
LASER: Light, Accurate Sharing dEtection and Repair

Liang Luo∗, Akshitha Sriraman§, Brooke Fugate‡

Shiliang Hu†, Gilles Pokam†, Chris J. Newburn†, Joseph Devietti‡
∗University of Washington, §University of Michigan, ‡University of Pennsylvania, †Intel Corporation

liangluo@cs.washington.edu akshitha@umich.edu bfugate@cis.upenn.edu
{shiliang.hu, gilles.a.pokam, chris.newburn}@intel.com devietti@cis.upenn.edu

ABSTRACT
Contention for shared memory, in the forms of true sharing
and false sharing, is a challenging performance bug to dis-
cover and to repair. Understanding cache contention requires
global knowledge of the program’s actual sharing behavior,
and can even arise invisibly in the program due to the opaque
decisions of the memory allocator. Previous schemes have
focused only on false sharing, and impose significant per-
formance penalties or require non-trivial alterations to the
operating system or runtime system environment.

This paper presents the Light, Accurate Sharing dEtec-
tion and Repair (LASER) system, which leverages new per-
formance counter capabilities available on Intel’s Haswell
architecture that identify the source of expensive cache co-
herence events. Using records of these events generated by
the hardware, we build a system for online contention detec-
tion and repair that operates with low performance overhead
and does not require any invasive program, compiler or op-
erating system changes. Our experiments show that LASER
imposes just 2% average runtime overhead on the Phoenix,
Parsec and Splash2x benchmarks. LASER can automatically
improve the performance of programs by up to 19% on com-
modity hardware.

1. INTRODUCTION
Multicore architectures continue to pervade every part of

our computing infrastructure, from servers to phones and
smart watches. While these parallel architectures bring es-
tablished performance and energy efficiency gains compared
to single-core designs, parallel code written for these archi-
tectures can suffer from subtle performance bugs that are dif-
ficult to understand and repair with current profiling tools.
Chief among these performance issues are sources of cache
contention such as false sharing and extraneous true sharing.

Cache contention bugs can be found in a wide range of
parallel software, from benchmark suites like Phoenix [28]
and Parsec [2] to production-quality code like the Boost li-
braries [26], MySQL [29] and the Linux kernel [4, 6, 7].

∗§Work done while Luo and Sriraman were students at the
University of Pennsylvania.
HPCA ’16, March 12-16, 2016, Barcelona, Spain.
978-1-4673-9211-2/16/$31.00 c©2016 IEEE

Cache contention is difficult to diagnose because it is often
only implicitly represented in the program source code. An
otherwise-performant piece of code can run very slowly due
to remote accesses to the same data or, in the case of false
sharing, an entirely different piece of data that happens to
reside in the same cache line. Cache contention exacts a sig-
nificant time and energy cost for generating and processing
cache coherence traffic.

Uncovering and repairing cache contention in real sys-
tems requires low overhead techniques that are compatible
with existing software infrastructure, so as to minimize per-
turbation to the system in pursuit of contention. Online re-
pair of false sharing is particularly valuable because it does
not require programmer intervention, access to source code,
or system downtime. Previous work has employed a variety
of techniques for online detection and repair that, unfortu-
nately, face performance and compatibility challenges. For
example, Sheriff [18] executes threads as processes, leading
to large slowdowns for programs with frequent synchroniza-
tion operations; Predator [19] uses intensive compiler instru-
mentation which results in large performance overheads; and
the Plastic system [27] requires custom OS or hypervisor
support. These previous proposals also focus exclusively on
false sharing detection and repair, missing opportunities to
detect true sharing that can equally sap performance.

To support low performance overheads and high compat-
ibility simultaneously, we propose LASER: Light, Accurate
Sharing dEtection and Repair. LASER leverages new ap-
proaches to contention detection and repair. The LASER-
DETECT detection approach is founded on a new perfor-
mance counter feature made available in Intel’s Haswell ar-
chitecture. We use the chip’s Precise Event-Based Sampling
(PEBS) mechanism which provides records of key cache co-
herence events. LASERDETECT relies on records of HITM
events (Section 2) which arise when a core performs a mem-
ory access that hits in a remote cache line, where the remote
line is in Modified state. These HITM coherence events are
the root cause of cache contention; once the contention is re-
moved these expensive HITM events are replaced with much
faster local cache hits. LASERDETECT receives a stream of
HITM records from the chip’s performance monitoring unit,
and processes these events to discover the code and data in-
volved in contention, and whether the contention is of suf-
ficient intensity to merit programmer attention or automatic

1

repair. We demonstrate that the reported locations correctly
identify real performance bugs. The HITM mechanism we
use in this work can also serve as an efficient underpinning
for identifying inter-thread communication patterns, an im-
portant component of tools for program understanding [34],
data race detection [13], and concurrency bug detection [21,
22]. Because of LASER’s lightweight approach, we expect
it to be amenable to integration with a wide variety of con-
currency analyses. While we leverage Intel platforms in this
work, our system could also be ported to take advantage of
the Instruction-Based Sampling mechanism [9] available on
recent AMD processors.

The LASERREPAIR repair scheme leverages LASERDE-
TECT to find and modify the key parts of a program that trig-
ger contention. The repair mechanism implements a software-
based store buffer mechanism using dynamic binary rewrit-
ing. Like a hardware-based store buffer, our software store
buffer mechanism defers the cost of cache coherence (and
thus, contention) to improve performance. LASERREPAIR
complies with the TSO consistency model, unlike other re-
cent repair approaches (Section 5), allowing LASER to re-
pair existing x86 binaries. LASERREPAIR also leverages
Haswell’s hardware transactional memory to improve the
space efficiency of our software store buffer.

This paper makes the following contributions:

• The LASERDETECT contention detection system, which
detects cache contention on Intel’s Haswell architec-
ture with virtually no performance overhead and no in-
vasive changes to the compiler, OS or runtime system
environment.

• The LASERREPAIR contention repair system, which
repairs false sharing online via dynamic binary instru-
mentation. LASERREPAIR preserves the TSO consis-
tency model and focuses repair just on the code that
needs it.

• The first detailed characterization of the accuracy and
limitations of the HITM event recording mechanism on
our Haswell machine, which can help others looking
to make use of these performance counters. We also
identify ways to compensate for the limitations of the
currently-available performance counter mechanism.

• Detailed case studies of the cache contention behavior
of the Phoenix, Parsec and Splash2x benchmark suites.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on cache contention in multipro-
cessor systems. Section 3 explains and characterizes Has-
well’s hardware support for detecting cache contention. Sec-
tion 4 details the LASERDETECT algorithm, Section 5 the
LASERREPAIR algorithm, and Section 6 the architecture of
the overall LASER system. Section 7 evaluates LASER’s de-
tection accuracy and performance overheads. Section 8 de-
scribes related work, and we conclude in Section 9.

2. BACKGROUND: CACHE CONTENTION
Common cache coherence protocols require that any given

cache line generally be either in a writable state that permits
a single mutable copy, a read-only state that permits multiple

allocation
m

etadata

tid

SXY

SYY

SXX

SYSX

num
_e

points

tid

SXY

SYY

SXX

SYSX

num
_e

tid

points

Bytes 0 6432 96 128

Cache Line n Cache Line n + 1

struct {
 pthread_t tid;
 POINT_T *points;
 int num_elems;
 long long SX;
 long long SY;
 long long SXX;
 long long SYY;
 long long SXY;
} lreg_args;

lreg_args[0] lreg_args[1]

Figure 2: False sharing in the linear regression bench-
mark shown through the allocation of the lreg args
array on a 64-byte cache line. Figure from [27].

shared copies, or an invalid state. While sophisticated proto-
cols with more states are commonplace, these three states of
Modified, Shared and Invalid are the essential components of
all protocols. Transitioning a line into and out of the Mod-
ified state is a slow process that requires expensive coordi-
nation among all processors with existing copies of the line.
An excessive number of such transitions leads to cache con-
tention, and can be triggered by frequent repetition of one of
three sharing patterns: write-read, read-write, or write-write
(Figure 1). Read-read sharing does not introduce contention
as each core can obtain its own read-only copy of the line.
Write-read sharing typically manifests as read-write sharing
(and vice-versa) since the interleaving of instructions is non-
deterministic.

