Appears inProceedings of the 21st International Symposium on HiglioPerance Computer Architecture (HPCA-XXI).
San Francisco Bay Area, CA. February 2015.

Studying the Impact of Multicore Processor Scaling on
Directory Techniques via Reuse Distance Analysis

Minshu Zhao and Donald Yeung
Department of Electrical and Computer Engineering
University of Maryland at College Park

{mszhao,yeung@umd.edu

Abstract—Researchers have proposed numerous directory superlinearly. Worse yet, sparse directories incur cdsfliso

techniques to address multicore scalability whose behavicde- they require over-provisioning to keep conflicts at a minmmu

pends on the CPU’s particular configuration, e.g. core count . . . )
and cache size. As CPUs continue to scale, it is essential to Researchers have investigated numerous techniques to im-

explore the directory’s architecture dependences. Howevethis ~ prove the capacity scaling of directories. One approaclo is t
is challenging using detailed simulation given the large nmber reduce the sharer listsFor example, sharers can be tracked
of CPU configurations that are possible. imprecisely using limited pointers [2], [7], [8], [9], cose

This paper proposes to usenulticore reuse distance analysis to yectors [16], or tagles_s arrays [35]. Also, th_e di_rect(_)rpl b@
study coherence directories. We develop a framework to exact ~ Implemented hierarchically [15], [29], resulting in logamic

the directory access stream from parallel LRU stacks, enaing ~ sharer list growth. More recently, SCD [25] combines lirdite
rapid analysis of the directory’s accesses and contents amss  pointers with hierarchical lists to compactly encode badin-n

both core count and cache size scaling. We also implement row and wide sharing patterns. In addition to these techesgu
our framework in a profiler, and apply it to gain insights into researchers have also tried feduce conflictsFor example,
multicore scaling’s impact on the directory. Cuckoo [14] and SCD [25] use multiple hash functions and

Our profiling results show that directory accesses reduce by €rative re-insertion to increase associativity.

3.5x across data cache size scaling, sug_gesting tephniqubat Another important approach iexploiting private data
Fradeoff access Iatgncy for reduceq capacity or conflicts lmeme Cuesta’s work [11], [10] detects pages that are accessed by
increasingly effective as cache size scales. We also shove th a single core and omits tracking their cache blocks. PS-

portion of on-chip memory devoted to the directory cache carbe . . .
reduced by 53.3% across data cache size scaling, thus lowegithe ~ Dir [28] devotes a separate directory to track private datags

over-provisioning needed at large cache sizes. Finally, walidate ~ Minimally-sized sharer lists. And, SCT [3] and MGD [34]

our RD-based directory analyses, and find they are within 13%  recognize private data tend to occur in large contiguous

of cache simulations in terms of access count, on average. regions. Hence, they coalesce consecutive privately aedes
cache blocks, and track them as a single coherence unit.

.- INTRODUCTION Finally, instead of reducing the directory’s footprint,tye

The trend for multicore CPUs is towards integrating ananother approach is to implement directoriesasymmetric
increasing number of cores on-chip. Today, energy-efficienstorage For example, PS-Dir [28] provides a fast directory in
CPUs, such as Intel's Phi [18] and Tilera’s Tile processats [ SRAM for frequently accessed directory entries, and a slow
already implement 10s of cores on a single die. In the futuredirectory in denser eDRAM for infrequently accessed estrie

processors with 100s of coreisg. large-scale chip multipro- Also, WayPoint [20] evicts infrequently accessed entrieat t
cessors [17], [36], will be possible. do not fit in the on-chip directory to off-chip DRAM.

To enable scaling, architects have investigated directory ~The effectiveness of these techniques depends in large
based cache coherence. An important factor in the scajabili Part on how applications exercise the directory. One ctucia
of these protocols is the design of their coherence diristor factor is programssharing patternse.g, the degree of sharing
Duplicate tag directories [4] are impractical because theycross different cache blocks, as well as the type of sharing
require high associativity as CPUs scale. In contrast,sgpar readvs. write. Another important factor is programs’ impact
directories [16] maintain an explicit sharer list per cachg  ©n directory access patternsncluding access frequency and
which can be stored in arrays with low associativity, so theydistribution over different directory entries.
are more scalable. The main proble_m with sparse directories gyt in addition to applications, directory techniques are
is capacity. Because both sharer lists and cache tags tengq highly sensitive to architecturiess, the CPU’s configura-
to increase with core count, the directory size can growjon For instance, varying core count will affect the amoun

This research was supported in part by NSF grant #CCF-121704 f"‘”d frequency of sharing, and hence, the directory’s behav-

and in part by DARPA grant #HR0011-13-2-0005. The views and!®f- But also, varying the data cache hierarchy can have a
conclusions contained herein are those of the authors aadicsh Significant impact as well. This is because the directory’s
not be interpreted as necessarily representing the officiities or ~ aCC€SS stream Is dgflned by d_ata cache_ misses, so changing
endorsement, either expressed or implied, of the Defensaned  the caches—in particular, scaling capacity—will change th
Research Projects Agency (DARPA) or the U.S. Government. directory’s behavior. Specificallyit can alter the perceived




sharing patterns While sharing is inherently an application reduces the number of active directory entries needed ¢ tra
behavior, whether or not a program’s sharing patterns raahif all sharers, allowing the portion of on-chip memory devoted
themselves in the data caches—and hence, become visibke to to the directory to decrease by 53.3% across data cache size
directory—in fact depends on the data cache size. scaling. This trend is accompanied by a significant redactio
, . . ... in the number of directory entries for private data relative
To understand the efficacy of directory techniques, it iSghared data. In addition to cache size scaling, we find core
essential to explore their application and architecture dec,ynt scaling at a fixed capacity only increases the dirgstor
pendences. Unfortunately, this is challenging with eRgti  ;-cesses by 38% despite a 16x increase in core count and

methodologies. The problem is architectural simulatibe—t ecreases the directory size by 2.6% despite a 4x increase in
primary method for evaluating directory techniques—is ex-

; core count.
tremely slow when modeling large core counts. Moreovetheac
simulation only evaluates one configuration, so fully explo To validate our profiling results, we compare them against
ing application- and architecture-dependent behaviarsires  cache simulations. Our validation experiments show the pro
running simulation sweeps. Given finite simulation bandiid filed directory access counts are within 9.3% of simulation
researchers often limit the number of configurations exqlor across cache size scaling on average, and 13% across core
While it is common practice to vary applicationise(, using  count scaling. Moreover, the profiled directory sizes arthiwi
entire benchmark suites), architectural scaling is uguadi- 3.0% of simulation across cache size scaling on average,
glected. Among the myriad directory studies mentioned apov and 3.7% across core count scaling. Finally, we discuss the
only a few have simulated different core counts or cachémplications of our profiling results for existing direcyor
sizes [3], [14], [20]. And even in those cases, only a smalltechniques. One implication is that reducing directorye sit
number of configurations were explored. the expense of more costly lookups is a desirable tradeoff
o . , . as CPUs scale. Another implication is the fraction of on-

Recently, there has been significant interest in evaluatinghjy memory needed for the directory varies significantly
multicore cache hierarchies via locality analysis [5],]I129],  with scaling, especially cache size scaling. We show fortmos
[27], [26], [13], [32], [33]. These techniques acquireuse  penchmarks, a Cuckoo directory only needs to provide entrie

distance (RD) profilesA program’s RD profile is its memory  tor 37.5-87.5% of cache blocks in the private data caches.
reuse distance histogram, capturing the memory reference

locality that determines the program’s cache performance. The rest of this paper is organized as follows. Section Il
In recent work, researchers have extended uniprocesser prdiscusses the directory accesses we analyze. Then, Séttion
filing to handle multicore CPUs by modelingpter-thread ~ presents our analysis framework, and Section IV implemients
interactions For example, private-stack reuse distance (PRDNext, Section V reports our profiling results while Sectioh V
profiling [27], [26], [32] uses per-thread coherent LRU &mc Vvalidates them and discusses their implications for dinmgct
to model the interactions that occur across private datagsac techniques. Finally, Section VII covers related work and-Se
The key is such profiles are architecture independent acrod®n VIl concludes the paper.

cache size scaling, and highly predictable across coretcoun

scaling [32]. So, a few profiles can analyze caching behavior [I. DIRECTORYACCESSES

across a large number of CPU configurations without having

to simulate thent Figure 1 illustrates the on-chip cache hierarchy of a tylpica

multicore CPU. At the top of the hierarchy are the cores and
In this paper, we apply multicore RD analysis to studytheir private data caches, with multiple levels of privadetoe
coherence directories. Our goal is to enable for coherengeger core (only the last level is shown in the figure). Below the
directories the powerful analyses that reuse distance has grivate caches is the CPU&haring pointwhere the directory
ready demonstrated for multicore data caches. To accamplissits, which is labeled “Directory Cache.” Optionally, teenay
our goal, we develop a framework for extracting the director also be a shared data cache at the sharing point. Finally, off
access stream from PRD stacks to allow analysis of thehip main memory appears below the cache hierarchy.
directory’s access patterns and contents. A key notion we

develop isrelative reuse distance between sharevehich The directory cache is accessed on data cache misses. To

