD profiles,
along with acquiring profiles at different numbers of cores,to
reveal core count scaling’s impact on directory caches.

B. Directory Access Analysis

Because PRD profiling can predict private data cache
misses, it can identify cache miss-induced directory accesses.
In particular, given a reference’s PRD and access mode (read
or write), we can predict whether a cache miss and directory
access will occur at cache sizeCS, and if so, its type.

Consider the examples from Section III-A. In Figure 3(a),
if C1’s private cache is sufficiently large to capture the reuse
on block A (PRD < CS), then the reference hits–a T3
transaction–and no directory access occurs. Otherwise (PRD
≥ CS), the reference misses and generates a directory access.
Given there are no other copies ofA on-chip, this is a T1
transaction that initiates a new directory entry lifetime.In
Figure 3(b), if C2’s reference to blockC is a write, then the
references att = 7 and 12 would both miss and generate
directory accesses. (Like Figure 3(a), these also depend onthe
cache sizeCS, which we will address next). Since these are
due to inter-thread communication, they are T2 transactions
that reuse the directory entry inserted att = 3.

One issue PRD profiling does not address is sharing’s
dependence on cache size. Granted, sharing is an application-
level property. But even if threads share data, whether or not
the sharing manifests on-chip depends on cache size. So, the
number of sharing-based T2 transactions is tied to temporal
locality–i.e., to therelative reuse distance between sharers.

Figure 3(c) illustrates this by showing C1’s reuse of block
C at t = 15. Both cores have the block in their LRU stacks, but

C1 has referenced it more recently than C2. So, the block is at
different depths in the two stacks. Because there is a non-zero
relative stack distance between the two copies, the behavior
will depend on the private cache size. Figure 3(c) shows three
cases, labeledCS1–CS3. If the cache size isCS1, then neither
copy is on-chip, so C1’s reference misses and generates a T1
directory access. If the cache size isCS2, then only C1’s copy
is on-chip. We say blockC is “temporally private” [3]–i.e. it
is private within the limited time window captured byCS2.
So, C1’s reference is a hit regardless of access mode (a T3)
with no directory access. Lastly, if the cache size isCS3, then
both copies are on-chip. While a read would again be a T3
transaction, a write would cause a T2 directory access.

To enable locality-aware sharing analysis, we introduce the
notion of remote reuse distance, or PRDremote. A memory
reference’s PRDremote is the minimum stack depth across all
remote LRU stacks. If PRDremote = ∞, then the associated
data block only resides in the core’s local stack, and the mem-
ory reference is “truly private.” If PRDremote is finite, then
its value specifies the capacity at which sharing is captured
on-chip. Given a private cache of sizeCS, PRDremote < CS

would mean the sharing is captured; otherwise (PRDremote ≥
CS), the memory reference is temporally private.

1) Access Mode, PRD, PRDremote Characterization.:
Table I lists all data cache transactions that can occur by
permuting the access mode (read or write) and the different
PRD/PRDremote outcomes (< CS, ≥ CS, and∞) discussed
above. In total, there are 18 different cache transactions.Table I
reports all of them in terms of the T1–T3 categories.

The first eight transactions in Table I form the T1 category.
All of these are misses in the local private cache and in
all remote private caches (PRD and PRDremote ≥ CS);
therefore, there is no sharing captured on-chip. Transactions
1 and 2 are cold misses. While transactions 3 and 4 can be a
local cold miss, in most cases they are coherence misses, as
explained in Section III-A, which are re-references after write
invalidations. Transactions 5 and 6 represent the case where
the data is truly private and resides in the local cache–these
correspond to Figure 3(a) assumingCS < 5. And, transactions
7 and 8 represent temporally private data–these correspondto
Figure 3(c) assumingCS = CS1.

The next five transactions in Table I form the T2 cat-
egory. All of these exhibit sharing that is captured on-chip
(PRDremote < CS) and some remote action is required–either
invalidation or forwarding of the requested block. Transactions
9 and 10 represent a read miss in the local private cache, but
the data can be forwarded by a remote private cache. For
example, transaction 9 corresponds to Figure 3(b) assuming
the access is a read andPRDremote < CS. Transactions 11,
12, and 13 represent a write to a shared block on chip, which
causes invalidation. For example, transaction 13 corresponds
to Figure 3(c) assuming the access is a write andCS = CS3.
Moreover, similar to transaction 3 and 4, transaction 9 and 11
can be coherence misses too.

The last five transactions form the T3 category. All of these
are hits in the local private cache (PRD< CS) and do not
require remote actions. Transactions 14 and 15 correspond to
Figure 3(a) assumingCS ≥ 5; transactions 16 and 17 corre-
spond to Figure 3(c) assumingCS = CS2; and transaction 18



TABLE I. T HE 18 POSSIBLE DATA CACHE TRANSACTIONS.

Mode PRD PRDremote Comment
T1 Transactions: New Lifetimes

1 R ∞ ∞ Cold Miss
2 W ∞ ∞ Cold Miss
3 R ∞ ≥ CS Coherence Miss
4 W ∞ ≥ CS Coherence Miss
5 R ≥ CS ∞ Truly Private
6 W ≥ CS ∞ Truly Private
7 R ≥ CS ≥ CS Temporally Private
8 W ≥ CS ≥ CS Temporally Private

T2 Transactions: Directory Reuses
9 R ∞ < CS Forwarding

10 R ≥ CS < CS Forwarding
11 W ∞ < CS Invalidation
12 W ≥ CS < CS Invalidation
13 W < CS < CS Invalidation

T3 Transactions: Data Cache Hits
14 R < CS ∞ Truly Private
15 W < CS ∞ Truly Private
16 R < CS ≥ CS Temporally Private
17 W < CS ≥ CS Temporally Private
18 R < CS < CS Read to Shared

corresponds to Figure 3(c) assumingCS = CS3.