Coherence protocols operate at cache line granularity, typ-
ically 64 bytes in modern systems, instead of the granularity
of a single program variable. The sharing patterns in Fig-
ure 1 can trigger contention whenever they arise on a partic-
ular cache line. Contention for a cache line may be the result
of contention over distinct variables that happen to reside in
the same cache line, or over a single program variable. These
two sub-cases are false sharing and true sharing.

With false sharing, two distinct program variables end up
allocated in the same cache line with the line subject to one
or more of the contention sharing patterns from Figure 1:
each variable is frequently accessed by distinct threads and
at least one variable is frequently written. Because a cache
line must be in just one state at any given time, the cache line
constantly undergoes expensive and serialized state transi-
tions for what are logically parallel program accesses. The
linear regression benchmark from the Phoenix benchmark
suite [28] exhibits extensive false sharing on the lreg args
struct. An array of these structs is allocated with one struct
per thread. Each thread frequently increments the fields SY
through SXY. On our 64-bit platform lreg args is 64 bytes in
size. This would seem to mesh well with our system’s 64-
byte cache lines, but depending on the allocator’s choice of
memory layout a cache line can still contain structs for two
threads, causing frequent writes to distinct parts of the cache
line and intense false sharing, as shown in Figure 2.

Padding is a general solution to false sharing as it spaces

2

L1$

load X

X: Modified

core 0 core 1

(a) write-read

store X

X: Shared

core 0 core 1

(b) read-write

store X

X: Modified

core 0 core 1

(c) write-write

Figure 1: The three sharing patterns that trigger cache contention: (a) remote write followed by a local read,
(b) remote read followed by a local write, and (c) remote write followed by a local write. (a) and (c) are
instances of HITM events, but only (a) reliably triggers accurate HITM records on Haswell.

hot variables in memory so they reside in different cache
lines, allowing cheap parallel access. For linear regression,
52 bytes of padding is sufficient to eliminate false sharing
regardless of how the allocator aligns the lreg args structs.

In cases of true sharing, a single program variable is sub-
ject to frequent accesses by multiple threads where at least
one thread writes to the variable. Padding cannot fix true
sharing; instead the program must be rewritten to exhibit
less true sharing. For example, in the kmeans benchmark
from Phoenix [28], threads repeatedly and redundantly set
the global modified flag to true. The code can be rewritten
to cache the value of modified in a stack variable and per-
form just a single write to the global flag. Other instances of
true sharing include naively-written spin locks that involve
a single atomic compare-and-swap in a loop. Such locks
can perform poorly when lots of threads attempt to acquire
a lock that is held [1]. A better design is the test-and-test-
and-set lock which allows potential acquirers to check the
lock without trying to update it, allowing the lock state to be
read-shared across processors.

3. HITM EVENTS ON HASWELL
In both true and false sharing, the ultimate performance

culprit is one or more contention sharing patterns and the
expensive coherence protocol transitions they require. Re-
cent Intel processors provide information about HITM (as in
hit-Modified) coherence events which arise whenever a lo-
cal memory operation accesses a line that is in the Modified
state in a remote cache as in Figure 1 parts a) and c). Be-
cause write-read sharing frequently manifests as read-write
sharing as well, HITM events provide good coverage of the
contentious sharing in a program. Programs without cache
contention will have very few HITM events, and frequent
HITM events suggest the presence of significant cache con-
tention.

Intel processors since Nehalem have provided the ability
to count the number of HITM events occurring on each core.
Researchers have made use of this ability to detect false shar-
ing [27] and data races [13]. Starting with Haswell, the per-
formance counter mechanism can be configured to record
the processor context for the instruction that triggers a HITM
event, including the PC and data address in question. This
information is made available via the Precise Event-Based
Sampling (PEBS) facility [15]. The PEBS mechanism on
Intel architectures supports hardware sampling of events via
a Sample-After Value (SAV) parameter. Setting SAV to n

means that every nth event is sampled. Experience reports of
those working with the PEBS mechanism [11] suggest that
prime numbers are good SAV choices.

Prior to Haswell, the PEBS mechanism was imprecise in
several ways. PCs were reported for a nearby but subse-
quent instruction, not the actual instruction triggering the
PEBS event. In the presence of taken branches, determin-
ing the actual PC was difficult. On pre-Haswell machines
the data addresses of PEBS events were also imprecise. Fi-
nally, Haswell is the first architecture to provide precise PC
and data linear address information for the MEM LOAD -
UOPS LLC HIT RETIRED.XSNP HITM event, adding sup-
port for PEBS HITM events triggered by load instructions
(Figure 1a). Thus, Haswell is the first architecture to pro-
vide hardware support for cache contention detection.

As the next section shows, Haswell’s support for detect-
ing HITM events remains imprecise in a number of ways,
but these obstacles can be overcome to build a low-overhead
cache contention detector.

3.1 Haswell HITM Characterization
We undertook a detailed characterization of HITM event

support in Haswell with over 160 test cases coded in as-
sembly. These test cases each involve two threads engaged
in true or false sharing, with either write-read/read-write or
write-write sharing. Each thread performs the same oper-
ation repeatedly in an infinite loop, where the loop body
varies across tests from a single memory operation to hun-
dreds of branch, jump, arithmetic and memory instructions.
Event sampling is disabled for all results in this section.

We present our test results in Figure 3, showing the per-
centage of HITM records that correctly identified the data
address (top) and PC (bottom) involved in cache contention.
Each point (dot or triangle) represents a test case, and the test
cases are grouped by whether they exhibit false sharing (FS)
or true sharing (TS) and writes by one thread (RW) or by
both threads (WW). The light triangles in Figure 3 show that
Haswell’s HITM records, for the RW test cases, are quite
accurate for data address (about 75% on average), and fairly
accurate (about 40% on average) for PCs. However, HITM
records are highly inaccurate for WW tests in terms of both
data addresses and PCs.

The dark circles on the bottom of Figure 3 show the boost
in PC accuracy we can obtain if we also classify PCs ad-
jacent to the correct PC as correct. Allowing adjacent PCs
boosts the percentage of correct PCs to 70% on average for

3

TSRW FSRW TSWW FSWW

0%

25%

50%

75%

100%
%

 c
or

re
ct

 d
at

a
ad

dr
es

se
s

TSRW FSRW TSWW FSWW

0%

20%

40%

60%

80%

100%

%
 c

or
re

ct
 P

C
s

Figure 3: The percentage of HITM records contain-
ing the correct data address (top) and PC (bottom)
for our test cases. PC data shows both the percent-
age of exact PCs (light triangles) and adjacent PCs
(dark circles).

the RW tests, and 34% for the WW tests. Though over
99% of the incorrect PCs are from somewhere in the pro-
gram’s binary, we found no marginal benefit from enlarg-
ing the notion of “adjacent” to include two or more adjacent
instructions. 95% of incorrect data addresses are from un-
mapped parts of the address space, with the remainder split
between the stack and the kernel. Thus, we find that the
PCs in Haswell’s HITM records are often very close to the
correct value, which helps LASERDETECT locate contention
accurately within the program source code.