P L o e ; illustrate, Figure 1 shows three types of cache transastion
guantifies sharing in a capacity-sensitive fashion. Dueh& t Igpeled “T1"_"T3” First, a transaction may miss all the way

cache-size _indepgndence of PRD, we can perforr_n analyse_sto main memory (T1), causing a new data block to be brought
every possible private data cache size from a single profile, : ! . -
Also, Using existing insights on PRD profiles [33], we Canon—ch|p. T1 transactions access the directory, but do ndt fin

analyze the directory’s behavior across core count scalig tShe reqduested address tag- they aridwﬁctc_)ry caqheplst,;ej._
well. econd, a transaction may miss to the sharing point, buttind i

data on-chip in a remote private cache (T2). T2 transactioms

We implement our analyses in a PIN-based profiler [21],"sharing-based” transactions that require directory igukto
and use it to study directory behavior. Our profiling resultsdetermine the kind of remote actions needed and the sharers
show a 3.5x drop in directory accesses occurs when datavolved. They are directory cache hits. Third, a tranecti
cache size scales from 16KB to 1MB, despite an increase imay hit in a core’s private data cache (T3). T3 transactions
sharing-based directory accesses. We also find elevatédgha do not access the directory. Besides data cache misses, the
directory cache is also accessed on evictions that notidy th

IPRD is sensitive to reference interleaving, so strictly akjeg, it is  directory. These are labeled “E” in Figure 1.

architecture dependent. But research has shown that chanigerleaving are . . . .
benign for programs with symmetric threads and loop-lewehltelism [19], In addition to accessing the directory, data cache misses

[32]. So, PRD is accurate for these programs. and evictions also change the directory’s contents. Tlsaan




@ @ Time: 1 2 345 6 78 9 10 1112 13 1415
CoreG: ABC DE A c B C

T
Y v Core G; F CGH I
| Private Data Cache|< - - - _| Private Data Cachel
N =7 Fig. 2. Two interleaved memory reference streams.
) N - (Optinal)
| Directory Cache‘ | Shared Data Cachel C, G C, G C, G
- \ lA l l lWr C lC l
—A I
| Main Memory | - i—T-CS
o= - CSZ
. . . . . >< = hole _8_
Fig. 1. Directory accesses in a multicore cache hierarchy. - = --CS;
Ref A, t=10 Write C,t=7 C,t=15

tions allocate directory entries in the directory cach'elaiting _Fig. _3. _ LRU stacks illustrating (a) intra-thread reuse amglication, (b)
new directory entry lifetimesEach directory entry starts out "vaidation, and (¢) PRRmote.

with a single sharer, but during its lifetime in the diregtor
?(?rcgig;zigzzjeersllsﬁn%?na%% ngogrig?grb% Ir? etr:r?tsr,sgtlgﬁ :fe'? I-:—;ieferenced since the last reference to the same data block.
whereas a T2 for a write request sets the entry’s sharer i 6gﬁgfﬂg¥e?gigggtxﬁhcéc&e g;sgrég zvelltchhgnhlﬁzuhz\gggo?he
to a single sharer (assuming invalidation on writes). Eerct e . P E e
notifications also change the entry’s sharing degree, aciirig cacfhle rE'SS CﬁunéD's t?e ?um of 6!” ref(_?_rhe_ncesl, Irll an RD
a sharer from the entry’s sharer list. Finally, a directamyrgs profile above the value for capacifys. (This calculation
lifetime ends after all copies of its associated cache Edeive accurately predicts misses in set associative caches 0, a

- ; : . long as capacity misses dominate conflict misses). One of
been evicted from the private data caches, potentiallyatip : : T ;
the directory entry to be deallocated. the major benefits of RD profiles is that they are architecture

independent, so a single profile can predict the missearfgr
Notice, the T1-T3 and E accesses in Figure 1, as weffache size’’S.

as their modifications to the directory, are determined ley th More recently, RD profiling has been extended for multi-
private data caches. Hence, they are architecture dependepy, e rocessors by using parallel LRU stacks. For example,
Spemﬂc_ally, 509"”9.“9 number of private ca_chl_es.,(_cores) private-stack reuse distand®RD) profiling [27], [26], [32]

and their capacity will affect the volume and distributidrird, [33] replicates LRU stacks, one per core a'nd p,Iays éach
T2, T3, and E accesses. In turn, this will change the dirgctor . .5 memory references on its local stack while maintani
entry lifetimes within the directory cache as well as theiest coherence between all of the stacks. This technique caiicpred

sharer lists. The goal of our work is to provide techniques fo y,q o4 che misses occurring within private data caches.
analyzing the directory’s accesses and contents, eslyeaml

the private data cache hierarchy scales. To illustrate, Figure 2 shows the memory references from
two cores, G and G, performed on data blockd—J, and

_ For some cache coherence protocols, our analyses agggure 3 shows the corresponding LRU stacks at different

imprecise. In particular, _there are protoco_ls _that do _no_if)no times. In Figure 3(a), we see § re-reference of att = 10,

the directory after certain data cache evictiangs eviction  555uming all references in Figure 2 are reads. Blbdk found

of shared (and clean) cache blocks. In this case, the disectopajow blocksB—E in Ci’s LRU stack, so we say its PRD =

cache may retain entries whose lifetimes have ended, iBCrea, A cache of size 5 or more blocks would capture this reuse;

ing the number of allocated entries which we do not analyzeyiherwise. a cache miss would occur fromi<private cache.

Section 11I-C will discuss the impact of this on our analyses | jke sequential RD analysis, the histogram of all PRD values
can predict a thread’s private cache missesafoy cache size.

[1l.  ANALYSIS FRAMEWORK In addition to intra-thread reuse, PRD profiling also cap-
, ) tures inter-thread interactions, such as sharing. For sead
This section presents our RD-based framework for anapg pRD captures the resulting replication effects actdid
Iyzmg multlco_re scallng’_s impact on dlre_zctory caches. -Sec gtacks. In Figure 2, both Cand G access data block'.
tion IlI-A reviews multicore RD techniques. Then, Sec- Assuming these are both reads, Figure 3(a) showgtheock

tions I1-B and III-C develop new analyses to identify the is yeplicated in the cores’ stacks. Such shared replicasase
directory accesses and modifications discussed in Sedtion | {e capacity pressure within the affected stacks.

PRD also captures write sharing effects by maintaining
A. Multicore RD Analysis coherence between LRU stacks. For example, suppe&se C
reference toC' at ¢ = 7 is a write instead of a read.

Reuse distance has been used to analyze uniprocess@fien invalidation would occur in @ stack, as shown in
locality. For a sequential program, a reuse distance (RD)

profile is a histogram of RD values for all memory references 2reyse distance has also been referred to as “stack disthacatise RD
where each RD value is the number of unique data blocksalculations are performed on memory reference stacks [22]




Figure 3(b). To prevent promotion of blocks further down theC, has referenced it more recently thag. So, the block is at
LRU stack, invalidated blocks leave behind “holes” [27].le®  different depths in the two stacks. Because there is a nom-ze
are unaffected by references to blocks above the hole, but r@lative stack distance between the two copies, the behavio
reference to a block below the hole moves the hole to wherwill depend on the private cache size. Figure 3(c) showsthre
the referenced block was found. In our example, whenéz  cases, labeled'S;—C'Ss. If the cache size i€S, then neither
referencesA att = 10, E and D in Figure 3(b) will be pushed copy is on-chip, so €s reference misses and generates a T1
down and the hole will move to depth 46 old position), directory access. If the cache siz&l$,, then only G’s copy
preserving the stack depth @. After the invalidation, ¢'s is on-chip. We say block’ is “temporally private” [3]+e. it
re-reference of” at ¢t = 12 will miss regardless of the cache is private within the limited time window captured lySs.
capacity+e. a coherence miss—so we say its PRBo So, G's reference is a hit regardless of access mode (a T3)
. with no directory access. Lastly, if the cache siz€'iS;, then

PRD I | i ff A hgoth copies are on-chip. While a read would again be a T3
can also analyze core count scaling effects. As Ngangaction, a write would cause a T2 directory access.
number of cores increases, PRD profiles often change system-

atically: they shift to larger RD values in a shape-presagvi To enable locality-aware sharing analysis, we introduee th
fashion [32], [33]. At small cache sizes, profile shiftisdarin  notion of remote reuse distanc®r PRD.c,0te. A memory

the amount of core count scaling. But as cache size increasagference’s PRR.,,..:. iS the minimum stack depth across all
the shift reduces, and becomes minimal for very large cachesemote LRU stacks. If PRR,..:.c = oo, then the associated
This is because memory references with small RD values tendiata block only resides in the core’s local stack, and the mem
to access private data, whereas shared references tertdlid ex ory reference is “truly private.” If PRR,,.t is finite, then
large RD values. Thus, core count scaling increases cachts value specifies the capacity at which sharing is captured
pressure more at small cache capacities. (Details on thesm-chip. Given a private cache of sizéS, PRD.¢cote < CS
effects can be found in prior work [32]). would mean the sharing is captured; otherwise (PR >

. . . . CS), the memory reference is temporally private.
In the remainder of this section, we extend multicore ) y P yp

RD analysis to handle directory caches. We develop several 1) Access Mode, PRD, PRD,.,.. Characterization.:
techniques for analyzing directory caches when scaling priTable | lists all data cache transactions that can occur by
vate cache capacity. We do not develop new techniques fgrermuting the access mode (read or write) and the different
analyzing core count scaling. Instead, in Section V, we WillPRD/PRD.;,.:. Outcomes € CS, > CS, andoo) discussed
use existing insights on core count scaling of PRD profilesabove. In total, there are 18 different cache transactitatse |
along with acquiring profiles at different numbers of cottes, reports all of them in terms of the T1-T3 categories.

reveal core count scaling’s impact on directory caches. i . . .
9 P y The first eight transactions in Table | form the T1 category.