2) Evictions.: In addition to T1 and T2 transactions, the
directory is accessed on evictions as well, which PRD profiling
can also predict. In particular, each memory reference pushes
certain blocks in the local LRU stack downward. Whenever
a block moves below a given stack depth, it is evicted from
the cache with the corresponding capacity. For example, in
Figure 3(c), blockB is evicted from a cache of sizeCS1

after the reference toC pushes it down the stack. Suppose
C1 references blockE instead ofC in Figure 3(c). In that
case, not only wouldB be evicted from a cache of size
CS1, but A would also be pushed down and evicted from
a cache of sizeCS2. As mentioned in Section II, whether or
not a particular eviction notifies the directory depends on the
coherence protocol. The next section will address this issue.

C. Directory Contents Analysis

The directory cache contents can be tracked by the same
analyses from Section III-B. Initially, the directory cache is
empty. As explained in Section II, each T1 transaction (#1–8in
Table I) inserts a new entry with a single sharer, increasingthe
number of directory entries in the directory cache by one. Each
T2 transaction reuses an existing directory entry, with reads
(transactions 9 and 10) increasing the sharer count by one and
writes (transactions 11, 12, and 13) setting the sharer count
to one. Each data cache eviction that notifies the directory
also reuses an existing directory entry, but decreases the sharer
count by one. Lastly, if an entry’s sharer count reaches zero,
the number of directory entries decreases by one.

If all data cache evictions notify the directory (a common
assumption made in recent techniques [3], [14], [25], [34]),
this analysis exactly tracks the directory’s contents. However,
if some evictions are silent–e.g., for shared blocks–then our
analysis is imprecise. We can still identify the notifications.
But the silent evictions create dead directory entries thatlinger
in the directory cache. Since we do not analyze directory
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Fig. 4. Counters implemented in the PIN profiler.

cache eviction policies (this cannot be done in an architecture-
independent fashion), we cannot determine when dead entries
actually leave the directory cache.

IV. D IRECTORY CACHE PROFILER

We implemented RD-based directory cache profiling within
the Intel PIN tool [21]. We modified PIN to maintain coherent
private LRU stacks and perform PRD profiling, as discussed in
Section III-A. (We assume 64-byte blocks in all LRU stacks).
For every memory reference, our profiler consults the LRU
stacks to compute PRD and PRDremote, using Table I to
determine the data cache transaction and directory access type.

To enable capacity scaling analysis, our PIN profiler refers
to Table I multiple times per memory reference, determining
the behavior for differentCS values. While our framework
allows exploring allCS exhaustively, we stepCS in in-
crements of 16KB and stop at the application’s maximum
PRD. For eachCS value, we maintain 19 counters, one per
transaction in Table I plus one for evictions, and incrementthe
corresponding counter. Figure 4 illustrates the per-transaction
counters, labeled “xact ctrs,” at each profiled private cache size,
labeled “CSi.”

In addition to counting transactions, our PIN profiler also
tracks the directory cache contents. We maintain a set of
sharer counters,one per unique data block contained in all
of the LRU stacks at everyCSi. Figure 4 illustrates these
counters, labeled “dir entry sharer ctrs.” After updating the
“xact ctr” at a particularCSi, we check if the transaction
causes a directory access, and if so, whether it changes the
number of sharers. If the sharing degree changes, we modify
the corresponding sharer counter. On each eviction, we also
decrement the corresponding sharer counter for the evicted
cache block.

Our PIN profiler also counts accesses to individual di-
rectory entries during their lifetimes in the directory cache.
We maintain another set of per-entry counters at everyCSi,
labeled “dir entry access ctrs” in Figure 4. Each time a
directory entry is accessed at a particularCSi, we increment
the corresponding access counter.

Sharer and access counters are allocated as memory ref-
erences promote data blocks in the LRU stacks, initiating
directory entry lifetimes at different cache sizes. In contrast,
whenever a sharer counter decrements to zero, the correspond-
ing directory entry’s lifetime ends at theCSi to which the



TABLE II. PARALLEL BENCHMARKS USED IN THE EVALUATIONS.
INSTRUCTION COUNTS, LABELED “I NST,” ARE REPORTED IN BILLIONS.

Benchmark Suite Problem Size Inst
fft (kernel) SPLASH2 222 elements 2.46
lu (kernel) SPLASH2 20482 elements 25.1
radix (kernel) SPLASH2 224 keys 3.15
barnes SPLASH2 219 particles 19.3
fmm SPLASH2 219 particles 16.5
ocean SPLASH2 10262 grid 1.72
water SPLASH2 403 molecules 1.86
kmeans MineBench 222 objects, 18 features 10.7
blackscholes PARSEC 222 options 3.94
bodytrack PARSEC B 261,16k particles 13.9
canneal PARSEC 2500000.net 0.12
fluidanimate PARSEC in 500k.fluid 4.30
raytrace PARSEC 1920x1080 pixels 4.39
swaptions PARSEC 218 swaptions 26.7
streamcluster PARSEC 218 data points 5.14

sharer counter belongs. And, the corresponding access counter
reflects the number of accesses the directory entry received
during its lifetime for a private cache of sizeCSi. We record
this access count in a histogram forCSi, and deallocate it
(and its sharer counter) to reflect the directory entry’s removal
from the directory cache. Figure 4 shows how a reference to
block A initiates directory entry lifetimes at capacitiesCS1,
CS2, andCS3, and how the first two lifetimes terminate as
the block is pushed below capacitiesCS1 andCS2.