The source of the accuracy discrepancy between RW and
WW tests is that Haswell reports HITM events much more
precisely for HITM-triggering load instructions (Figure 1a)
than for stores, as the event name suggests. We found that
stores which trigger HITM events (Figure 1c) still generate
HITM records – total event counts are very similar between
the RW and WW tests. However, HITM records arising from
stores are far less precise, likely due to the delayed comple-
tion of stores in the presence of store buffers.

Despite the low accuracy of some aspects of HITM event
reporting on Haswell, we find across the 33 workloads we
evaluated that instances of cache contention exhibit two prop-
erties that Haswell’s HITM support can exploit. First, con-
tention typically consists of both reads and writes, instead of
blind writes. Second, instances of cache contention are typi-
cally symmetric: all threads perform the same read-write op-
erations, instead of (as in our test cases) one thread perform-
ing just reads and another performing just writes. Taken to-
gether, these properties combined with LASER’s contention
detection algorithm (Section 4) allow LASER to extract a
meaningful signal from noisy HITM records by filtering ob-
vious outliers and leveraging the sizable plurality of accurate
HITM events.

4. HITM CONTENTION DETECTION
LASERDETECT implements a pipeline, classifying and

occasionally filtering HITM records as they are received from

PC

data
address

application
or library?

drop
record

stack
address?

yes

no

no

aggregate
by LoC

decode
insn

model $
lines

report to
programmer

invoke
LaserRepairyes

significant
FS?

no

yes

Figure 4: LaserDetect’s event processing pipeline for
HITM records. The PC and data address of each
record is used to identify the location and type of
cache contention.

the hardware. The next section (Section 6) describes our
overall system organization; here we describe how the de-
tection pipeline works in detail (summarized in Figure 4).

4.1 Event filtering
When a HITM record first arrives from the hardware, its

PC is classified as belonging to the application, a library, or
some other code by parsing the application’s virtual mem-
ory map (/proc/<pid>/maps on Linux). Our detector fil-
ters out HITM records with PCs that do not come from the
application or its libraries as they are likely spurious HITM
records.

Next, the data address is analyzed to determine if it is
a stack address. Thread stacks are identified via the /proc
memory map as described above. We currently ignore stack
addresses as they are unlikely to be shared between threads
and thus unlikely to be sources of cache contention.

4.2 Detecting source code locations
The next stage of the detector builds a map from PC to the

number of HITM records received for that PC (regardless of
data address), and reports the rate at which HITM events oc-
cur for each source code line. Source code lines with low
rates of HITM events are filtered by a rate threshold (see
Section 7.1) to avoid reporting uninteresting information to
the programmer. It is straightforward for a programmer to
adjust the rate threshold to filter more or less aggressively;
adjustments can be made offline without rerunning the pro-
gram.

Our process of identifying source code locations is robust
to the errors that HITM records exhibit (Section 3). HITM
records with incorrect data addresses have no effect as data
addresses are not used to determine source locations, and
HITM records that experience small shifts in the PC (Fig-
ure 3) often still map to the correct source code line.

4.3 Detecting the type of contention
In addition to finding the source code locations involved in

contention, we seek to classify the type of contention exhib-
ited: either true sharing or false sharing. To do so, we extend
the detection pipeline by inserting a simple cache line model
after the virtual memory map parsing. The first step in de-
tecting the type of contention is to classify the PC of a HITM

4

cache
line A

bitmap previous
access type

W

incoming write
address: A+4

size: 4B

false
sharing

previous access

Figure 5: The LaserDetect cache line model for a
single 8-byte line. Each line records the type and
location of its previous access in a bitmap. For line
A, there is a previous 2B write and an incoming 4B
write that triggers false sharing.

record as a load or a store instruction, and to determine the
size of the access. We analyze the application binary at run-
time, to construct load and store sets identifying load PCs
and store PCs and their sizes. These sets are then provided
as inputs to the detector. On x86, it is possible for a mem-
ory instruction to be both a load and a store. We treat these
instructions as such though any given HITM record contains
only a single data address so such instructions are a potential
source of inaccuracy in LASERDETECT.

At runtime, the detector uses the load and store sets to de-
termine whether the PC of a HITM record corresponds to a
load or store instruction, and how many bytes that instruction
accesses. As shown in Figure 5, the resulting memory access
is sent to a simple cache line model that maintains informa-
tion about the last access to each cache line: whether the
access was a read or a write and what bytes were accessed
(recorded in a bitmap). Cache lines are stored in a hash ta-
ble to efficiently record just the small number of cache lines
that experience contention. When a new access N arrives
to a cache line, the detector calculates whether the access
overlaps with the previous access P and whether one of the
accesses was a write. If there is such overlap true sharing
has occurred, otherwise false sharing has occurred. Each in-
stance of true or false sharing is counted and associated with
the PC of N. At application exit, for each source code line
involved in contention, the detector also reports the number
of true and false sharing events triggered by that source code
line to allow a programmer to debug the contention.

4.4 Invoking LASERREPAIR

LASERDETECT periodically checks the HITM event rate,
triggering LASERREPAIR if the rate of false sharing events
exceeds a given threshold. LASERREPAIR is provided with
the PCs involved in false sharing and uses them to initiate its
assembly code analysis (Section 5).

5. FALSE SHARING REPAIR
LASERDETECT’s ability to quickly and precisely detect

cache contention at runtime allows false sharing to be re-
paired online with minimal application interference. While
the Plastic [27] and Sheriff [18] schemes also perform on-

store&r0&(>&A sb&=&storeBuffers[tid]
sb.put(r0,A)

load&r0&<(&A

sb&=&storeBuffers[tid]
if&sb.contains(A)&{
&&r0&<(&sb.get(A)
}&else&{
&&load&r0&<(&A
}

Figure 6: Pseudocode showing store (top) and load
(bottom) instructions modified to use the SSB.

line false sharing repair, neither of these approaches are suf-
ficiently usable on commodity systems. Plastic requires cus-
tom OS or hypervisor support. Sheriff does not support the
TSO memory consistency model, as its twin page mecha-
nism for tracking the data written by each thread cannot de-
tect silent stores [20]. With Sheriff, multi-byte stores that
are atomic on conventional processors can instead appear to
execute as a sequence of single-byte stores. Thus, Sheriff
is unsuitable for use with programs that require TSO se-
mantics, e.g., x86 programs. We attempted to modify the
Sheriff execution model to make it TSO-compliant, however
this requires taking a page fault on every store to track all
stores precisely. Such a TSO-compliant version of Sheriff
has prohibitive performance overhead with slowdowns of up
to three orders of magnitude. This section describes how
LASERREPAIR’s software store buffer approach, in contrast,
can efficiently eliminate contention at runtime while pre-
serving TSO semantics.

5.1 Store Buffer Overview
LASERREPAIR uses a software store buffer (SSB) mech-

anism to temporarily eliminate the overheads of cache co-
herence, just as hardware store buffers do in modern mul-
tiprocessors. The SSB has higher latency, but better space-
efficiency, than hardware store buffers (Section 5.5), hiding
the cost of many more stores. LASERREPAIR uses the Pin
dynamic binary instrumentation framework [23] to modify a
running program to use the SSB mechanism. Because LA-
SERDETECT can precisely identify the PCs involved in con-
tention, SSB modifications are focused on just the contend-
ing instructions.