) ) All of these are misses in the local private cache and in
B. Directory Access Analysis all remote private caches (PRD and PRR,.. > CS);

Because PRD profiling can predict private data Cachélherefore, there is no sharing captured on-chip. Transasti
misses, it can identify cache miss-induced directory ssmes and 2 are .COld_ misses. While transactions 3 and 4 can be a
: ; ; a{acal _cold miss, in most cases they are coherence misses, as
or write), we can predict whether a cache miss and directoryXPlained in Section Ill-A, which are re-references afteitev
access will occur at cache sizeS, and if so, its type. nvalldatlo_ns. Transactions 5 anq 6 represent the caseewher
the data is truly private and resides in the local cacheethes
Consider the examples from Section llI-A. In Figure 3(a),correspond to Figure 3(a) assumifig' < 5. And, transactions
if C,'s private cache is sufficiently large to capture the reuse’ and 8 represent temporally private data—these corresjpond
on block A (PRD < (C¥5), then the reference hits—a T3 Figure 3(c) assuming’'S = CS;.
transaction—and no directory access occurs. Otherwis® (PR

> (S), the reference misses and generates a directory access. | '€ Next five transactions in Table | form the T2 cat-
Given there are no other copies df on-chip, this is a T1 egory. All of these exhibit sharing that is captured on-chip

transaction that initiates a new directory entry lifetinia. .(PRI.D"em.Ote < C9) aan some remote action Is reqwred—eﬂher
Figure 3(b), if G's reference to blockC is a write, then the invalidation or forwarding of th_e requested bIock. Trartigas
e ’a't 2 and 12 would both miss an;j generate 9 and 10 represent a read miss in the local private cache, but

directory accesses. (Like Figure 3(a), these also depettideon the data can be _forwarded by a remote private cache. For
cache sizeC'S, which we will address next). Since these are€X@mple, transaction 9 corresponds to Figure 3(b) assuming

due to inter-thread communication, they are T2 transastiontlhze acgelsg IS a readtam_tDTimote ; C% ' |;I'Irar|1(sact|orr]1_s 11h_ o
that reuse the directory entry insertedtat 3. »an represent a write o a shared block on chip, whic

causes invalidation. For example, transaction 13 corredpo
One issue PRD profiling does not address is sharing’so Figure 3(c) assuming the access is a write &i#tl= C'Ss.

dependence on cache size. Granted, sharing is an appticatidvloreover, similar to transaction 3 and 4, transaction 9 ahd 1

level property. But even if threads share data, whether or nacan be coherence misses too.

the sharing manifests on-chip depends on cache size. So, the . .

number of sharing-based T2 transactions is tied to temporal The last five transactions form the T3 category. All of these

locality—i.e., to therelative reuse distance between sharers &r€ hits in the local private cache (PRD C'S) and do not
require remote actions. Transactions 14 and 15 correspmond t

Figure 3(c) illustrates this by showing; 8 reuse of block Figure 3(a) assuming'S > 5; transactions 16 and 17 corre-
C att = 15. Both cores have the block in their LRU stacks, butspond to Figure 3(c) assumirgS = C'S3; and transaction 18



TABLE I.  THE 18 POSSIBLE DATA CACHE TRANSACTIONS lifetimes @ C$,  Multiple LRU Stacks sharer/access counters

CS,, CS; begin o
| Mode | PRD | PRDrcmote || Comment S Cbeg \ = “cflesi'@ﬁd? for data block A
T1 Transactions New Lifetimes 16KB / dir entry skar rc/
2 W ~ ~ Cold Miss &A/ 5 — dir entry accgss £irs I
2l w | o 0 Cold Miss -1 e S i
> i .
AR et S R e
5 R >CS 0 Truly Private E S '& 1T |—\L|—]7L|dlrentr fepeesclis
8|l w |>cCs >CS Temporally Private R = X\‘_' - & :l (e
T2 Transactions Directory Reuses : “Cfes‘z";‘r?d? : :
9 R 00 <CS Forwarding . ’
10 R >CS <CS Forwarding
11 W 00 < CS Invalidation Fig. 4. Counters implemented in the PIN profiler.
12 w >CS <CS Invalidation
13 w <CS <CS Invalidation - . . . .
T3 Transactions Data Cache Hits pache eviction p0!|C|es (this cannot be dqne in an architeet .
14 R [ <CS p~ Truly Private independent fashion), we cannot determine when dead &ntrie
15 W < CS 00 Truly Private actually leave the directory cache.
16 R <CS >CS Temporally Private
17 w <CS >CS Temporally Private IV. DIRECTORY CACHE PROFILER
18 R <CS <CS Read to Shared

We implemented RD-based directory cache profiling within
the Intel PIN tool [21]. We modified PIN to maintain coherent
. . private LRU stacks and perform PRD profiling, as discussed in
corresponds to Figure 3(c) assumi@g = C'S;. Section Ill-A. (We assume 64-byte blocks in all LRU stacks).

2) Evictions.: In addition to T1 and T2 transactions, the FOr every memory reference, our profiler consults the LRU
directory is accessed on evictions as well, which PRD prgfili Stacks to compute PRD and PRR.., using Table | to
can also predict. In particular, each memory reference gaish determine the data cache transaction and directory aogass t
certain blocks in the local LRU stack downward. Whenever  To enable capacity scaling analysis, our PIN profiler refers

a block moves below a given stack depth, it is evicted fromyo Table | multiple times per memory reference, determining
the cache with the corresponding capacity. For example, ifhe behavior for differenC'S values. While our framework
Figure 3(c), blockB is evicted from a cache of siz€'S1  allows exploring allC'S exhaustively, we steg’'S in in-
after the reference t@’ pushes it down the stack. Supposecrements of 16KB and stop at the application’s maximum
C references blockZ instead ofC' in Figure 3(c). In that PRD. For eachC'S value, we maintain 19 counters, one per
case, not only wouldB be evicted from a cache of size transaction in Table I plus one for evictions, and increntkat
CSy, but A would also be pushed down and evicted fromcorresponding counter. Figure 4 illustrates the per-aetisn

a cache of siz&”'S;. As mentioned in Section Il, whether or counters, labeled “xact ctrs,” at each profiled private easibe,
not a particular eviction notifies the directory dependstoa t |apeled ‘C'S;.”

coherence protocol. The next section will address thiseissu . , , i
In addition to counting transactions, our PIN profiler also

] ] tracks the directory cache contents. We maintain a set of
C. Directory Contents Analysis sharer counterspne per unique data block contained in all

The directory cache contents can be tracked by the sam‘g the LR%J bSt?CdkS“ d"?‘t ever@Sﬁ. Figure 4 il;tustrat%s t.hese
analyses from Section I1I-B. Initially, the directory cachs ~ Ccounters, labeled “dir entry sharer ctrs.” After updatifg t

empty. As explained in Section |1, each T1 transaction (#—g Xact ctr” at a particularC's;, we check if the transaction
Table 1) inserts a new entry with a single sharer, increasieg causes a directory access, af?d if S0, whether it changes t.he
number of directory entries in the directory cache by onghEa Number of sharers. If the sharing degree changes, we modify
T2 transaction reuses an existing directory entry, wittdsea the corresponding sharer counter. On each eviction, we also
(transactions 9 and 10) increasing the sharer count by ate affecrement the corresponding sharer counter for the evicted
writes (transactions 11, 12, and 13) setting the sharer tcoufyache block.

to one. Each data cache eviction that notifies the directory Our PIN profiler also counts accesses to individual di-
also reuses an existing directory entry, but decreasesthers rectory entries during their lifetimes in the directory bec
count by one. Lastly, if an entry’s sharer count reaches,zeraNe maintain another set of per-entry counters at evésy,

the number of directory entries decreases by one. labeled “dir entry access ctrs” in Figure 4. Each time a
directory entry is accessed at a particula$;, we increment

If all data cache evictions notify the directory (a common .
the corresponding access counter.

assumption made in recent techniques [3], [14], [25], [34])
this analysis exactly tracks the directory’s contents. Esy, Sharer and access counters are allocated as memory ref-
if some evictions are silengé-g, for shared blocks—then our erences promote data blocks in the LRU stacks, initiating
analysis is imprecise. We can still identify the notificao directory entry lifetimes at different cache sizes. In cast,

But the silent evictions create dead directory entrieslthger  whenever a sharer counter decrements to zero, the cormgkspon
in the directory cache. Since we do not analyze directoryng directory entry’s lifetime ends at th€'S; to which the