Finally, our PIN profiler follows McCurdy’s method [23]
which performs functional execution only, context switching
threads after every memory reference. This interleaves threads’
memory references uniformly in time. Studies have shown
that for parallel programs with symmetric threads, this ap-
proach yields profiles that accurately reflect locality on real
CPUs [19], [32], especially for PRD profiles.

V. PROFILE STUDIES

With our profiler, we study the impact of multicore scal-
ing on directory caches using 15 parallel benchmarks. Ta-
ble II lists the benchmarks and their suites: SPLASH2 [30],
MineBench [24], and PARSEC [6]. The last two columns re-
port the problem sizes and instruction counts (in billions). For
the kernels–fft, lu, and radix–we profiled the entire benchmark.
For other benchmarks, we ran the first parallel iteration to
warm up the PRD stacks, and then profiled the second parallel
iteration. We first study how scaling affects the directory’s
access stream and contents. Then, we study the distribution
of accesses across the directory to show temporal reuse of
directory entries. In the first two studies, we address cache
size scaling followed by core count scaling. In the last study,
we consider cache size scaling alone to show the main effects.

A. Study 1: Directory Access Results

Table III shows the impact of scaling private data cache
size on cache miss-induced directory accesses (i.e., T1 and T2
transactions) as reported by the “xact ctrs” in our profiler.In
particular, columns 2–4 of Table III report the total numberof
cache miss-induced directory accesses per 1000 instructions,
or “APKI,” incurred by a 64-core CPU at 3 data cache sizes.

TABLE III. C ACHE-MISS APKI AT 3 PRIVATE CACHE SIZES, INTRINSIC

APKI, AND APKI FOR 16- AND 256-CORECPUS.

Benchmark Cache Miss APKI T2 APKI
16KB 256KB 1MB ∞ 16c 256c

fft 16.0 3.9 3.8 1.7 3.7 3.9
lu 2.0 1.9 0.7 0.7 0.2 1.1
radix 16.7 5.7 5.7 2.3 5.6 6.1
barnes 19.1 0.9 0.8 0.6 0.6 0.9
fmm 2.0 0.8 0.6 0.2 0.6 0.8
ocean 32.0 15.9 7.1 2.0 6.0 10.1
water 2.4 1.5 0.6 0.2 0.5 0.8
kmeans 1.1 1.1 1.1 0.6 1.1 0.6
blackscholes 1.3 0.8 0.8 0.0 0.8 0.8
bodytrack 11.6 0.1 0.1 0.1 0.1 0.3
canneal 24.3 23.3 23.6 9.9 22.9 24.9
fluidanimate 2.2 1.8 1.3 0.7 0.8 1.9
raytrace 0.8 0.6 0.5 0.1 0.5 0.6
swaptions 2.7 2.7 2.7 0.2 2.6 2.9
streamcluster 23.0 22.9 6.4 6.3 5.7 6.9
Average 5.3 2.1 1.5 0.5 1.3 1.8

Table III shows directory cache accesses are highly sensi-
tive to data cache size:they drop rapidly as capacity increases.
For small 16KB private caches, about half the benchmarks in
Table III exhibit a directory APKI exceeding 11 (reaching 32
in one case). But for 1MB caches, all benchmarks except for
canneal exhibit a directory APKI of only 7.1 or less, with half
under 1 APKI. Across all benchmarks, the average directory
APKI drops from 5.3 at 16KB to 1.5 at 1MB, a factor of 3.5x.

Ostensibly, this drop is due to the reduction in cache misses
that occurs when scaling cache sizes. But the reason is actually
more nuanced, reflecting on how cache size scaling affects on-
chip sharing. To illustrate, Figure 5 shows the complete behav-
ior from our profiles, breaking down the directory’s accesses as
data cache size varies. The solid lines, labeled “Total Misses,”
plot APKI for all (T1 + T2) accesses; the dashed lines, labeled
“T2,” plot APKI for T2 accesses only; and the dash-dotted
lines, labeled “T2 Read Shared,” plot APKI for T2 accesses
associated with read sharing (i.e., transaction 10 in Table I).
To save space, 4 representative benchmarks are shown.

At small cache sizes, Figure 5 shows the directory cache
accesses are dominated by T1 transactions (the gap between
“Total Misses” and “T2”). The lack of T2s here makes
sense since the data caches are too small to capture many
shared accesses occurring between threads. So, the majority
of references are to private data, regardless of whether they
are truly or temporally private. As data cache size increases,
two trends occur. First, truly private data blocks begin fitting in
cache, decreasing the number of T1 transactions. But second,
temporally private data blocks begin manifesting their sharing
patterns on-chip, increasing the number of T2 transactions.

While T2 transactions generally go up with capacity, they
can also drop due to read sharing. Figure 5 shows the “T2
Read Shared” transactions increase as more remote sharers are
captured on-chip. But onceall sharersare cached, the directory
accesses are eliminated–i.e., the read-sharing working set fits
in cache. In contrast, write sharing leads to coherence-related
T2 transactions. These also increase with capacity scaling, but
they cannot be eliminated by capturing all sharers on-chip.
This causes the gap between the “T2” and “T2 Read Shared”
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Fig. 5. Breakdown of directory APKIv.s. private cache size for 64-core
CPUs.
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Fig. 6. Total directory APKI for 16-, 64-, and 256-core CPUs.

curves in Figure 5 to increase monotonically.