LASERREPAIR’s SSB operates similar to a hardware store
buffer. Stores modified to use the SSB write into a thread-
private buffer instead of writing to shared memory (Figure 6
top). Loads modified to use the SSB first check the buffer
to see if it contains the address they are requesting (Figure 6
bottom). If so, the load returns the value from the buffer;
otherwise, the load proceeds to shared memory. A bitmap
records which bytes are contained within a buffer entry, to
correctly handle unaligned memory accesses. The buffer
can also be flushed through an explicit flush operation which
writes all the buffered values to shared memory (analogous
to a memory fence instruction).

5.2 Preserving Single-Threaded Semantics
To preserve single-threaded semantics, if a store uses the

SSB all subsequent (with respect to program order) loads
and stores must use the SSB as well, up to the next flush op-

5

SSB flush

basic block
contending insns
reachable subgraph
control flow edges

Figure 7: Control-flow analysis focuses SSB instru-
mentation on just the contending region of code.

eration. After a flush, subsequent operations no longer need
to use the SSB until another store uses the SSB. Thus, the
SSB mechanism can be toggled for sections of the dynamic
execution.

Because the SSB operates on virtual addresses, if the same
physical page is mapped to two different virtual pages within
a single process, the SSB will not by default ensure that a
load from one virtual page sees (buffered) values written to
the other. To handle such rare cases, we could extend our
userspace monitoring to track a process’ mmap and shared
memory object system calls and disable the SSB for any
pages with such mappings. Note that the SSB does sup-
port interprocess communication directly, as each process
has just a single virtual-physical mapping.

5.3 Pruning Instrumentation
To reduce performance overhead, we must minimize the

use of the SSB mechanism on non-contended code. There is
also an inherent tension in the placement of flush operations:
flushing too frequently could itself trigger contention, but
flushing too rarely requires more code to be modified to use
the SSB.

We propose a simple static analysis, built using the Dy-
tan program analysis framework for Pin [5], to balance these
goals. Given the control flow graph and the locations of in-
structions involved in contention, our analysis identifies the
basic blocks containing contending instructions. All mem-
ory operations in these basic blocks are modified to use the
SSB. Flush operations are placed so that they post-dominate
the modified basic blocks, which helps to minimize the dy-
namic occurrence of flushes. Finally, any additional blocks
reachable from a modified block and not dominated by a
flush are modified. For example, if contending instructions
appear inside a loop (as in Figure 7), all memory operations
in the loop body will be modified and a flush operation will
be placed at the loop exit.

To reduce the number of loads using the SSB, we em-
ploy a simplified form of speculative alias analysis [12]. Our
analysis assumes loads using a register unused by any store
do not alias. Such loads do not require SSB modification.

To validate this speculation, an aliasing check is inserted
between the def and use of each load address to see if it
aliases the store addresses. If it does not alias, no further
work is needed – the load (use) can safely skip the SSB. Mul-
tiple uses of the same def require only one check. If aliasing

occurs, the SSB is flushed and the code is re-analyzed with
speculative alias analysis disabled. Because (de)activating
the SSB is a thread-local decision (see below), alias mis-
speculation can be handled locally without violating the con-
sistency model.

5.4 Preserving TSO Semantics
In addition to preserving single-threaded semantics, our

repair scheme must uphold the TSO memory consistency
model of the x86 binaries running with LASERREPAIR. TSO
permits some threads to use the SSB while others do not,
allowing SSB usage to be focused on only the code that re-
quires it regardless of remote threads’ operations. TSO also
adds two constraints to our repair scheme: 1) the SSB must
be flushed at memory fences and 2) stores must be made
visible in a total order consistent with program order.

Flushing at fences is straightforward to achieve by updat-
ing our control-flow analysis to account for fences. Fences
may force flushes to occur with undesirable frequency, e.g.,
if a contending instruction is wrapped inside a small crit-
ical section. Such cases represent fundamental contention
in the program that LASERREPAIR cannot repair. LASER-
REPAIR’s static analysis estimates the dynamic cost of SSB
usage and does not attempt contention repair if the ratio of
stores to flushes is estimated to be low.

TSO’s second requirement, that stores be made visible in
a total order consistent with program order, constrains the
implementation of our SSB to be logically FIFO. If a store
to location A precedes a store to location B in program order,
then A must become visible before B. Thus, TSO does not
permit store A to use the SSB while store B goes straight
to memory. While provably thread-private accesses can skip
the SSB [31], such analysis is difficult with just assembly
code so LASERREPAIR modifies all stores to use the SSB.

5.5 Efficient SSB Implementation
While a TSO-compliant SSB is most naturally implement-

ed as a queue, enqueueing a store buffer entry for every
store operation is impractical. Many of our workloads per-
form millions of stores before a flush operation. The only
practical implementation maintains a single piece of storage
for each memory location, similar to a coalescing hardware
store buffer. However, a coalescing SSB permits memory
reorderings illegal in TSO [32]. In particular, the problem
arises when we try to flush the SSB, which is typically done
one entry at a time: there is no order in which we can flush
individual coalesced entries that is guaranteed to preserve
TSO for all programs.

Fortunately, our Haswell platform provides a mechanism
to preserve TSO semantics for our coalescing SSB with hard-
ware transactional memory support. We perform a SSB flush
with a single hardware transaction. Flush operations are thus
strongly atomic [24], so no remote thread can observe one
of the SSB’s stores without the remaining stores. Thus, no
memory reorderings are visible to remote threads. Because
the SSB often contains just a handful of locations, a flush
operation easily fits within the capacity of a hardware trans-
action. We insert a pre-emptive flush if the SSB grows be-
yond 8 entries (the L1 associativity of our machine) to avoid
transaction overflow.

6

Linux kernel

driver

Haswell processor

operating
system

hardware

user-level
software

detector
process

application
processLa

se
r

Re
pa

ir
Figure 8: An overview of the Laser system. Shaded
blocks show Laser-specific components. Arrows indi-
cate the flow of communication during detection.

6. SYSTEM OVERVIEW
The LASER system has three main components (Figure 8):

a Linux driver, a userspace detector, and a userspace online
repair mechanism. The driver is a standard Linux kernel
module compatible with stock Linux, and can be dynami-
cally loaded and unloaded at runtime to minimize applica-
tion interference. The driver configures the chip’s perfor-
mance monitoring unit to record HITM events into per-core
memory buffers. The driver receives an interrupt whenever
a per-core buffer is full, and empties the buffer by mov-
ing the records to an internal buffer that feeds into a kernel
file-like device. The driver removes irrelevant information
from the HITM records, such as the register file state, and
sends only the PC, data address, and originating core to the
detector. The driver tracks HITM events only for a speci-
fied process, and reconfigures the performance counters on
each core appropriately on context switches to avoid track-
ing HITM events for irrelevant processes.

The detector is a standard userspace Linux process. Our
current detector implementation is single-threaded and non-
vectorized, though there is natural thread-level and data-level
parallelism across HITM records that could be exploited to
accelerate the detector. The detector forks the application
process to be analyzed for cache contention and then con-
figures the driver to record HITM events for the application
process. By placing the detector in a separate process, we
minimize interference with the application and require no
application modifications. The detector reads HITM records
from the driver and pushes the records through the detection
pipeline (Section 4).

If the detector identifies significant false sharing in a bench-
mark, the repair scheme is invoked. The repair scheme is im-
plemented using Intel’s Pin dynamic binary instrumentation
framework [23]. Pin can attach to and instrument a running
process, allowing for online false sharing repair. The static
analysis and store buffer instrumentation described in Sec-
tion 5 are implemented as a Pintool.