TABLE II. PARALLEL BENCHMARKS USED IN THE EVALUATIONS. TABLE IIl. C ACHE-MISSAPKI AT 3 PRIVATE CACHE SIZES INTRINSIC

INSTRUCTION COUNTS LABELED “I NST,” ARE REPORTED IN BILLIONS APKI, AND APKI FOR16-AND 256-CORECPUs.
Benchmark Suite Problem Size Inst Benchmark Cache Miss APKI T2 APKI
fit (kernel) SPLASH2 272 elements 2.46 16KB 256KB 1MB | oo | 16c 256c¢
lu (kernel) SPLASH?2 2048 elements 25.1 fft 16.0 3.9 38|/ 17| 37 39
radix (kernel)| SPLASH2 224 keys 3.15 u 2.0 19 0707} 02 11
barnes SPLASH2 29 particles 19.3 radix 16.7 5.7 57/23| 56 61
fmm SPLASH? 219 particles 16.5 barnes 19.1 0.9 0.8| 0.6 0.6 0.9
ocean SPLASH2 1026 grid 1.72 fmm 2.0 0.8 06/ 02| 06 08
water SPLASH2 40° molecules 1.86 oc?an 332 1;33 gé gg gg 18:8L
kmeans MineBench | 222 objects, 18 feature$ 10.7 \Iivzeearns 11 11 11l 06| 11 06
blackscholes | PARSEC 222 options 3.94 blackscholes 13 08 o8l 0ol o8 o8
bodytrack PARSEC B_261,16k particles | 13.9 bodytrack 11-.6 0..1 O-.l O:l O:l 0:3
canneal PARSEC 2500000.net 0.12 canneal 243 233 236/ 99229 249
fluidanimate | PARSEC in_500k.fluid 4.30 fluidanimate 29 18 13| 07 08 1.9
raytrace PARSEC 1920x1080 pixels 4.39 raytrace 0.8 0.6 05/ 01| 05 0.6
swaptions PARSEC 28 swaptions 26.7 swaptions 27 27 271 02| 26 29
streamcluster| PARSEC 2'® data points | 5.14 streamclustef| 230 229 64/ 63| 57 6.9
Average 53 2.1 15| 05| 13 1.8

sharer counter belongs. And, the corresponding accesseroun

reflects the number of accesses the directory entry received Tape |1 shows directory cache accesses are highly sensi-
during its lifetime for a private cache of sizéS;. We record e 1o data cache siz¢hey drop rapidly as capacity increases
this access count in a histogram f6fS;, and deallqcate It For small 16KB private caches, about half the benchmarks in
(and its sharer counter) to reflect the directory entry'saea  Tapje ||| exhibit a directory APKI exceeding 11 (reaching 32
from the directory cache. Figure 4 shows how a reference g, one case). But for IMB caches, all benchmarks except for
block A initiates directory entry lifetimes at capaciti€sS;,  canneal exhibit a directory APKI of only 7.1 or less, withfhal
CS;, and C'S3, and how the first two lifetimes terminate as ynder 1 APKI. Across ali benchmarks, the average directory
the block is pushed below capaciti€s; andC'S;. APKI drops from 5.3 at 16KB to 1.5 at 1MB, a factor of 3.5x.

Finally, our PIN profiler follows McCurdy’s method [23]
which performs functional execution only, context switaii
threads after every memory reference. This interleavesity’

Ostensibly, this drop is due to the reduction in cache misses
that occurs when scaling cache sizes. But the reason idllgctua
more nuanced, reflecting on how cache size scaling affeets on
) ! : Iﬁbhip sharing. To illustrate, Figure 5 shows the completeakseh
that for parallel programs with symmetric thread_s, this aP3or from our profiles, breaking down the directory’s accesae
proach yields profiles that accurately reflect locality oalre data cache size varies. The solid lines, labeled “Total digs

CPUs [19], [32], especially for PRD profiles. plot APKI for all (T1 + T2) accesses; the dashed lines, lathele
“T2,” plot APKI for T2 accesses only; and the dash-dotted
V. PROFILE STUDIES lines, labeled “T2 Read Shared,” plot APKI for T2 accesses

associated with read sharinge(, transaction 10 in Table I).

With our profiler, we study the impact of multicore scal- To save space. 4 representative benchmarks are shown
ing on directory caches using 15 parallel benchmarks. Ta- pace, P '

ble Il lists the benchmarks and their suites: SPLASH2 [30], At small cache sizes, Figure 5 shows the directory cache
MineBench [24], and PARSEC [6]. The last two columns re-accesses are dominated by T1 transactions (the gap between
port the problem sizes and instruction counts (in billio®r  «Total Misses” and “T2"). The lack of T2s here makes
the kernels—ft, lu, and radix-we profiled the entire benaltn  sense since the data caches are too small to capture many
For other benchmarks, we ran the first parallel iteration toshared accesses occurring between threads. So, the majorit
warm up the PRD stacks, and then profiled the second parallgf references are to private data, regardless of whethgr the
iteration. We first study how scaling affects the directsry’ are truly or temporally private. As data cache size increase
access stream and conterjts. Then, we study the distributig@o trends occur. First, truly private data blocks begirinfitin

of accesses across the directory to show temporal reuse ghche, decreasing the number of T1 transactions. But second
directory entries. In the first two studies, we address cach@mporally private data blocks begin manifesting theiristtp

size scaling followed by core count scaling. In the last gtud patterns on-chip, increasing the number of T2 transactions
we consider cache size scaling alone to show the main effects
While T2 transactions generally go up with capacity, they

can also drop due to read sharing. Figure 5 shows the “T2
Read Shared” transactions increase as more remote shegers a
Table Il shows the impact of scaling private data cachecaptured on-chip. But onal sharersare cached, the directory
size on cache miss-induced directory accesises T1 and T2 accesses are eliminatéak; the read-sharing working set fits
transactions) as reported by the “xact ctrs” in our profiler. in cache. In contrast, write sharing leads to coherencee!
particular, columns 2—4 of Table Il report the total numbér T2 transactions. These also increase with capacity s¢dling
cache miss-induced directory accesses per 1000 instng¢tio they cannot be eliminated by capturing all sharers on-chip.
or “APKI,” incurred by a 64-core CPU at 3 data cache sizes.This causes the gap between the “T2” and “T2 Read Shared”

A. Study 1: Directory Access Results



14.0
12,0
10.0 |
8.0 [
6.0
4.0
2.0 B

APKI

0.0 ————===a— =
16K0.5 1 1.5 2 25 3 35 4

4.5

Per-Core Private Cache Size(MB)

(a) fit

APKI
[SE=T (N LR )

ocwmowvmowmo
Y

16K 04 08 12 16 2
Per-Core Private Cache Size(MB)

(c) fluidanimate

Fig. 5.
CPUs.

16 cores -----
64 cores
256 cores -------

APKI
= SN W WA

i i e i e
coooooooo

24

iM 50 100 150 200 250 300

Total Private Cache Size(MB)
(a) ocean

ovhrOONMRO

APKI
coooOo

16K0.5 1 15 2 25 3 35 4 45
Per-Core Private Cache Size(MB)

(b) fmm

+ With Notifications ------
Total Misses

T2 Read Shared ———

16K0.5 1 1.5 2 25 3 35 4 45
Per-Core Private Cache Size(MB)

(d) streamcluster

Breakdown of directory APKV.s. private cache size for 64-core

APKI
OSSN WO ARG

mouvmouvomowmo

1M 20 40 60 80 100 120 140
Total Private Cache Size(MB)

(b) water

Fig. 6. Total directory APKI for 16-, 64-, and 256-core CPUs.

curves in Figure 5 to increase monotonically.

Notice, at each benchmark’s maximum PRD, all read-20%. On average, the coverage at each benchmark’s maximum
shared T2s are eliminated while all write sharing is exposedPRD is only 46.7%#e., 53.3% of the directory does not

These o

size scaling reduces directory accesses.

directory accesses, the directory access stream alsoim®nta
cache eviction notifications. In Figure 5, the dotted lines
labeled “With Notifications” plot directory accesses when
notifications are added. In most benchmarks, notifications
double the number of directory accesses at small cache sizes
This is because small data caches contain mostly private dat
blocks, each incurring a T1 transaction to insert its doBct
entry into the directory cache and a notification to end the
entry’s lifetime. The pairing of notifications with T1s cass
the doubling. For larger caches, data blocks may incur many
T2 transactions not paired with evictions; hence, notiforest
comprise a smaller fraction of the directory access stream a
caches scale. But notifications do not change the main point:
cache size scaling significantly reduces directory acsesse

B. Study 2: Directory Contents Results

Figure 7 shows the impact of scaling private data cache
size on the number of directory entries in the directory each
as tracked by the number of sharer counters in our profiler.
In particular, the solid lines, labeled “Total,” plot theticaof
total live directory entries to total private cache blocksnetric
called coverage[25]-as data cache size varies. (Coverage at
each cache size is time-averaged across the entire profiling
run). All results are for 64-core CPUs.