Notice, at each benchmark’s maximum PRD, all read-
shared T2s are eliminated while all write sharing is exposed.
These “∞” private caches quantify a program’s intrinsic
coherence-related directory accesses. The column labeled“T2-
∞” in Table III reports these accesses. On average, they only
reach 0.5 APKI.Hence, while scaling caches exposes sharing-
based misses to the directory, it also decreases misses to truly
private data by a far larger amount. This is why overall, cache
size scaling reduces directory accesses.

In addition to data cache size scaling, the directory access
stream is also affected by core count scaling. To illustrate,
Figure 6 shows the same cache-miss induced directory access
curves from Figure 5–i.e., the “Total Misses” curves–at three
different core counts: 16, 64, and 256. (Note, the X-axes in
Figure 6 plottotal cache size, instead ofper-corecache size
in Figure 5, to facilitate comparisons across core count).

Figure 6 shows core count scaling shifts the directory
access curves to larger RD values in a shape-preserving
fashion. This is the same behavior that PRD profiles exhibit,as
shown in previous research (see Section III-A), which makes
sense since directory accesses are derived from private cache
misses that PRD profiles capture. Overall, the shift increases
the directory accesses at a given cache size, but in most cases
the impact is small. For example, the last two columns of
Table III report the directory APKI for 16- and 256-core CPUs
that employ 64MB of total private cache. As Table III shows,
the directory cache accesses only increase from 1.3 to 1.8
APKI on average, despite a 16x scaling in core count.

Finally, while we have focused on cache miss-induced

directory accesses, the directory access stream also contains
cache eviction notifications. In Figure 5, the dotted lines
labeled “With Notifications” plot directory accesses when
notifications are added. In most benchmarks, notifications
double the number of directory accesses at small cache sizes.
This is because small data caches contain mostly private data
blocks, each incurring a T1 transaction to insert its directory
entry into the directory cache and a notification to end the
entry’s lifetime. The pairing of notifications with T1s causes
the doubling. For larger caches, data blocks may incur many
T2 transactions not paired with evictions; hence, notifications
comprise a smaller fraction of the directory access stream as
caches scale. But notifications do not change the main point:
cache size scaling significantly reduces directory accesses.

B. Study 2: Directory Contents Results

Figure 7 shows the impact of scaling private data cache
size on the number of directory entries in the directory cache,
as tracked by the number of sharer counters in our profiler.
In particular, the solid lines, labeled “Total,” plot the ratio of
total live directory entries to total private cache blocks–a metric
called coverage[25]–as data cache size varies. (Coverage at
each cache size is time-averaged across the entire profiling
run). All results are for 64-core CPUs.

As Figure 7 shows,coverage–and hence, the portion of on-
chip memory devoted to the directory–decreases significantly
with cache size scaling. In particular, coverage starts near
100% in most cases, but then drops to about 50% as cache
size increases for many benchmarks. The effect is extreme in
lu, bodytrack, and streamcluster, where coverage drops below
20%. On average, the coverage at each benchmark’s maximum
PRD is only 46.7%–i.e., 53.3% of the directory does not
contain active directory entries.

The drop in coverage is due to increased sharing that occurs
at larger cache sizes. As discussed in Section V-A, T2 accesses
are negligible at small cache sizes, but go up with data cache
size scaling because applications’ sharing patterns become
exposed on-chip. These extra T2s tend to increase the sharers
tracked per directory entry.So, while single-sharer entries
dominate at small cache sizes, multi-sharer entries become
significant at large cache sizes. Since shared data blocks can
be tracked with fewer directory entries compared to private-
only blocks, this causes the directory’s coverage to go down.

To illustrate, the dashed lines in Figure 7 labeled “≥ 2
sharers” plot coverage for the directory entries with 2 or more
sharers, as tracked by the sharer counters in our profiler. (So,
the gap between the solid and≥ 2 lines breaks down the
coverage for single-sharer entries). For 64KB private caches,
only 9.3% of directory entries are multi-sharer entries (over
90% are private entries) averaged across all benchmarks.
But by 1MB, 28.0% are multi-sharer entries, and at each
benchmark’s maximum PRD, 39.1% are multi-sharer entries.

Interestingly, this increase in sharing occurs non-uniformly.
Figure 7 illustrates this by plotting the coverage for directory
entries with 4 or more sharers (labeled “≥ 4 sharers”). As
Figure 7 shows, 2- and 3-sharer entries (i.e., the gap between
the≥ 2 and≥ 4 lines) account for the majority of multi-sharer
entries created by cache size scaling. In contrast, directory
entries with many sharers are negligible. To illustrate further,



0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(a) fft

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Per-Core Private Cache Size(MB)

Total
≥ 2 sharers
≥ 4 sharers

(b) lu

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Per-Core Private Cache Size(MB)

(c) radix

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4

Per-Core Private Cache Size(MB)

(d) barnes

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Per-Core Private Cache Size(MB)

(e) fmm

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(f) ocean

0%
20%
40%
60%
80%

100%

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

Per-Core Private Cache Size(MB)

(g) water

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Per-Core Private Cache Size(MB)

(h) kmeans

0%
20%
40%
60%
80%

100%

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8

Per-Core Private Cache Size(MB)

(i) blackscholes

0%
20%
40%
60%
80%

100%

 0  0.05  0.1  0.15  0.2  0.25  0.3

Per-Core Private Cache Size(MB)

(j) bodytrack

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(k) canneal

0%
20%
40%
60%
80%

100%

 0  0.4  0.8  1.2  1.6  2

Per-Core Private Cache Size(MB)

(l) fluidanimate

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3

Per-Core Private Cache Size(MB)

(m) raytrace

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Per-Core Private Cache Size(MB)

(n) swaptions

0%
20%
40%
60%
80%

100%

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Per-Core Private Cache Size(MB)

(o) streamcluster

Fig. 7. Coveragevs. private data cache size for 64-core CPUs. Dashed lines breakdown single-vs. multi-sharer entries.