7. EVALUATION
We evaluate the LASER system on a 4-core Haswell sys-

tem with 32 GB of memory. The processor is a 64-bit In-
tel Core i7-4770K running at 3.4 GHz. TurboBoost is dis-
abled in our experiments to make benchmarking more re-
liable [10]. Hyper-threading is also disabled as our driver

prototype does not currently support hyper-threading. We
used gcc version 4.7.2 with -O3 optimizations on openSUSE
Linux 12.3. LASERREPAIR is built with Pin rev 62732. We
present performance data as the average of 10 runs, after
excluding the slowest and fastest runs. All LASER results
are with a sample-after value (SAV) of 19, unless otherwise
noted.

We evaluate LASER’s detector on the Phoenix 1.0 [28],
PARSEC 3.0 [2] and Splash2x [33] benchmark suites. We
use the native inputs for Parsec and Splash2x. We use the
largest available inputs for Phoenix, and furthermore run pca
with a 4000 × 4000 matrix, extend histogram’s inputs by
60x, and extend linear regression’s input by 120x to increase
their running times to over a minute. For histogram, we ex-
amine two inputs: its standard large.bmp image (which we
refer to as histogram) and an alternative image (histogram’)
that accentuates the false sharing present in the code. We
exclude cholesky because its runtime is just 400ms on our
system and it is not possible to scale its inputs.

We evaluate LASER’s utility in terms of accuracy and per-
formance, to see whether LASER is useful for finding perfor-
mance bugs, and automatically fixing false sharing, at low
performance cost. We compare LASER with Intel’s VTune
Amplifier XE 2015 [8] profiler and the open-source Sheriff
scheme [18] for false sharing detection and repair.

7.1 Contention Detection Accuracy
We measure contention detection accuracy in terms of how

many known performance bugs are missed (false negatives),
how many spurious source code locations are reported (false
positives) and whether the type of contention (true or false
sharing) is identified. We created a database containing all
known performance bugs in our benchmarks, by examining
prior work [18, 19, 27]. Using LASERDETECT we found
several novel performance bugs due to, e.g., LASERDETECT’s
ability to uncover true sharing which most prior work can-
not. These new and validated contention sources were inte-
grated to create the final database.

We experimented with a range of values for LASERDE-
TECT’s rate threshold (Section 4.2), finding 1K HITMs/sec-
ond to be a good balance between missing bugs and report-
ing too many false positives. We use this threshold for all
benchmarks since LASER’s accuracy is not particularly sen-
sitive to the rate threshold as we demonstrate further below.
VTune does not filter its reported locations of contention
based on HITM rates, so for fairness we apply a similar bal-
anced rate threshold (2K HITMs/sec works well for VTune)
to exclude as many VTune false positives as possible without
introducing false negatives. Sheriff-Detect uses its default
filtering mechanism.

Table 1 shows the number of performance bugs present
in our benchmarks and the number of false negatives missed
by and false positives reported by LASERDETECT, VTune
and Sheriff-Detect. LASERDETECT has superior accuracy
to VTune, missing no bugs and reporting substantially fewer
false positives. VTune misses an important bug in dedup
(Section 7.4.2). VTune uses the same underlying PEBS HITM
events that LASERDETECT leverages, and furthermore con-
figures the PEBS mechanism to raise an interrupt after each
HITM event for improved accuracy (which has significant

7

Perf. LASER VTune SheriffDet
Benchmark Bugs FN FP FN FP FN FP
barnes - - - - - x
blackscholes - - - - - - -
bodytrack 1 - 3 - 11 x
canneal - - - - 1 x
dedup 1 - - 1 5 i
facesim - - - - 2 x
ferret - - - - 1 - 2
fft - - - - - x
fluidanimate - - - - 5 x
fmm - - - - - x
freqmine - - 1 - 1 i
histogram - - - - - - -
histogram’ 1 - - - 2 1 -
kmeans 1 - 10 - - x
linear_regression 1 - - - - 1 -
lu_cb - - - - 1 x
lu_ncb 1 - 1 - 1 x
matrix_multiply - - - - 1 - -
ocean_cp - - - - 3 x
ocean_ncp - - - - 3 x
pca - - - - - - -
radiosity - - - - 5 x
radix - - 1 - 2 x
raytrace.parsec - - - - 2 i
raytrace.splash2x - - 3 - 5 - 1
reverse_index 1 - 3 - 1 1 1
streamcluster 1 - - - 3 x
string_match - - - - - - -
swaptions - - - - 1 - -
vips - - - - 3 i
volrend 1 - 1 - 3 x
water_nsquared - - - - - - -
water_spatial - - - - - x
word_count - - 1 - - x
x264 - - - - 2 i
Total 9 0 24 1 64 3 4

Table 1: The number of performance bugs identi-
fied in our benchmarks and, for each of LaserDetect,
VTune and Sheriff-Detect, how many of these bugs
are unreported false negatives (FN) and how many
lines of code are spuriously reported false positives
(FP). For Sheriff, x indicates a crash and i bench-
mark incompatibility. “-” indicates zero.

performance ramifications, see Section 7.2), while LASER-
DETECT takes an interrupt only after thousands of events.
Still, LASERDETECT’s event processing pipeline (Figure 4)
better filters spurious events and allows true sharing to be
distinguished from false sharing. VTune simply reports source
code locations where HITM events arise. Comparison with
Sheriff-Detect is complicated by the fact that most of these
workloads do not run with Sheriff-Detect. In contrast, LA-
SER’s ability to run a diverse range of workloads highlights
its compatibility with the existing software ecosystem. Sheriff-
Detect misses the performance bugs in linear regression and
histogram’ which are significant sources of contention (Sec-
tion 7.4.1). While Sheriff-Detect finds false sharing in re-
verse index, it only identifies the allocation site of the falsely-
shared object as being inside the program’s malloc wrapper
function, which is not helpful for locating the source code
lines that participate in the false sharing.

We explored a range of rate threshold values with LA-
SERDETECT and measured how they impact the number of
reported false positives and false negatives. Figure 9 shows

HITM/s threshold
32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

0

20

40

60

80

co
un

t

false
negatives

LaserDetect
default

false positives

Figure 9: The effect of different rate thresholds on
Laser’s detection accuracy. Note that the x-axis is a
log scale.

Benchmark contention LASERDETECT SheriffDet
bodytrack TS TS x
dedup TS TS i
histogram’ FS FS -
kmeans FS TS i
linear_regression FS unknown -
lu_ncb FS FS x
reverse_index FS FS FS
streamcluster FS FS x
volrend TS TS x

Table 2: Workloads with performance bugs. Columns
show the actual contention type of each bug (false
sharing: FS or true sharing: TS), and the type re-
ported by LaserDetect and Sheriff-Detect. Shaded
rows indicate benchmarks where LaserDetect finds
the correct type of contention.

that LASERDETECT’s default threshold of 1K HITMs/sec-
ond strikes a good balance between avoiding false negatives
without producing too many false positives, but thresholds
within a factor of 2 (note that the x-axis is a log scale) also
produce good results. Thus, LASERDETECT is not particu-
larly sensitive to the rate threshold and it is unlikely that de-
velopers would need to tune this threshold to achieve good
detection results.

