
Radiation-Induced Error Criticality in
Modern HPC Parallel Accelerators

∗Daniel Oliveira, †Laercio Pilla, ‡Mauricio Hanzich, ∗Vinicius Fratin,∗Fernando Fernandes, ∗Caio Lunardi,
‡José Marı́a Cela, ∗Philippe Navaux, ∗Luigi Carro, ∗Paolo Rech

∗Institute of Informatics †Department of Informatics and Statistics ‡CASE Department
UFRGS UFSC Barcelona Supercomputing Center

Porto Alegre, Brazil Florianópolis, Brazil Barcelona, Spain

Abstract—In this paper, we evaluate the error criticality of
radiation-induced errors on modern High-Performance Com-
puting (HPC) accelerators (Intel Xeon Phi and NVIDIA K40)
through a dedicated set of metrics. We show that, as long as
imprecise computing is concerned, the simple mismatch detection
is not sufficient to evaluate and compare the radiation sensitivity
of HPC devices and algorithms. Our analysis quantifies and
qualifies radiation effects on applications’ output correlating the
number of corrupted elements with their spatial locality. Also,
we provide the mean relative error (dataset-wise) to evaluate
radiation-induced error magnitude.

We apply the selected metrics to experimental results obtained
in various radiation test campaigns for a total of more than 400
hours of beam time per device. The amount of data we gathered
allows us to evaluate the error criticality of a representative
set of algorithms from HPC suites. Additionally, based on
the characteristics of the tested algorithms, we draw generic
reliability conclusions for broader classes of codes. We show
that arithmetic operations are less critical for the K40, while
Xeon Phi is more reliable when executing particles interactions
solved through Finite Difference Methods. Finally, iterative stencil
operations seem the most reliable on both architectures.

I. INTRODUCTION

Today, reliability is one of the major concerns for HPC
systems. Due to the large-scale and runs duration, leadership
scientific applications may encounter interruptions as a result
of application crashes or system hangs as well as Silent
Data Corruption (SDC) in the output. As a reference, the
U.S. Department of Energy’s (DOE) Titan, today’s third most
powerful supercomputer [15], which is composed of more
than 18, 000 Kepler GPUs, has a radiation-induced Mean
Time Between Failures (MTBF) in the order of dozens of
hours [18], [41]. As we approach exascale, the resilience
challenge will become even more critical due to an increase
in system scale [24], [36].

The high computational power of modern accelerators
combined with their low cost, reduced energy consumption,
and flexible development platforms are pushing their adoption
in HPC applications. In this paper we analyze the radiation
reliability of Intel Xeon Phis and NVIDIA Kepler GPUs, which
dominate the HPC market. Tianhe-2, today’s second powerful
supercomputer [15], and Trinity, Los Alamos National Labo-
ratory’s (LANL) new cluster, are powered by Xeon Phis, while
NVIDIA Kepler GPUs act as accelerators in 2 of the top 10
supercomputers, including Titan. In this scenario, a lack of
understanding of HPC devices resilience may lead to lower
scientific productivity, lower operational efficiency, and even
significant monetary loss [36].

SDCs are typically studied by comparing the code ex-
perimental output with the expected output [6], [26]. We
aim at going a step beyond and consider error criticality,
i.e., how SDCs impact the application or system. On parallel
architectures, a soft-error can either corrupt only a thread/data
value, corrupting the output in an insignificant manner, or
propagate to several threads/data values, leading to a significant
corruption in the output. Moreover, the effect of a radiation-
corrupted output strictly depends on the application and may
be, under certain circumstances, tolerated. For instance, errors
affecting the least significant positions of the mantissa could
be considered inside the intrinsic imprecision of floating-point
operations. Additionally, wave simulations may accept misfits
of about 4% [14] and imprecise computation can be generically
applied to various HPC applications [10]. In other words,
HPC output errors should not be equally considered, but their
criticality should be taken into account.