As Figure 7 showscoverage—and hence, the portion of on-
chip memory devoted to the directory—decreases significant
with cache size scalingln particular, coverage starts near
100% in most cases, but then drops to about 50% as cache
size increases for many benchmarks. The effect is extreme in
lu, bodytrack, and streamcluster, where coverage dromsibel

private caches quantify a program’s intrinsic contain active directory entries.
coherence-related directory accesses. The column latiEked

oo” in Table 11l reports these accesses. On average, they onlgtI
reach 0.5 APKIHence, while scaling caches exposes sharing
based misses to the directory, it also decreases misseslyo tr
private data by a far larger amounthis is why overall, cache

The drop in coverage is due to increased sharing that occurs
arger cache sizes. As discussed in Section V-A, T2 aesess
are negligible at small cache sizes, but go up with data cache
size scaling because applications’ sharing patterns becom
exposed on-chip. These extra T2s tend to increase the sharer
tracked per directory entrySo, while single-sharer entries

In addition to data cache size scaling, the directory accesdominate at small cache sizes, multi-sharer entries become
stream is also affected by core count scaling. To illusfratesignificant at large cache sizeSince shared data blocks can
Figure 6 shows the same cache-miss induced directory accelsg tracked with fewer directory entries compared to private
curves from Figure 5-e., the “Total Misses” curves—at three only blocks, this causes the directory’s coverage to go down

different core counts: 16, 64, and 256. (Note, the X-axes in
Figure 6 plottotal cache size, instead gfer-corecache size
in Figure 5, to facilitate comparisons across core count).

To illustrate, the dashed lines in Figure 7 labeled 2
sharers” plot coverage for the directory entries with 2 oreno
sharers, as tracked by the sharer counters in our profiley. (S

Figure 6 shows core count scaling shifts the directorythe gap between the solid and 2 lines breaks down the
access curves to larger RD values in a shape-preservirmpverage for single-sharer entries). For 64KB private each
fashion. This is the same behavior that PRD profiles exhakit, only 9.3% of directory entries are multi-sharer entriesefov
shown in previous research (see Section Ill-A), which make®0% are private entries) averaged across all benchmarks.
sense since directory accesses are derived from privabe cacBut by 1MB, 28.0% are multi-sharer entries, and at each
misses that PRD profiles capture. Overall, the shift in@gas benchmark’s maximum PRD, 39.1% are multi-sharer entries.

the directory accesses at a given cache size, but in most case
the impact is small. For example, the last two columns o
Table Il report the directory APKI for 16- and 256-core CPUs
that employ 64MB of total private cache. As Table Ill shows,
the directory cache accesses only increase from 1.3 to 1t

APKI on average, despite a 16x scaling in core count.

f

Interestingly, this increase in sharing occurs non-umnifgr
Figure 7 illustrates this by plotting the coverage for dioeg
entries with 4 or more sharers (labeled 4 sharers”). As
jgure 7 shows, 2- and 3-sharer entries.(the gap between
e> 2 and> 4 lines) account for the majority of multi-sharer
entries created by cache size scaling. In contrast, dinecto

Finally, while we have focused on cache miss-inducedentries with many sharers are negligible. To illustrateterr,



100% 100% 100%

Total o
o 80% \ 80% > 2 sharers ------ 80%
©60% o 60% > 4 sharers 60%
g 40% o 40;’/0 40:&
320% L 20% [ e~lie— 20%
O 0% - 0% = 0% %

) o b
005115225335445 005115225335445 005115225335445 0051152253354 005115225335445
Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB)

(a) fft (b) Iu (c) radix (d) barnes (e) fmm
100% 100% 100% 100% 100%
80% 80% 80% 80% 80%
3,60% 60% 60% 60% 60%
& 40% 40% 40% 40% 40%
3 20% 20% 20% 20% 20%
8 0% o 0 0 0

= o 0% o
0051152253354 0 02040608 1 1214 005115225335445 0 0.20.40.60.8 1 1.21.41.61.8 0 0.05 0.1 0.15 0.2 0.25 0.3
Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB)

(f) ocean (g) water (h) kmeans (i) blackscholes (i) bodytrack
o 100% 100% 100%
1284: 80% 80% 80%
© 60% 60% 60% 60%
S 40% 40% 40% 40%
& 20% 20% 20% 20%
O 0% 0% 9 9

0 05 1 15 2 25 0 04 08 12 16 2 0 05 1 15 2 25 3 ) 005115225335445 : 005115225335445
Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB)

(k) canneal () fluidanimate (m) raytrace (n) swaptions (o) streamcluster

Fig. 7. Coveragevs. private data cache size for 64-core CPUs. Dashed lines ld@ak single-vs. multi-sharer entries.

TABLE IV. COVERAGE FOR WIDELY SHARED ENTRIESAND DROP IN Total =4 sharers ==----- 232 sharers - - - -
COVERAGE DUE TO CORE COUNT SCALING 22 sharers ——— > 10 sharers —-— > 64 sharers -—---
Benchmark >32 Coverage Drop 1?8; 1?8f ————————————————————————
Sharers | 256KB  1MB ° 1% fo. ° Ao fror T
fit 0.0008%| 0.2% 0.2% g 01% & g 0f%)

S 0.01% S 0.01% p_r ~—
lu 14.9% 1.1% -8.4% g: 0.001% g 0.001% \“~~~-«.-_k,q.rl..;_1
radix 0.001% 0.6% 0.2% 0.0001% 0.0001%

Fames 8-8?2? i?-;gﬁ 1:73?3//0 Per-go?'eslgri\lé?ezcigh% 383?(!&85) Per-goreoﬁ":iva?ésczjéﬁe S1i'26e(M%3)

mm . 0 . 0 . 0 . .

ocean 0.003%| 4.6%  4.1% (a) fmm (b) fluidanimate

water 0.004% | 14.1% 3.9% Fig. 8. Coverage breakdown for entries with wide sharing.

kmeans 0.0002% 0.2% -0.1%

blackscholes 0.02% | 14.8%  1.8% Total >4 sharers «--eee- > 16 sharers = = = =

bodytrack 1.2% 8.9% 10.5% > 2 sharers === =10 sharers —-— > 256 sharers ==« --

canneal 0.02% 1.9% 0.4% 100% —————— 100%

fluidanimate || 0.0008% 2.3% 10.3% 10% |---m""T T R 10%

raytrace 0.005% 1.8% 6.9% Y 1% o 1hEL

swaptions 0.009% | 6.2%  1.3% g e I SEVS TR R

streamcluster|  0.04% | 0.6% -0.3% 8 0.001% § 0.001%

Average 0.01% 2.6% 1.8% 0.0001% 024 6 81012141618 0.0001% 0 02040608 1 1.2
Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB)

(a) fmm, 16 cores (b) fmm, 256 cores

Figure 8 plots additional lines for two of our benchmarks,riq 9 same as Figure 8(a) except for 16 and 256 cores.
showing entries with very wide sharing degree (note, the Y-
axis is now on a log scale). As Figure 8 shows, directory estri

with > 32 sharers account for less than 0.01% coverage acrosgeded for the directory. Somewhat surprisingly, thoub, t
most cache sizes, and do not increase with cache size scalinghpact from core count scaling is much less. The last two
We find this behavior is ubIQUItOUS. In the second C-Olumn 0fco|umns of Table IV report the drop in coverage when sca”ng
Table IV, we report the coverage for the same2 entries for  from 64 to 256 cores observed at private cache sizes of 256KB
all 15 benchmarks at a private cache size of 1IMB. Except fopnd 1MB, respectively. In most cases, coverage changes by
lu, Table IV shows> 32 entries never account for more than only a few percent. For a few cases, the reduction can exceed
1.2% coverageSo, the reduction in coverage due to cache size| 9o, but it does not approach the 2x shown in Figure 7.
scaling primarily comes from increasing directory entriggh

a few sharers, not from increasing widely shared entries ~ Core count scaling's impact on coverage is limited because
it tends to increase sharing for data that are widely shared.

In addition to data cache size scaling, the directory cachélustrate, Figures 9(a)-(b) plot the same coverage breakd
contents are also affected by core count scaling. Like cachigom Figure 8(a), except the number of cores is 16 and 256.
size scaling, core count scaling also increases on-chifingha As Figure 9 shows, the coverage for widely shared entries
so it too lowers coverage and reduces the on-chip memorincreases with core count, but the entries with 2-3 sharers



100% 100% TABLE VI. D ATA AND DIRECTORY CACHE SIZE SCALING

o 80% © 80% PARAMETERS
& 60% g 60% = = —
S 40% S Lou Private Data Cache Sizes (Associativities)
S S Lo | - Private L1: 16 KB (4-way)
o 0% L ; Private L2: 64KB (8-way)
0051152253354 005115225335445 Private L3: 256KB, 512KB’ 1MB, or 2MB (a|| 8-Way)
Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) Directory Cache Coverage (Associativities)
(a) barnes (b) fmm Cuckoo:  12.5% (4-way), 25% (4-way), 37.5% (3-way),
1005 i 50% (4-way), 75% (3-way), 87.5% (7-way),
bl 100% 100% (4-way), 125% (5-way), 200% (4-way]),
S ° Total g 80%
o 60% >2 accesses ------ & 60%
S 40% 21 gaccesses ------------- 2 40%
= accesses ——— . .
© 20% © 20% | . At 256KB, Table V shows the entries witle 3 accesses
0% kEEiesansams SOGAEARTA 0% Kl 0 i ifeti .
5051152253354 0 o5 1 18 2 25 account for %nly 5.4AJ_of all directory entry lifetimes; ydtey
Per-Core Private Cache Size(MB) Per-Core Private Cache Size(MB) receive 18.1% of all dlrectory a}ccesses (On a_verage). At ’1MB
(c) ocean (d) canneal they account for 23.0% of lifetimes, but receive 37.8% of the
accesses. And ab, they account for 35.3% of lifetimes, but
Fig. 10. Coverage breakdown by access count. receive 54.9% of the accesses.