TABLE IV. C OVERAGE FOR WIDELY SHARED ENTRIES, AND DROP IN

COVERAGE DUE TO CORE COUNT SCALING.

Benchmark ≥32 Coverage Drop
Sharers 256KB 1MB

fft 0.0008% 0.2% 0.2%
lu 14.9% 1.1% -8.4%
radix 0.001% 0.6% 0.2%
barnes 0.03% 28.7% 13.8%
fmm 0.01% 11.8% 7.1%
ocean 0.003% 4.6% 4.1%
water 0.004% 14.1% 3.9%
kmeans 0.0002% 0.2% -0.1%
blackscholes 0.02% 14.8% 1.8%
bodytrack 1.2% 8.9% 10.5%
canneal 0.02% 1.9% 0.4%
fluidanimate 0.0008% 2.3% 10.3%
raytrace 0.005% 1.8% 6.9%
swaptions 0.009% 6.2% 1.3%
streamcluster 0.04% 0.6% -0.3%
Average 0.01% 2.6% 1.8%

Figure 8 plots additional lines for two of our benchmarks,
showing entries with very wide sharing degree (note, the Y-
axis is now on a log scale). As Figure 8 shows, directory entries
with ≥ 32 sharers account for less than 0.01% coverage across
most cache sizes, and do not increase with cache size scaling.
We find this behavior is ubiquitous. In the second column of
Table IV, we report the coverage for the same≥ 32 entries for
all 15 benchmarks at a private cache size of 1MB. Except for
lu, Table IV shows≥ 32 entries never account for more than
1.2% coverage.So, the reduction in coverage due to cache size
scaling primarily comes from increasing directory entrieswith
a few sharers, not from increasing widely shared entries.

In addition to data cache size scaling, the directory cache
contents are also affected by core count scaling. Like cache
size scaling, core count scaling also increases on-chip sharing,
so it too lowers coverage and reduces the on-chip memory
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Fig. 8. Coverage breakdown for entries with wide sharing.
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Fig. 9. Same as Figure 8(a) except for 16 and 256 cores.

needed for the directory. Somewhat surprisingly, though, the
impact from core count scaling is much less. The last two
columns of Table IV report the drop in coverage when scaling
from 64 to 256 cores observed at private cache sizes of 256KB
and 1MB, respectively. In most cases, coverage changes by
only a few percent. For a few cases, the reduction can exceed
10%, but it does not approach the 2x shown in Figure 7.

Core count scaling’s impact on coverage is limited because
it tends to increase sharing for data that are widely shared.To
illustrate, Figures 9(a)-(b) plot the same coverage breakdown
from Figure 8(a), except the number of cores is 16 and 256.
As Figure 9 shows, the coverage for widely shared entries
increases with core count, but the entries with 2–3 sharers
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Fig. 10. Coverage breakdown by access count.

does not change much. Since the former is a small part of the
directory cache, the overall impact on coverage is small.

C. Study 3: Access Distribution Results

Finally, we study the distribution of accesses over in-
dividual directory entries. We observe that the accesses an
entry receives is related to its sharing degree. Entries with
a few sharers tend to receive a few accesses (during their
lifetimes) whereas entries with wide sharing tend to receive
many accesses. Recall in Section V-B that multicore scaling
increases sharing non-uniformly. As sharing goes up, the
number of widely shared entries grows slower than the number
of entries with few sharers.So, like sharing, reuse of directory
entries is also non-uniform, with a small part of the directory
receiving a disproportionately large fraction of the directory
accesses.

Figure 10 helps illustrate this point. In the figure, we break
down the directory’s coverage, just like in Figure 7. But instead
of sharing degree, Figure 10’s breakdown is across different
numbers of cache miss-induced accesses that entries receive
during their lifetimes in the directory cache (as reported by
the access counters in our profiler). In particular, we plot the
coverage for entries with≥ 1 (labeled “Total”),≥ 2, ≥ 4, and
≥ 10 cache miss-induced accesses for a 64-core CPU. To save
space, 4 representative benchmarks are shown.

Notice, the graphs in Figure 10 are similar to their coun-
terparts in Figure 7. For instance, the breakdown for single-
access entries (the gap between the “Total” and “≥ 2 accesses”
lines in Figure 10) is essentially identical to the breakdown for
single-sharer entries (the corresponding gap in Figure 7).Also,
the breakdowns for the multi-access entries in Figure 10 are
quite similar to those for the multi-sharer entries in Figure 7.
Hence, many accesses are concentrated on a small number of
directory entries.

Table V shows this leads to high reuse of the multi-access
directory entries. In particular, columns 2–4 of Table V report
the portion of accesses destined to entries with≥ 3 accesses
during their lifetimes. Results are shown for 256KB, 1MB, and
∞ private caches. We also report in columns 5–7 the portion
of all directory entry lifetimes that the≥ 3 lifetimes represent.