Detecting the correct type of contention (true versus false
sharing) can help programmers triage bugs, e.g., false shar-
ing is typically easier to fix than true sharing as the former in-
volves changing object padding or alignment, while the lat-
ter typically requires application restructuring. Detecting the
correct type of contention is also crucial for avoiding fruit-
less attempts to automatically repair true sharing. Table 2
describes, for the benchmarks with performance bugs, the
true type of contention, and the types reported by LASER-
DETECT and by Sheriff-Detect. LASER correctly identifies
the contention type for six of the bugs, but is unable to con-
clusively identify the type of the linear regression bug due
to low data address accuracy (Figure 3). In contrast, VTune
cannot distinguish true from false sharing and Sheriff-Detect
reports the correct type only for reverse index.

7.2 Performance
Figure 10 shows the performance overhead (lower is bet-

ter) of running LASER and VTune Amplifier XE 2015, nor-
malized to native execution (i.e., without LASER or VTune).
We discuss the LASER results first. kmeans, the slowest
benchmark with LASER, experiences a 22% performance
overhead but the majority of benchmarks experience little to

8

ba
rn

es

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rr

et

fft flu
id

an
im

at
e

fm
m

fr
eq

m
in

e

hi
st

og
ra

m

hi
st

og
ra

m
'

km
ea

ns

lin
ea

r_
re

gr
es

si
on

lu
_c

b

lu
_n

cb

m
at

rix
_m

ul
tip

ly

oc
ea

n_
cp

oc
ea

n_
nc

p

pc
a

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

.p
ar

se
c

ra
yt

ra
ce

.s
pl

as
h2

x

re
ve

rs
e_

in
de

x

st
re

am
cl

us
te

r

st
rin

g_
m

at
ch

sw
ap

tio
ns

vi
ps

vo
lre

nd

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

w
or

d_
co

un
t

x2
64

ge
om

ea
n

1

3

5

7

no
rm

al
iz

ed
 ru

nt
im

e

1.
01

9
1.

84
2

Figure 10: The performance overhead (lower is better) of Laser (dark blue bars) and VTune (light orange bars),
normalized to native runtime.

histogram' linear_regr.. dedup histogram' kmeans linear_regr.. lu_ncb reverse_in..
1.0

1.1

1.2

1.3

1.4

sp
ee

du
p

16.9x5.8x manualautomatic

Figure 11: Speedups (higher is better) resulting from
LaserRepair (automatic) and LaserDetect’s profiling
information (manual).

no performance overhead with LASER– LASER’s geometric
mean overhead is just 2%. linear regression is 16% faster
and histogram’ (histogram with an input that induces false
sharing) 19% faster thanks to LASERREPAIR’s online repair
of their false sharing. lu ncb is 30% faster with LASER due
to a coincidental change in memory layout caused by LA-
SER, which we explore in more depth in Section 7.4.

Figure 10 shows that VTune, which only performs con-
tention detection and not repair, exhibits an average slow-
down of 84% on our workloads, with a worst-case slow-
down of 7x on string match. As our accuracy results in
Section 7.1 show, VTune’s extra processing does not yield
an accuracy advantage: LASER is substantially faster and
more accurate than VTune in detecting cache contention. We
compare with Sheriff’s performance in detail in Section 7.3,
again finding that LASER has a performance advantage over
previous work both on average and in the worst case.

Figure 11 presents the speedups realized by using the LA-
SER scheme. LASERDETECT’s online profiling and LA-
SERREPAIR’s software store buffer repair mechanism auto-
matically accelerate linear regression and histogram’. The
right, shaded part of Figure 11 shows the speedups obtained
by making manual source code changes guided by LASER’s
contention reports, as detailed in Section 7.4.

7.2.1 Performance Characterization
Figure 12 shows the proportion of time spent in the detec-

tor and driver as a proportion of the total CPU time of the
application, for the benchmarks that have 10% or more per-
formance overhead with LASER. Figure 12 shows LASER’s
direct contributions to performance overhead, not account-
ing for negative interference with the application. Figure 12
reveals that both the driver and detector are very lightweight.
Generally, very little time is spent inside the LASER system,
showing that even with high HITM rates contention detec-

kmeans x264 water_nsq..
0%

1%

2%

3%

%
 a

pp
lic

at
io

n
tim

e

1.22x

1.15x

1.10x

driver
detector

Figure 12: Proportion of application time spent in
the detector and driver for benchmarks with 10% or
more performance overhead. Numbers atop each bar
show the slowdown for each benchmark.

0 5 10 15 20 25 30
SAV

1.0

1.2

1.4

1.6

no
rm

al
iz

ed
 ru

nt
im

e

Laser (SAV=19)

SAV=1

Figure 13: The effect of sampling on the normalized
runtime of dedup, for sample-after values from 1 to
31, including 1 and all prime values.

tion can be performed cheaply.
Next we explore the impact of the sample-after value (SAV)

on LASER’s performance. Most benchmarks are relatively
insensitive to SAV adjustments, but Figure 13 shows the be-
havior of dedup which sees large swings in runtime with
different SAV values. Figure 13 shows that even modest
sampling is effective at reducing dedup’s performance over-
head from 50% (with SAV=1) to 6% (with SAV=19, the LA-
SER default), though there is no marginal benefit beyond this
point.

7.3 Performance Comparison with Sheriff
We compared the performance of LASER against Sher-

iff [18] on our Haswell system, overlooking Sheriff’s in-
compatibility with the x86 memory consistency model and
the fact that a TSO-compliant version of Sheriff incurs pro-
hibitive orders-of-magnitude slowdowns (Section 5). Using
the latest code from github1 we attempted to run Sheriff on
1https://github.com/plasma-umass/sheriff

9

blacksch.. ferret histogram histogram' kmeans linear_regres.. lu_cb* lu_ncb* matrix_m.. pca radix* raytrace.s.. reverse_index string_m.. swaptions water_ns.. water_sp*

1

2

3

4

5

6
no

rm
al

iz
ed

 ru
nt

im
e

x x x x x x x x x

Scheme
Laser
manual fix
Sheriff-Detect
Sheriff-Protect

Figure 14: Runtime (lower is better) of Laser, the code fixed manually based on Laser’s reports (selected
benchmarks), Sheriff-Detect and Sheriff-Protect, normalized to native execution.

our benchmarks. Most of the Phoenix benchmarks work
with Sheriff, but dedup, raytrace, vips and x264 use pthreads
constructs that Sheriff does not currently support like spin
locks, and freqmine requires OpenMP support. The remain-
ing workloads encounter runtime errors with Sheriff.

Figure 14 shows the performance of LASER, Sheriff-Detect
and Sheriff-Protect normalized to native execution for bench-
marks where at least one Sheriff scheme works. An “x” in-
dicates a runtime error. For histogram’, linear regression,
lu ncb and reverse index we also show the performance of
the manually-fixed program using the feedback from LA-
SERDETECT. For lu cb, lu ncb, radix and water spatial
(indicated by a *), we used simlarge (instead of our de-
fault native) inputs as Sheriff would not run with the na-
tive input. On workloads with little synchronization (e.g.,
swaptions) all three schemes have very low overheads. Both
Sheriff-Detect and Sheriff-Protect isolate threads in separate
address spaces whether a program suffers from false shar-
ing or not, so both Sheriff schemes fix the false sharing in
histogram’ and linear regression even though Sheriff-Detect
does not detect anything (Table 1). On synchronization-
intensive workloads, however, the cost of the Sheriff ex-
ecution model becomes clear, with substantial slowdowns
(e.g. water nsquared). In contrast, LASER’s non-intrusive
approach has uniformly low performance overhead.

7.4 Case Studies
We examine the nine applications containing performance

bugs (Table 2) in greater detail to qualitatively evaluate the
utility of LASER, describing cases where LASER found in-
stances of contention from prior work as well as new in-
stances of contention missed by previous approaches.