While these results include all accesses (T1 + T2), we find
e reuse of multi-access entries is even greater for juest th
2 transactions. In the last two columns of Table V, we report
the portion of T2s destined to entries with 3 accesses for
256KB and 1MB private caches. These results show the great
majority of T2s, 84.3% and 82.7%, are captured by a minority
Finally, we study the distribution of accesses over in-of directory entry lifetimes, 5.4% and 23.0%, respectivély
dividual directory entries. We observe that the accesses atiscussed in Section Il, T2s are on-chip transactions vesere
entry receives is related to its sharing degree. Entried witT1s can be off-chip transactions; hence, T2-induced dirgct
a few sharers tend to receive a few accesses (during theficcesses are more latency sensitive. Our results shemvall
lifetimes) whereas entries with wide sharing tend to reeeiv fraction of the directory cache can service the majority of
many accesses. Recall in Section V-B that multicore scalindatency-sensitive directory accesses
increases sharing non-uniformly. As sharing goes up, the

number of widely shared entries grows slower than the numberrOAssgggissrﬁgqé?rifgggn el’tergﬁﬁ?tug'sre[gtoo]ry[z%(]esllgﬁsahb%ve
of entries with few sharer$o, like sharing, reuse of directory brop y 9 q ' !

entries is also non-uniform, with a small part of the diragto zti?fg?ers]ltj%?éitt%:hirﬁtr?;észﬁaatlsgg??ércyh:,]r: tjg;pg;ﬁl éf(ulsge ove
receiving a disproportionately large fraction of the ditecy y q P

accesses.

does not change much. Since the former is a small part of t
directory cache, the overall impact on coverage is small.

C. Study 3: Access Distribution Results

) ] ) ) . VI. VALIDATION AND DISCUSSION
Figure 10 helps illustrate this point. In the figure, we break

down the directory’s coverage, just like in Figure 7. Buté@asl This section conducts cache simulations to validate result
of sharing degree, Figure 10’s breakdown is across differerfrom Section V. It also discusses the implications of our
numbers of cache miss-induced accesses that entries eeceldSights for existing directory techniques. After destrh
during their lifetimes in the directory cache (as reportgd b Methodology, we present validations and discussion for the
the access counters in our profiler). In particular, we et t Main insights in Section Vi, from studies 1 and 2).
coverage for entries witkr 1 (labeled “Total”),> 2, > 4, and

> 10 cache miss-induced accesses for a 64-core CPU. To sae Simulation Methodology

space, 4 representative benchmarks are shown. We implemented a cache simulator that models the cache

Notice, the graphs in Figure 10 are similar to their coun-hierarchy in Figure 1 (without the shared cache). Our sitoula
terparts in Figure 7. For instance, the breakdown for singleuses the same PIN tool from Section IV except the LRU stacks
access entries (the gap between the “Total” an®“accesses” are replaced by data cache models, and a directory cachd mode
lines in Figure 10) is essentially identical to the breakddar  is added. In the data cache model, we employ three levels of
single-sharer entries (the corresponding gap in FigurAlgp,  private cache—an L1, L2, and L3 per core. The private caches
the breakdowns for the multi-access entries in Figure 10 arare inclusive, and maintain coherence via a directorydbase
quite similar to those for the multi-sharer entries in Fggar ~ MESI protocol. All data caches use 64-byte blocks.

Hence, many accesses are concentrated on a small number of

directory entries. In the directory cache model, we implement Cuckoo [14].

Cuckoo directories use multiple hash functions and iteeate-
Table V shows this leads to high reuse of the multi-accesssertion to increase the effective associativity of thectiory
directory entries. In particular, columns 2—4 of Table Vadp cache. (We limit re-insertion attempts to a maximum of 32).
the portion of accesses destined to entries Wwitl3 accesses They minimize the over-provisioning needed to mitigate-con
during their lifetimes. Results are shown for 256KB, 1MBdan flicts at the expense of more costly insertions. In our Cuckoo

oo private caches. We also report in columns 5-7 the portiomirectory, we assume full-map directory entries. This orsr
of all directory entry lifetimes that the 3 lifetimes represent. the precise tracking of sharers in our profiler. Although we



TABLE V. PERCENT ACCESSES DESTINED TQ 3-ACCESS ENTRIESPERCENT ENTRIES WITH> 3 ACCESSESAND PERCENTT2 ACCESSES DESTINED
TO > 3-ACCESS ENTRIES

Benchmark || % Accesses t0>3 Entries| % Entries with>3 Accesses % T2 Accesses t0>3 Entries
256KB 1MB o) 256KB 1MB o0 256KB 1M
fft 0.6% 4.4% 84.8% 0.0% 0.0% 71.1% 70.8% 10.3%
lu 54.1% 98.0% 98.4% 8.2% 51.0% 50.9% 100% 100%
radix 1.0% 2.2% 53.5% 0.1% 0.1% 25.9% 91.3% 55.0%
barnes 235% 54.3% 99.29% 12.3% 35.1% 92.5% 88.2% 86.6%
fmm 11.1% 31.7% 63.89%4 52% 14.9% 27.0% 72.7% 76.4%
ocean 12.3% 25.4% 41.2% 5.2% 3.3% 4.9% 95.5% 97.5%
water 16.6% 49.9% 52.29% 6.3% 17.6% 17.6% 61.6% 83.8%
kmeans 0.1% 0.1% 0.1%| 0.5% 0.1% 0.1% 100% 100%
blackscholes 0.8% 0.8% 0.8%| 0.1% 0.0% 0.0% 100%  100%
bodytrack 68.5% 98.7% 98.7% 11.4% 85.2% 85.2% 99.7% 100%
canneal 19.5% 46.7% 54.69% 7.5% 27.1% 30.1% 65.5% 88.8%
fluidanimate 42.3% 64.6% 70.1% 23.4% 35.5% 23.3% 89.1% 98.6%
raytrace 4.1% 7.1% 7.1%| 0.8% 0.6% 0.5% 59.7% 43.4%
swaptions 0.1% 0.1% 0.1%| 0.0% 0.0% 0.0% 100.% 100%
streamcluster| 16.3% 82.4% 98.8% 0.2% 73.9% 98.4% 70.0% 99.9%
Average 18.1% 37.8% 54.9% 5.4% 23.0% 35.3% 84.3% 82.7%
60% 256K 16 772
S 512K 64 &
gu‘ﬁ 40% 1M — 256
O X 2M
SE 20% H l ﬂ
< \ \)
0% - - N it N ’_‘ favi \ O \ ’—‘ h 7R
fft radix fmm water blackscholes canneal raytrace streamcluster core-avg
lu barnes ocean kmeans bodytrack fluidanimate swaptions cache-avg

Fig. 11. Percent APKI error for cache miss-induced (T1+Tig&@adory accesses.

100% 256K —— 16 772
.o 80% \ 512K 64
G 60% 1M — 256
o_ 2M
oX 40%
oo \
< 20% ﬂ
0% m - - - m | \ ] - = O " N kA
fft radix fmm water blackscholes canneal raytrace streamcluster core-avg
lu barnes ocean kmeans bodytrack fluidanimate swaptions cache-avg

Fig. 12. Percent APKI error for T2 directory accesses.

validate against full-map, our results have implications f 64 cores i(e., for the L3 cache sizes in Table VI). Figure 11
other implementations as well (see Section VI-C). shows the error for cache miss-induced directory accesses
hile Figure 12 shows the error for T2 accesses (the “Total

. . . W
We perform simulations that scale the data cache h'erarChMIisses” and “T2" lines, respectively, from Figure 5)

across both capacity and core count. Capacity scaling is per
formed on the L3 cache across four different sizes at 64 cores  As Figures 11 and 12 show, the simulator and profiler are
The top portion of Table VI specifies the cache parametergery close in most cases. For 83% (75%) of the data points in
used. Core count scaling is performed across three ditferefFigure 11 (Figure 12), the profiler is within 7% of simulation
core counts—16, 64, and 256-at a total L3 capacity of 64MBayeraged across all 64-core validations, the error in tcaahe
(using 4MB, 1MB, and 256KB per-core L3s). We also performmiss-induced (T2) APKI is 6.3% (9.3%), as shown by the
simulations that scale the directory size. The bottom porti “cache-avg” bars. (We also find similar accuracy resultswhe
of Table VI specifies the sizes in terms of coverage. (Difiére including notifications, but omit them to save space). The
numbers of memory arrayse., “ways” in Table VI, are used main reason for these errors is conflict misses in the cache
to maintain a power-of-2 number of sets as coverage varieskimulations which our profiler does not model since it assime
full associativity.