TABLE VI. D ATA AND DIRECTORY CACHE SIZE SCALING

PARAMETERS.

Private Data Cache Sizes (Associativities)
Private L1: 16 KB (4-way)
Private L2: 64KB (8-way)
Private L3: 256KB, 512KB, 1MB, or 2MB (all 8-way)

Directory Cache Coverage (Associativities)
Cuckoo: 12.5% (4-way), 25% (4-way), 37.5% (3-way),

50% (4-way), 75% (3-way), 87.5% (7-way),
100% (4-way), 125% (5-way), 200% (4-way),

At 256KB, Table V shows the entries with≥ 3 accesses
account for only 5.4% of all directory entry lifetimes; yet,they
receive 18.1% of all directory accesses (on average). At 1MB,
they account for 23.0% of lifetimes, but receive 37.8% of the
accesses. And at∞, they account for 35.3% of lifetimes, but
receive 54.9% of the accesses.

While these results include all accesses (T1 + T2), we find
the reuse of multi-access entries is even greater for just the
T2 transactions. In the last two columns of Table V, we report
the portion of T2s destined to entries with≥ 3 accesses for
256KB and 1MB private caches. These results show the great
majority of T2s, 84.3% and 82.7%, are captured by a minority
of directory entry lifetimes, 5.4% and 23.0%, respectively. As
discussed in Section II, T2s are on-chip transactions whereas
T1s can be off-chip transactions; hence, T2-induced directory
accesses are more latency sensitive. Our results showa small
fraction of the directory cache can service the majority of
latency-sensitive directory accesses.

As discussed in Section I, recent directory designs have
proposed asymmetric storage techniques [20], [28]. The above
study suggests there exists asymmetry in temporal reuse over
different directory entries that such techniques can exploit.

VI. VALIDATION AND DISCUSSION

This section conducts cache simulations to validate results
from Section V. It also discusses the implications of our
insights for existing directory techniques. After describing
methodology, we present validations and discussion for the
main insights in Section V (i.e., from studies 1 and 2).

A. Simulation Methodology

We implemented a cache simulator that models the cache
hierarchy in Figure 1 (without the shared cache). Our simulator
uses the same PIN tool from Section IV except the LRU stacks
are replaced by data cache models, and a directory cache model
is added. In the data cache model, we employ three levels of
private cache–an L1, L2, and L3 per core. The private caches
are inclusive, and maintain coherence via a directory-based
MESI protocol. All data caches use 64-byte blocks.

In the directory cache model, we implement Cuckoo [14].
Cuckoo directories use multiple hash functions and iterative re-
insertion to increase the effective associativity of the directory
cache. (We limit re-insertion attempts to a maximum of 32).
They minimize the over-provisioning needed to mitigate con-
flicts at the expense of more costly insertions. In our Cuckoo
directory, we assume full-map directory entries. This mirrors
the precise tracking of sharers in our profiler. Although we



TABLE V. PERCENT ACCESSES DESTINED TO≥ 3-ACCESS ENTRIES, PERCENT ENTRIES WITH≥ 3 ACCESSES, AND PERCENTT2 ACCESSES DESTINED

TO ≥ 3-ACCESS ENTRIES.

Benchmark % Accesses to≥3 Entries % Entries with≥3 Accesses % T2 Accesses to≥3 Entries
256KB 1MB ∞ 256KB 1MB ∞ 256KB 1M

fft 0.6% 4.4% 84.8% 0.0% 0.0% 71.1% 70.8% 10.3%
lu 54.1% 98.0% 98.4% 8.2% 51.0% 50.9% 100% 100%
radix 1.0% 2.2% 53.5% 0.1% 0.1% 25.9% 91.3% 55.0%
barnes 23.5% 54.3% 99.2% 12.3% 35.1% 92.5% 88.2% 86.6%
fmm 11.1% 31.7% 63.8% 5.2% 14.9% 27.0% 72.7% 76.4%
ocean 12.3% 25.4% 41.2% 5.2% 3.3% 4.9% 95.5% 97.5%
water 16.6% 49.9% 52.2% 6.3% 17.6% 17.6% 61.6% 83.8%
kmeans 0.1% 0.1% 0.1% 0.5% 0.1% 0.1% 100% 100%
blackscholes 0.8% 0.8% 0.8% 0.1% 0.0% 0.0% 100% 100%
bodytrack 68.5% 98.7% 98.7% 11.4% 85.2% 85.2% 99.7% 100%
canneal 19.5% 46.7% 54.6% 7.5% 27.1% 30.1% 65.5% 88.8%
fluidanimate 42.3% 64.6% 70.1% 23.4% 35.5% 23.3% 89.1% 98.6%
raytrace 4.1% 7.1% 7.1% 0.8% 0.6% 0.5% 59.7% 43.4%
swaptions 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 100.% 100%
streamcluster 16.3% 82.4% 98.8% 0.2% 73.9% 98.4% 70.0% 99.9%
Average 18.1% 37.8% 54.9% 5.4% 23.0% 35.3% 84.3% 82.7%
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Fig. 11. Percent APKI error for cache miss-induced (T1+T2) directory accesses.
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Fig. 12. Percent APKI error for T2 directory accesses.

validate against full-map, our results have implications for
other implementations as well (see Section VI-C).