7.4.1 Known performance bugs
The Phoenix benchmark linear regression is well-known

for exhibiting extreme amounts of false sharing on the args
array (Figure 2). LASER readily detects and repairs this
false sharing despite a compiler optimization, present at the
-O2 and -O3 optimization levels, that caches the fields SX
through SY in registers to avoid repeatedly loading their val-
ues from memory. However, the updated value of each vari-
able is still stored to memory at the end of every loop iter-
ation, creating intense false sharing. This partial caching
eliminates loads of these fields, converting the read-write
false sharing present with -O1 compilation into write-write
false sharing. While LASER is able to detect linear regress-
ion’s false sharing correctly at the -O3 optimization level,
compiling with -O1 increases the HITM rate by nearly two
orders of magnitude making detection even easier. Though

each args array element is 64B in size on our platform (the
same size as a cache line), the array itself is not 64B-aligned
by default. Fixing linear regression’s false sharing by align-
ing the args array to a cache line boundary results in a dra-
matic 17x speedup (Figure 11).

The histogram benchmark is also known to exhibit false
sharing [18, 19] as unpadded thread-private histogram coun-
ters can end up in the same cache line. On our system the
default input does not generate false sharing, but the alter-
native input (histogram’) exhibits significant false sharing,
which illustrates how slippery false sharing can be. LASER
dynamically adapts to histogram’s runtime behavior, incur-
ring no performance overhead for the default input and trig-
gering online repair only when necessary for the alternative
input.

LASER finds false sharing in reverse index in the use len[]
array, as in previous work [18, 19]. The false sharing in
use len[] was fixed manually by padding the array elements
for a 4% speedup. As this performance bug is minor, LA-
SERREPAIR does not get automatically triggered to repair it.

7.4.2 Novel Performance Bugs
LASER finds a novel instance of true sharing in dedup.

The source code lines with the most contention are all iden-
tified as part of the concurrent queue implementation, which
separates each pipeline stage in dedup’s thread-parallel pipe-
line. Each queue is protected with a single lock, preventing
enqueue and dequeue operations from proceeding in paral-
lel. We replaced dedup’s naive queue with the lock-free
queue from the Boost C++ Lockfree library [3], which yields
a 16% speedup (Figure 11).

The kmeans benchmark from Phoenix does not exhibit
false sharing, thus previous approaches that focus exclusively
on false sharing [18, 27] find the benchmark unremarkable.
However, LASER is able to identify two new sources of con-
tention in kmeans. First, our tool identifies read-write true
sharing on the sum heap objects that are allocated in the
main thread and then instantly handed off to worker threads.
This contention can be avoided by allocating the sum ob-
jects on each worker thread’s stack instead, which brings
a 5% performance improvement by eliminating contention,
parallelizing object allocation and leveraging cheap stack al-
location as well (Figure 11). While kmeans allocates many
of these heap objects during the life of the application, the
amount of contention on each object is small. This pattern
of contention that migrates from object to object is ill-suited
to sampling-based approaches that assume contention will
occur repeatedly on the same memory location (e.g. [18,
27]). Instead, low-overhead high-coverage approaches like

10

LASER are vital to detect migratory contention as in kmeans.
LASERDETECT uncovered a new performance bug in the

Splash2x version of lu ncb. lu ncb experiences false shar-
ing on the a array, its main data structure. While LASER de-
tects this false sharing, online repair is not attempted because
lu ncb’s sophisticated code structure is difficult for LASER-
REPAIR to analyze precisely, and the estimated impact of the
SSB instrumentation is beyond the threshold deemed prof-
itable. By modifying the source code directly to align the
a array to a cache line boundary, a 36% speedup can be
achieved.

In bodytrack, LASER identifies significant true sharing in
the TicketDispenser::getTicket() function, which distributes
unique counter values to threads. This communication is
fundamental to load-balancing work amongst threads and
would require significant application restructuring to remove.

7.4.3 Benchmarks without significant contention
LASER finds false sharing in the streamcluster and word-

count benchmarks, consistent with prior work [18, 27]. We
also find a novel instance of read-write true sharing in vol-
rend. Fixing these instances of contention does not result
in any meaningful application speedup, but it does further
demonstrate LASER’s ability to detect contention precisely.

In streamcluster, the work mem array is already padded
to avoid false sharing, but the padding is insufficient for the
64-byte lines in our system. LASER identifies that additional
padding is necessary. Increasing the padding reduces the
number of HITM events in streamcluster by 3x but does not
affect execution time on our system.

In wordcount, LASER detects that the use len array in-
duces false sharing when threads increment each element
simultaneously. Introducing padding between the elements
reduces HITM events but does not change performance.

In volrend, LASER identifies true sharing on the lock pro-
tecting the Global->Queue counter. Using batched atomic
increments instead reduces the rate of HITM events by an
order of magnitude but does not improve performance.

8. RELATED WORK
There have been many schemes proposed to detect false

sharing and excessive true sharing in multithreaded programs,
and even, in the case of false sharing, prevent it. We discuss
the most relevant previous work here.

Some false sharing detectors rely on intensive program
instrumentation, either via full-system simulation [30], via
dynamic binary instrumentation tools like Pluto [14] and
Liu [17], via memory shadowing along with dynamic in-
strumentation like the Dynamic Cache Contention Detection
scheme [35] or extensive compiler instrumentation as with
the Predator scheme [19]. Such approaches have the advan-
tage of clear visibility into the program’s memory access be-
havior, and can even, as Predator does, predict false sharing
on machines with larger or smaller cache lines. The down-
side is that the runtime cost of such heavy instrumentation is
prohibitive and can typically slow execution by an order of
magnitude.

The Sheriff system [18] is a pure-software scheme that
places each thread into its own private address space, send-
ing updates between threads on synchronization operations.

Sheriff provides two modes of operation. Sheriff-Detect de-
tects false sharing by periodically write-protecting pages to
see if multiple threads write to the same line. Sheriff-Protect
avoids periodic page protection, relying on each thread’s pri-
vate address space to ensure that falsely-shared locations are
mapped to distinct physical pages. Sheriff’s performance
overhead can be very high for applications that synchro-
nize frequently: up to 11x with Sheriff-Detect and 47% with
Sheriff-Protect according to [18]. Sheriff identifies the data,
but not the code, involved in false sharing, making it harder
to understand the root cause of false sharing. Finally, Sheriff
focuses on false sharing, and does not discover the excessive
true sharing in, e.g., the kmeans benchmark. We conduct a
detailed comparison with Sheriff in Section 7.3.

The Plastic system [27] focuses on both detecting and re-
pairing false sharing, using a fine-grained memory remap-
ping facility that allows individual bytes of virtual memory
to be remapped to alternative physical memory addresses.
This facility relies on custom OS or hypervisor support, along
with standard page protection hardware and dynamic binary
instrumentation. Plastic uses performance counters to mea-
sure the frequency of HITM events, and avoids doing addi-
tional work for programs where HITMs (and false sharing)
are rare. Plastic’s performance overheads are low – just 2%
on average – but, like Sheriff, Plastic does not focus on de-
tecting instances of true sharing. We did not undertake a di-
rect comparison with Plastic due to the lack of source code
availability. Furthermore, the current Plastic implementation
relies on a custom hypervisor which would complicate our
experimental setup.