B. Study 1 Several validation points in Figures 11 and 12 have high
Validation. Our framework analyzes capacity misses anderror, but in fact, most of these are benign. As discussed
sharing, but not other cache effects, like conflicts. Figut& in Section V-A, cache size scaling reduces directory access
and 12 quantify the error this introduces into our directoryfrequency, making APKI very small for some benchmarks and
access results from Section V-A. In the figures, we plot thecache sizes. In these cases, tiny absolute errors can nesult
error between the simulated and profiled directory APKI. Thelarge percent error. This happens in bodytrack and radi®'s T
per-benchmark bars report this error for cache size scaling accesses. Also, access frequency can drop suddeglyKig-



60% 256K ——— 16 7z

S 512K 64 B3
0 40% 1M — 256
G o oM oy
S 2 20%
£ o
S 0% ~ - [ m \ | m) (D] jm el P %
© fft radix fmm water blackscholes canneal raytrace streamcluster core-avg
lu barnes ocean kmeans bodytrack fluidanimate swaptions cache-avg

Fig. 13. Percent coverage error.

ure 5(d)). If the profiler slightly mis-judges the capacitheve results from Figure 7. We ran our data and directory cache
such drops occur, large errors can accrue, but only locallgimulator using the largest Cuckoo directory in Table VIB20
around the drop. This happens in barnes and streamcluster.coverage—and measured the average number of live directory
entries in the simulated directory cache. (In Cuckoo, 200%
qver-provisioning ensures virtually no entries are evictae to
@onflicts). The per-benchmark bars in Figure 13 plot thererro
etween the simulated and profiled coverage for cache size
%aling at 64 cored.é., for the L3 cache sizes in Table VI).

We also validate our core count scaling analyses. In Fig
ures 11 and 12, the last set of bars labeled “core-avg” repo
the error for core count scaling at 64MB of total L3 cache,
i.e, for 16, 64, and 256 cores, averaged across all benchmar
(we omit per-benchmark results). The error in total cachesmi
induced (T2) APKI is 8% (13%). Like cache size scaling, a  Figure 13 shows our framework accurately predicts cov-
few benign cases also account for most of the error in corerage. Averaged across all 64-core validations, the cgeera
count scaling. Overall, Figures 11 and 12 show our frameworlerror is only 3.0%, as shown by the “cache-avg” bars. Error is
predicts directory cache accesses quite accurately, iafipec high in one datapoint for bodytrack, but as in Section VI-B,
when considering many “bad” cases are benign. this is due to a tiny absolute error being compared to a very

small simulated coverage. The remaining cases reflect the er
Discussion.The down-stream traffic from a cache reduces aglue to our framework’s inability to account for conflicts et
its size goes up. This is well understood for data cacheg-espprivate data caches, as was discussed in Section VI-B.

cially in uniprocessors. Our analyses in Sections IlI-B & The bars labeled “core-avg’ in Figure 13 report the cov-

show how to quantify this bandwidth reduction for parallel erage error for core count scaling at 64MB of total L3 cache
cachesi(e., the part that is incident on the directory) and how 9 9 : :
veraged across all 15 benchmarks (we again omit the per-

to break down its components. This can help architects mak%enchmark results). Figure 13 shows the error in coverage
design tradeoffs in directory caches as CPUs scale. - Mg 9

across core count scaling is similar to cache scaling, 3.7%
For example, our main observation—that total accessegn average for all the datapoints.
drop with CPU scaling, especially cache size scaling—iespli
directory cache accesses will make up a smaller fraction oDiscussion.A very basic design question is how large should
overall execution time as CPUs scale. Among the directoryhe directory cache be? Our analyses in Sections IlI-C aid V-
designs discussed in Section I, many propose techniques fean help architects answer this question. In Figure 7, wa/sho
reducing directory size that also increase the cost of tirgc  coverage reduces with CPU scaling, especially data caezke si
lookups-e.g, due to more complex hash functions (taglessscaling. This implies that the fraction of on-chip memory
directories [35]) or multiple accesses (hierarchical cive  devoted to the directory cache can be reduced as CPUs scale
ries [15]). Our results show that trading off increased asce without impacting performance. We ran cache simulations to
latency to achieve smaller directories is a good idea as CPUest this result. For a 64-core CPU and for each of our L3 data
scale. cache sizes, we simulated all of the Cuckoo sizes in Table VI
. . . . . and identified the minimum that effectively caches all di
Another important observation in Section V-A is that opiries  (we require the fraction of direcytory entry im
the mix of T1vs. T2 transactions varies significantly Wlth_that evict a live entry to be less than 1%). In Figure 14, we

tCr:]PU ;catl!ng. Rece_nttly,_tres?adr_chetrs have r(]explct))red INCGAS! 1|0t these minimum Cuckoo sizes (in terms of coverage) acros
e effective associativity of directory caches by emmiayi oo’ data cache size.

iterative re-insertion techniques—for example, Cuckay Hind
SCD [25]. These techniques dramatically reduce conflicts at Figure 14 confirms the Cuckoo directory’s coverage drops
the expense of more costly insertions. While insertionssfT1 with data cache size scaling. Most benchmarks require 125%
constitute the vast majority of directory accesses in sufeth ~ coverage at 256KB private caches. But as private caches scal
caches, they become much less significant in large data €ach® 2MB, only 5 benchmarks remain at 125%. Six benchmarks
due to increased sharing and T2-based reuse. So, our resutiop to 75-87.5% coverage, while 4 benchmarks drop to
show that trading off more complex insertion algorithms t050% or less. Moreover, comparing Figures 14 and 7, we

mitigate conflicts is also a good idea as CPUs scale. see the minimum Cuckoo sizes are correlated to the profiled
coverage. In most cases, the Cuckoo coverage is between 30—
C. Study 2 50% higher than the profiled coverage, which quantifies the

over-provisioning needed in the directory cache to mitgat
Validation. In addition to directory accesses, there is alsoconflicts. These results show directory coverage indeei@sar
error in our directory contents analyses from Section V-B.significantly with architectural scaling, and that our fework
In particular, Figure 13 quantifies the error in our coveragecan help identify the minimum directory size for each bench-



140%

120% | y_u\ m m fit —@— In particular, significant research has explored RD analysi
©100% radix —#— techniques. Our work exploits PRD profiling [27], [26], [33]
8 80% ‘_Ag\ S bame'g o [32] which evaluates private caches. There has also beek wor
g 60% K fmm on evaluating shared caches [12], [19], [31], [33], [32].tBu
© 40% A ocean all of these efforts have focused on data caches. This paper i
2330 water —K— the first to apply reuse distance for reasoning about dirgcto
° 286K 512K 1M 2M caches, and for studying their behavior under CPU scaling.
(2) SPLASH2 Besides RD analysis, researchers have also developed an-
}‘2‘8? [ T kmeans —@— alytical models. For example, the Cuckoo work [14] used a
©100% | b'i%'ésqolei i model to estimate the directory’s size and energy as coretcou
 s0% | 2 wonranl —o— and data cache size are simultaneously scaled. In addition,
g 60% fluidanimate SCD [25] presented a model for estimating over-provisignin
O 40% % raytrace in the directory cache. Compared to RD analysis, analytical
20% A WMy 4 Strezvr;acﬁ’ﬂ:gf jt models are much faster. However, analytical models for di-

0% rectory caches require making assumptions about workload
behavior and its interactions with the data caches, so they a

not as accurate as RD-based techniques.

256K 512K M 2M
(b) PARSEC and MineBench

Fig. 14. Minimum Cuckoo coverage for 1% eviction rate. Finally there is a Iarge body of research on directory

caches (see Section I), and some have studied the effects
of multicore scaling on their techniques using simulation.
Most only simulate a single core count and cache size [11],
In Figure 14, we assume full-map entries which matche$10], [15], [16], [25], [28], [35], [34]. Cuckoo and SCT [3]
our profiler's precise sharer tracking. But many shares list simulated 2 different private cache sizes at a single conetco
are possible. For instance, hierarchical lists [15], [J8R] WayPoint [20] simulated 6 different core counts, but only
avoid allocating many sharer bits. Our framework can handldor a single cache size. In comparison, our work studies a
hierarchical lists, but a modification to the profiler is need much larger cross product of cache sizes and core counts.
to account for root and leaf entries. Many techniques usdlore importantly, we characterize scaling’s impact at the
imprecise sharer lists that incur extra coherence messaggs source+e,, the directory’s access stream. Hence, our insights
limited pointers with broadcast [2] and coarse vectors .[16]are applicable to many techniques, not just a single specific
They do not affect the tags stored in the directory, so our exdirectory design.
isting profiler can already handle them. Unfortunately, iexp
cise sharer lists that incur directory-induced invalidas-e.g, VIIl. CONCLUSION
limited pointers with invalidation [2]—-cannot be analyzadan

architecture independent fashion. So, our current framewo N the past, reuse distance has been employed to analyze
cannot track their directory’s contents. I/O sub-systems, virtual memory, as well as processor data