We perform simulations that scale the data cache hierarchy
across both capacity and core count. Capacity scaling is per-
formed on the L3 cache across four different sizes at 64 cores.
The top portion of Table VI specifies the cache parameters
used. Core count scaling is performed across three different
core counts–16, 64, and 256–at a total L3 capacity of 64MB
(using 4MB, 1MB, and 256KB per-core L3s). We also perform
simulations that scale the directory size. The bottom portion
of Table VI specifies the sizes in terms of coverage. (Different
numbers of memory arrays,i.e., “ways” in Table VI, are used
to maintain a power-of-2 number of sets as coverage varies).

B. Study 1

Validation. Our framework analyzes capacity misses and
sharing, but not other cache effects, like conflicts. Figures 11
and 12 quantify the error this introduces into our directory
access results from Section V-A. In the figures, we plot the
error between the simulated and profiled directory APKI. The
per-benchmark bars report this error for cache size scalingat

64 cores (i.e., for the L3 cache sizes in Table VI). Figure 11
shows the error for cache miss-induced directory accesses
while Figure 12 shows the error for T2 accesses (the “Total
Misses” and “T2” lines, respectively, from Figure 5).

As Figures 11 and 12 show, the simulator and profiler are
very close in most cases. For 83% (75%) of the data points in
Figure 11 (Figure 12), the profiler is within 7% of simulation.
Averaged across all 64-core validations, the error in totalcache
miss-induced (T2) APKI is 6.3% (9.3%), as shown by the
“cache-avg” bars. (We also find similar accuracy results when
including notifications, but omit them to save space). The
main reason for these errors is conflict misses in the cache
simulations which our profiler does not model since it assumes
full associativity.

Several validation points in Figures 11 and 12 have high
error, but in fact, most of these are benign. As discussed
in Section V-A, cache size scaling reduces directory access
frequency, making APKI very small for some benchmarks and
cache sizes. In these cases, tiny absolute errors can resultin
large percent error. This happens in bodytrack and radix’s T2
accesses. Also, access frequency can drop suddenly (e.g., Fig-
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Fig. 13. Percent coverage error.

ure 5(d)). If the profiler slightly mis-judges the capacity where
such drops occur, large errors can accrue, but only locally
around the drop. This happens in barnes and streamcluster.

We also validate our core count scaling analyses. In Fig-
ures 11 and 12, the last set of bars labeled “core-avg” report
the error for core count scaling at 64MB of total L3 cache,
i.e., for 16, 64, and 256 cores, averaged across all benchmarks
(we omit per-benchmark results). The error in total cache miss-
induced (T2) APKI is 8% (13%). Like cache size scaling, a
few benign cases also account for most of the error in core
count scaling. Overall, Figures 11 and 12 show our framework
predicts directory cache accesses quite accurately, especially
when considering many “bad” cases are benign.

Discussion.The down-stream traffic from a cache reduces as
its size goes up. This is well understood for data caches, espe-
cially in uniprocessors. Our analyses in Sections III-B andV-A
show how to quantify this bandwidth reduction for parallel
caches (i.e., the part that is incident on the directory) and how
to break down its components. This can help architects make
design tradeoffs in directory caches as CPUs scale.

For example, our main observation–that total accesses
drop with CPU scaling, especially cache size scaling–implies
directory cache accesses will make up a smaller fraction of
overall execution time as CPUs scale. Among the directory
designs discussed in Section I, many propose techniques for
reducing directory size that also increase the cost of directory
lookups–e.g., due to more complex hash functions (tagless
directories [35]) or multiple accesses (hierarchical directo-
ries [15]). Our results show that trading off increased access
latency to achieve smaller directories is a good idea as CPUs
scale.

Another important observation in Section V-A is that
the mix of T1 vs. T2 transactions varies significantly with
CPU scaling. Recently, researchers have explored increasing
the effective associativity of directory caches by employing
iterative re-insertion techniques–for example, Cuckoo [14] and
SCD [25]. These techniques dramatically reduce conflicts at
the expense of more costly insertions. While insertions (T1s)
constitute the vast majority of directory accesses in smalldata
caches, they become much less significant in large data caches
due to increased sharing and T2-based reuse. So, our results
show that trading off more complex insertion algorithms to
mitigate conflicts is also a good idea as CPUs scale.

C. Study 2

Validation. In addition to directory accesses, there is also
error in our directory contents analyses from Section V-B.
In particular, Figure 13 quantifies the error in our coverage

results from Figure 7. We ran our data and directory cache
simulator using the largest Cuckoo directory in Table VI–200%
coverage–and measured the average number of live directory
entries in the simulated directory cache. (In Cuckoo, 200%
over-provisioning ensures virtually no entries are evicted due to
conflicts). The per-benchmark bars in Figure 13 plot the error
between the simulated and profiled coverage for cache size
scaling at 64 cores (i.e., for the L3 cache sizes in Table VI).

Figure 13 shows our framework accurately predicts cov-
erage. Averaged across all 64-core validations, the coverage
error is only 3.0%, as shown by the “cache-avg” bars. Error is
high in one datapoint for bodytrack, but as in Section VI-B,
this is due to a tiny absolute error being compared to a very
small simulated coverage. The remaining cases reflect the error
due to our framework’s inability to account for conflicts in the
private data caches, as was discussed in Section VI-B.

The bars labeled “core-avg” in Figure 13 report the cov-
erage error for core count scaling at 64MB of total L3 cache
averaged across all 15 benchmarks (we again omit the per-
benchmark results). Figure 13 shows the error in coverage
across core count scaling is similar to cache scaling, 3.7%
on average for all the datapoints.