Several projects, in addition to Plastic, have used perfor-
mance counters to profile parallel code. [16] collects per-
formance event counts to identify programs that suffer from
false sharing. Based on the extent of false sharing, these in-
stances are assigned suitable labels and a classifier is trained
using this training data. Greathouse et al. [13] use HITM
counts to guide a sampling-based data race detector. The
TimeWarp system [25] uses counts of HITM events to infer
the presence of software timers which can present a side-
channel in security-critical code. None of these systems
leverage the rich information available from PEBS events as
LASER does; doing so would likely lower the performance
cost and/or improve the accuracy of these previous schemes.

9. CONCLUSION
We have presented the design and implementation of LA-

SER, a system for light, accurate sharing detection and re-
pair. LASER leverages hardware support in Intel’s Haswell
architecture for recording the instructions involved in cache
contention. We characterize the behavior of this hardware
support on our Haswell machine to understand its capabil-
ities and limitations. Our characterization data can inform
future uses of this performance counter mechanism beyond
our work, including concurrency bug detection and program
analysis. We design our LASER system to maximize com-
patibility with the existing software ecosystem by leverag-
ing Haswell’s hardware support instead of changes to the
compiler, OS or execution model. We evaluate LASER’s ac-
curacy and performance across a wide range of benchmarks,
finding that it provides high detection accuracy and effective

11

contention repair at low performance cost. LASER uncovers
novel and important performance bugs missed by previous
work, while incurring an average overhead of just 2%.

10. ACKNOWLEDGEMENTS
We thank John Demme for his help with exploring the

PEBS mechanism, and Shobha Ranganathan and Andi Kleen
for their technical help on the LASER driver development.
This work was supported by NSF grant SHF-1525296. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

11. REFERENCES
[1] T. E. Anderson. The performance of spin lock alternatives for

shared-memory multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
1(1):6–16, January 1990.

[2] Christian Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton, NJ, USA, 2011. AAI3445564.

[3] Tim Blechmann. Boost.Lockfree 1.58.0. May 2015.

[4] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. An analysis of linux scalability to many cores. In
Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association.

[5] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic
dynamic taint analysis framework. In Proceedings of the 2007
International Symposium on Software Testing and Analysis, ISSTA
’07, pages 196–206, New York, NY, USA, 2007. ACM.

[6] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich.
Scalable address spaces using rcu balanced trees. In Proceedings of
the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
XVII, pages 199–210, New York, NY, USA, 2012. ACM.

[7] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich.
Radixvm: Scalable address spaces for multithreaded applications. In
Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 211–224, New York, NY, USA, 2013.
ACM.

[8] Intel Corporation. Intel VTune Amplifier 2015. May 2015.

[9] Advanced Micro Devices. Preliminary BIOS and Kernel Developer’s
Guide (BKDG) for AMD Family 16h Models 00h-0Fh (Kabini)
Processors, chapter 2.6.2 Instruction Based Sampling. 2013.

[10] Laurel Emurian, Arun Raghavan, Lei Shao, Jeffrey M Rosen, Marios
Papaefthymiou, Kevin Pipe, Thomas F Wenisch, and Milo Martin.
Pitfalls of accurately benchmarking thermally adaptive chips. Power
(W), 5:10.

[11] Stephane Eranian. Re: [Perfctr-devel] Re: quick overview of the
perfmon2 interface. December 2005.

[12] M. Fernandez and R. Espasa. Speculative alias analysis for
executable code. In Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation Techniques,
PACT ’02, pages 222–231, 2002.

[13] Joseph L. Greathouse, Zhiqiang Ma, Matthew I. Frank, Ramesh Peri,
and Todd Austin. Demand-driven software race detection using
hardware performance counters. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11,
pages 165–176, New York, NY, USA, 2011. ACM.

[14] Stephan M. Günther and Josef Weidendorfer. Assessing cache false
sharing effects by dynamic binary instrumentation. In Proceedings of
the Workshop on Binary Instrumentation and Applications, WBIA
’09, pages 26–33, New York, NY, USA, 2009. ACM.

[15] Intel Corporation. IntelÂő 64 and IA-32 Architectures Software
DeveloperâĂŹs Manual, Volume 3B: System Programming Guide,
Part 2, chapter 18.11. September 2014.

[16] Sanath Jayasena, Saman Amarasinghe, Asanka Abeyweera,
Gayashan Amarasinghe, Himeshi De Silva, Sunimal Rathnayake,
Xiaoqiao Meng, and Yanbin Liu. Detection of false sharing using
machine learning. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis,
SC ’13, pages 30:1–30:9, New York, NY, USA, 2013. ACM.

[17] C.-L. Liu. False sharing analysis for multithreaded programs.
Master’s thesis, National Chung Cheng University, 7 2009.

[18] Tongping Liu and Emery D. Berger. Sheriff: Precise detection and
automatic mitigation of false sharing. In Proceedings of the 2011
ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’11, pages 3–18,
New York, NY, USA, 2011. ACM.

[19] Tongping Liu, Chen Tian, Ziang Hu, and Emery D. Berger. Predator:
Predictive false sharing detection. In Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 3–14, New York, NY, USA, 2014.
ACM.

[20] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. Efficient
Deterministic Multithreading Without Global Barriers. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, pages 287–300,
New York, NY, USA, 2014. ACM.

[21] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio:
Detecting atomicity violations via access interleaving invariants. In
Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 37–48, New York, NY, USA, 2006. ACM.

[22] Brandon Lucia and Luis Ceze. Finding concurrency bugs with
context-aware communication graphs. In Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pages 553–563, New York, NY, USA, 2009. ACM.

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, pages 190–200, New York, NY, USA,
2005. ACM.

[24] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of
transactional memory atomicity semantics. IEEE Comput. Archit.
Lett., 5(2):17–17, July 2006.

[25] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to
mitigate side-channel attacks. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, ISCA ’12, pages
118–129, Washington, DC, USA, 2012. IEEE Computer Society.

[26] mcmcc. false sharing in boost::detail::spinlock_pool? June 2012.

[27] Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan,
Dutch T. Meyer, William Aiello, and Andrew Warfield. Whose cache
line is it anyway?: Operating system support for live detection and
repair of false sharing. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 141–154,
New York, NY, USA, 2013. ACM.

[28] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary
Bradski, and Christos Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. In Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer
Architecture, HPCA ’07, pages 13–24, Washington, DC, USA, 2007.
IEEE Computer Society.

[29] Mikael Ronstrom. MySQL team increases scalability by >50% for
Sysbench OLTP RO in MySQL 5.6 labs release april 2012. April
2012.

[30] Martin Schindewolf. Analysis of cache misses using SIMICS.
Master’s thesis, Institute for Computing Systems Architecture,
University of Edinburgh, 2007.

[31] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd
Millstein, and Madanlal Musuvathi. End-to-end sequential
consistency. In Proceedings of the 39th Annual International
Symposium on Computer Architecture, ISCA ’12, pages 524–535,
Washington, DC, USA, 2012. IEEE Computer Society.

[32] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on
memory consistency and cache coherence. Synthesis Lectures on

12

Computer Architecture, 6(3):1–212, 2011.

[33] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The splash-2 programs: Characterization
and methodological considerations. In Proceedings of the 22Nd
Annual International Symposium on Computer Architecture, ISCA
’95, pages 24–36, New York, NY, USA, 1995. ACM.

[34] Benjamin P. Wood, Adrian Sampson, Luis Ceze, and Dan Grossman.
Composable specifications for structured shared-memory
communication. In Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’10, pages 140–159, New York, NY,
USA, 2010. ACM.

[35] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,
and Saman Amarasinghe. Dynamic cache contention detection in
multi-threaded applications. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’11, pages 27–38, New York, NY, USA, 2011.
ACM.

13