caches (both sequential and parallel). This paper takes the

Finally, another observation from Section V-B affecting next step for RD analysis: applying it to analyze multicore
directory size is that the mix of private and shared dirgctor directory caches and extracting insights on CPU scaling. A
entries changes with CPU scaling, especially data caclee Sikey contribution we make is the notion of relative reuse dis-
scaling. A popular approach used recently, as discussed #nce between sharers. This enables quantifying how sharin
Section |, is to compact the storage for private entries[P],  evolves with CPU scaling, which yields the directory’s &xe
[34]. Our results show these techniques can be very efeactiv patterns and contents at different scaling points. Althoug
however, their actual impact is highly sensitive to scaling we examine the hardware implications of our insights, there
In particular, Figure 7 corroborates previous claims tie& t may be other benefactors. We believe compilers can use our
majority of directory entries encode a single sharer [1bf F analyses for optimizatiore-g, tuning sharing to change a
example, on average, 85.5% of entries are private for 256KBrogram’s footprint in the directory cache. Also, performa
data caches. But the private entries reduce to 72.0% at 1M&)rogrammers can potentially use our techniques to identify
and at each benchmark's maximum PRD, the private entriescaling bottlenecks. We hope future advances can come from
reduce to 60.9%. So, the opportunity for these techniquesur work.
varies significantly. Interestingly, the curves labeled 2
sharers” in Figure 7 quantify the best these techniques can
ever do (e, if storage for private entries goes to zero). In
the limit, removing private entries can lower coverage a lot The authors would like to thank the anonymous reviewers
(compared to the “Total” curves). But the gain is not as largeor their helpful comments, and Meng-Ju Wu for advice and
when CPUs scale since the 2 sharer curves increase due to discussions.
greater sharing.

mark.

ACKNOWLEDGMENTS

REFERENCES
VIl.  RELATED WORK [1]1 A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.-®liao,
. . . . C. Ramey, and D. Wentzlaff, “Tile Processor: Embedded Mote for
The difficulty of simulating large CPUs has motivated Networking and Multimedia,” inProceedings of the 19th Symposium

researchers to develop alternative evaluation methodsog on High Performance ChipsStarford, CA, USA, 2007.



(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “Ardfuation
of Directory Schemes for Cache Coherence,Pioceedings of the 15th
International Symposium on Computer Architecfures Alamitos, CA,
USA, 1988.

M. Alisafaee, “Spatiotemporal Coherence Tracking,” Rmoceedings
of the 45th Annual International Symposium on Microarattites,
Washington, DC, USA, 2012.

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese,ntira
A Scalable Architecture Based on Single-Chip Multiproaass in
Proceedings of the 27th Annual International Symposium omiter
Architecture Vancouver, Canada, 2000.

E. Berg, H. Zeffer, and E. Hagersten, “A statistical npribcessor cache
model,” in Proceedings of the 2006 IEEE International Symposium on 3]
Performance Analysis of Systems and Softwaustin, TX, USA, 2006.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bemark
Suite: Characterization and Architectural Implicatidns, Proceedings
of the 17th International Conference on Parallel Architges and
Compilation TechniquesNew York, NY, USA, 2008.

D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESSifectories:
A Scalable Cache Coherence Scheme,”Aroceedings of the 4th
International Conference on Architectural Support for B@mming
Languages and Operating Systerhew York, NY, USA, 1991.

G. Chen, “SLiD-A Cost-Effective and Scalable Limitedr&ctory
Scheme for Cache Coherence,” Rroceedings of the '93 Parallel
Architectures and Languages Eurgpdeidelberg, Germany, 1993.

J. H. Choi and K. H. Park, “Segment Directory Enhancing thimited

Directory Cache Coherence Schemes,Piroceedings of the 13th In-
ternational Symposium on Parallel Processing and the 1@th®sium
on Parallel and Distributed ProcessingVashington, DC, USA, 1999.

B. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duatugrédasing
the effectiveness of directory caches by avoiding the traclof non-
coherent memory blocksJEEE Transactions on Computersol. 62,
no. 3, 2013.

B. A. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. F.tBua
“Increasing the effectiveness of directory caches by desitg coher-
ence for private memory blocks,” iRroceedings of the 38th annual
international symposium on Computer architectuidew York, NY,
USA, 2011.

C. Ding and T. Chilimbi, “A Composable Model for Analyrj Locality
of Multi-threaded Programs,” Microsoft Research, TechhiReport
MSR-TR-2009-107, 2009.

D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fastdeling of
shared caches in multicore systems,Proceedings of the 6th Interna-
tional Conference on High Performance and Embedded Aicthites
and Compilers New York, NY, USA, 2011.

M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, %ao
directory: A scalable directory for many-core systems,Pioceedings
of the 17th International Symposium on High Performance Qaer
Architecture San Antonio, TX, USA, 2011.

S.-L. Guo, H.-X. Wang, Y.-B. Xue, C.-M. Li, and D.-S. Wgn“Hier-
archical Cache Directory for CMP,Journal of Computer Science and
Technology vol. 25, no. 2, 2010.

A. Gupta, W. dietrich Weber, and T. Mowry, “Reducing mam
and traffic requirements for scalable directory-based eamherence
schemes,” inProceedings of the 1990 International Conference on [35]
Parallel ProcessingUrbana-Champaign, IL, USA, 1990.

L. Hsu, R. lyer, S. Makineni, S. Reinhardt, and D. New#Hxploring
the Cache Design Space for Large Scale CMRPSCM SIGARCH
Computer Architecture Newsol. 33, 2005.

Intel, “Intel Xeon Phi Product Family,” 2014.
Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is Reuse &ist

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[36]

Applicable to Data Locality Analysis on Chip Multiprocess®” in
Proceeding of the 2010 Compiler Constructid®aphos, Cyprus, 2010.

J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. PaWghyPoint:

Scaling Coherence to 1000-core Architectures,Pimceedings of the
19th International Conference on Parallel Architectureda@ompilation

TechniquesNew York, NY, USA, 2010.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loew
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building tonsized

program analysis tools with dynamic instrumentation,”Aroceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and ImplementatiprChicago, IL, USA, 2005.

R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evéilbra techniques
for storage hierarchies[BM Systems Journakol. 9, no. 2, 1970.

C. McCurdy and C. Fischer, “Using pin as a memory refeeen
generator for multiprocessor simulatiorfCM SIGARCH Computer
Architecture Newsvol. 33, 2005.

R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memiid &. Choud-
hary, “MineBench: A Benchmark Suite for Data Mining Workdsg' in
Proceedings of the 2006 IEEE International Symposium onkivad
Characterization San Jose, CA, USA, 2006.

D. Sanchez and C. Kozyrakis, “SCD: A Scalable Coherdbirectory
with Flexible Sharer Set Encoding,” Iroceedings of the 18th Interna-
tional Symposium on High Performance Computer Architectbiew
Orleans, LA, USA, 2012.

D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating Wticore Reuse
Distance Analysis with Sampling and Parallelization,” Rmoceedings
of the 19th International Conference on Parallel Architees and
Compilation Techniquesvienna, Austria, 2010.

D. L. Schuff, B. S. Parsons, and J. S. Pai, “Multicoreah®/ Reuse
Distance Analysis,” Purdue University, Technical RepoR-ECE-09-
08, 20009.

J. J. Valls, A. Ros, J. Sahuquillo, M. E. Gbmez, and Jau “Ps-
dir: a scalable two-level directory cache,” Proceedings of the 21st
international conference on Parallel architectures andmgolation
techniques New York, NY, USA, 2012.

D. A. Wallach, “PHD: A Hierarchical Cache Coherent Pl (Mas-
ter’'s Thesis),” 1993.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptahe'
SPLASH-2 Programs: Characterization and Methodologicahsii-
erations,” in Proceedings of the 22nd International Symposium on
Computer ArchitectureSanta Margherita Ligure, Italy, 1995.

M.-J. Wu and D. Yeung, “Coherent Profiles: Enabling Eéfit Reuse
Distance Analysis of Multicore Scaling for Loop-based Mararo-
grams,” inProceeding of the 20th International Conference on Patalle
Architectures and Compilation Techniquésalveston Island, TX, USA,
October 2011.

M.-J. Wu and D. Yeung, “Efficient Reuse Distance Anaysi Multi-
core Scaling for Loop-based Parallel ProgramfsCM Transactions on
Computer Systemsol. 31, no. 1, 2013.

M.-J. Wu, M. Zhao, and D. Yeung, “Studying Multicore Ressor
Scaling via Reuse Distance Analysis,” iroceeding of the 40th
International Symposium on Computer Architectutel-Aviv, Israel,
June 2013.

J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-Grain f@oence Di-
rectories,” inProceedings of the 46th Annual International Symposium
on Microarchitecture Davis, CA, USA, 2013.

J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. MoshgvdA
Tagless Coherence Directory,” Froceedings of the 42nd International
Symposium on Microarchitectyrélew York, NY, USA, 2009.

L. Zhao, R. lyer, S. Makineni, J. Moses, R. lllikkal, afi Newell,
“Performance, Area and Bandwidth Implications on LargalScCMP
Cache Design,” irProceedings of the 1st Workshop on Chip Multipro-
cessor Memory Systems and Interconn&ttoenix, AZ, USA, 2007.