Discussion.A very basic design question is how large should
the directory cache be? Our analyses in Sections III-C and V-B
can help architects answer this question. In Figure 7, we show
coverage reduces with CPU scaling, especially data cache size
scaling. This implies that the fraction of on-chip memory
devoted to the directory cache can be reduced as CPUs scale
without impacting performance. We ran cache simulations to
test this result. For a 64-core CPU and for each of our L3 data
cache sizes, we simulated all of the Cuckoo sizes in Table VI
and identified the minimum that effectively caches all directory
entries. (We require the fraction of directory entry insertions
that evict a live entry to be less than 1%). In Figure 14, we
plot these minimum Cuckoo sizes (in terms of coverage) across
private data cache size.

Figure 14 confirms the Cuckoo directory’s coverage drops
with data cache size scaling. Most benchmarks require 125%
coverage at 256KB private caches. But as private caches scale
to 2MB, only 5 benchmarks remain at 125%. Six benchmarks
drop to 75–87.5% coverage, while 4 benchmarks drop to
50% or less. Moreover, comparing Figures 14 and 7, we
see the minimum Cuckoo sizes are correlated to the profiled
coverage. In most cases, the Cuckoo coverage is between 30–
50% higher than the profiled coverage, which quantifies the
over-provisioning needed in the directory cache to mitigate
conflicts. These results show directory coverage indeed varies
significantly with architectural scaling, and that our framework
can help identify the minimum directory size for each bench-
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Fig. 14. Minimum Cuckoo coverage for 1% eviction rate.

mark.

In Figure 14, we assume full-map entries which matches
our profiler’s precise sharer tracking. But many sharer lists
are possible. For instance, hierarchical lists [15], [25],[29]
avoid allocating many sharer bits. Our framework can handle
hierarchical lists, but a modification to the profiler is needed
to account for root and leaf entries. Many techniques use
imprecise sharer lists that incur extra coherence messages–e.g.,
limited pointers with broadcast [2] and coarse vectors [16].
They do not affect the tags stored in the directory, so our ex-
isting profiler can already handle them. Unfortunately, impre-
cise sharer lists that incur directory-induced invalidations–e.g.,
limited pointers with invalidation [2]–cannot be analyzedin an
architecture independent fashion. So, our current framework
cannot track their directory’s contents.

Finally, another observation from Section V-B affecting
directory size is that the mix of private and shared directory
entries changes with CPU scaling, especially data cache size
scaling. A popular approach used recently, as discussed in
Section I, is to compact the storage for private entries [3],[28],
[34]. Our results show these techniques can be very effective;
however, their actual impact is highly sensitive to scaling.
In particular, Figure 7 corroborates previous claims that the
majority of directory entries encode a single sharer [11]. For
example, on average, 85.5% of entries are private for 256KB
data caches. But the private entries reduce to 72.0% at 1MB,
and at each benchmark’s maximum PRD, the private entries
reduce to 60.9%. So, the opportunity for these techniques
varies significantly. Interestingly, the curves labeled “≥ 2
sharers” in Figure 7 quantify the best these techniques can
ever do (i.e., if storage for private entries goes to zero). In
the limit, removing private entries can lower coverage a lot
(compared to the “Total” curves). But the gain is not as large
when CPUs scale since the≥ 2 sharer curves increase due to
greater sharing.

VII. R ELATED WORK

The difficulty of simulating large CPUs has motivated
researchers to develop alternative evaluation methodologies.

In particular, significant research has explored RD analysis
techniques. Our work exploits PRD profiling [27], [26], [33],
[32] which evaluates private caches. There has also been work
on evaluating shared caches [12], [19], [31], [33], [32]. But
all of these efforts have focused on data caches. This paper is
the first to apply reuse distance for reasoning about directory
caches, and for studying their behavior under CPU scaling.

Besides RD analysis, researchers have also developed an-
alytical models. For example, the Cuckoo work [14] used a
model to estimate the directory’s size and energy as core count
and data cache size are simultaneously scaled. In addition,
SCD [25] presented a model for estimating over-provisioning
in the directory cache. Compared to RD analysis, analytical
models are much faster. However, analytical models for di-
rectory caches require making assumptions about workload
behavior and its interactions with the data caches, so they are
not as accurate as RD-based techniques.

Finally, there is a large body of research on directory
caches (see Section I), and some have studied the effects
of multicore scaling on their techniques using simulation.
Most only simulate a single core count and cache size [11],
[10], [15], [16], [25], [28], [35], [34]. Cuckoo and SCT [3]
simulated 2 different private cache sizes at a single core count.
WayPoint [20] simulated 6 different core counts, but only
for a single cache size. In comparison, our work studies a
much larger cross product of cache sizes and core counts.
More importantly, we characterize scaling’s impact at the
source–i.e., the directory’s access stream. Hence, our insights
are applicable to many techniques, not just a single specific
directory design.

VIII. C ONCLUSION

In the past, reuse distance has been employed to analyze
I/O sub-systems, virtual memory, as well as processor data
caches (both sequential and parallel). This paper takes the
next step for RD analysis: applying it to analyze multicore
directory caches and extracting insights on CPU scaling. A
key contribution we make is the notion of relative reuse dis-
tance between sharers. This enables quantifying how sharing
evolves with CPU scaling, which yields the directory’s access
patterns and contents at different scaling points. Although
we examine the hardware implications of our insights, there
may be other benefactors. We believe compilers can use our
analyses for optimization–e.g., tuning sharing to change a
program’s footprint in the directory cache. Also, performance
programmers can potentially use our techniques to identify
scaling bottlenecks. We hope future advances can come from
our work.
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