To have a qualitative and quantitative evaluation of error
criticality we propose the use of four metrics: (1) number
of errors, (2) relative error, (3) mean relative error and (4)
spatial locality. The number of errors indicates how many
output elements differ from the expected values. Relative and
mean relative errors are used to filter those elements whose
values have a relative difference from the expected ones which
is lower than a parametrized threshold. Spatial locality is
used to describe the SDCs distribution in the output. Our
criticality study discloses interesting peculiarities of Xeon Phi
and Kepler architectures. Thanks to the proposed methodology
we identify which architecture is more likely to produce critical
errors in the tested codes and which parallelism management
philosophy is more reliable.

We benefit from the accelerated high energy neutron beams
available at Los Alamos Neutron Science Center (LANSCE)
at LANL, Los Alamos, NM, USA and at ISIS, Rutherford
Appleton Laboratories (RAL), Didcot, UK to experimentally
evaluate the neutron-induced errors impact on Xeon Phi and
Kepler devices. By inducing failures in all the components
of the device, including the scheduler, dispatcher, and control
logic, our neutron beam experiments provide deep insights
on the resilience characteristics of HPC accelerators that are,
otherwise, difficult to obtain.

We select a representative and heterogeneous set of codes
to evaluate radiation effects in modern HPC accelerators:
DGEMM (arithmetic operations), LavaMD (particles interac-
tions), HotSpot (physical simulations), and a DOE’s propri-
etary workload named CLAMR (fluid dynamics). We report
data obtained in various test campaigns for an overall beam
time of more than 400 hours per device, resulting in a wide

set of possible radiation-induced failures. For DGEMM and
LavaMD we test also different input sizes to evaluate how
the increased number of parallel processes, workload, and
throughput impact the accelerators reliability. The selected
codes are representative of wider classes of HPC algorithms,
which allows our error criticality to be generalized. Whenever
possible, we correlate the observed error criticality with algo-
rithm characteristics and compute or memory requirements.

The main contributions of this paper are: (1) a novel error
criticality evaluation methodology based on specific metrics,
(2) the reliability analysis of HPC applications based on beam
experiments, whose logs are made publicly available in [1]
to ease reproducibility and third party analysis, (3) a broad
discussion on the error criticality of wide classes of HPC
algorithms, and (4) the comparison between errors criticality
in Xeon Phis and K40s.

The remainder of the paper is organized as follow. Sec-
tion II gives a brief background on the impact of radiation in
HPC. Section III details the metrics used throughout this paper.
Section IV describes the adopted methodology. Section V
presents the evaluation based on the proposed metrics for errors
criticality in modern HPC accelerators. Finally, Section VI
concludes the paper and proposes future work.

II. BACKGROUND
A. Radiation-Induced Effects

The impact of galactic cosmic rays with the upper level
of the terrestrial atmosphere generates a great number of
high energy neutrons (i.e., neutrons with an energy higher
than 10MeV).A flux of about 13 n/(cm2 × h) reaches the
ground, and the number of neutrons increases exponentially
with altitude [23]. The interaction of a neutron may perturb
the transistor state, generating (single or multiple) bit-flips in
memory as well as a current spike in logic circuits that, if
latched, leads to an error. The impact of radiation-induced
errors in logic is expected to increase in future technology,
eventually becoming more probable than errors in memory
elements [11], [25].

A radiation strike in modern HPC accelerators leads to one
of the following outcomes: (1) no effect on the program output
(the failure is masked, or corrupted data is not used), (2) Silent
Data Corruption (incorrect program output), (3) application
Crash, (4) system Hang (the node has to be rebooted to restore
its functionality). Among these outcomes, (2) is harmful as it
remains undetected and unpredictable while (3) and (4) lead to
performance penalties and eventual data loss if a checkpoint
was not performed. In this paper we concentrate on SDCs,
as Crash or Hangs, for their nature, are at least detectable.
Specifically, we will analyze the impact of incorrect program
output in the correctness of the simulation or code solution.

B. Output Correctness and Error Criticality in HPC
The impact of radiation corruption in the output may

vary depending on the architecture and application class. One
impinging particle may alter single or multiple bits in one
or multiple words. However, depending on how the device or
algorithm digests the corrupted data, the outcome can vary
widely. Scientific applications with filter phases, like stencils,
may mask or lower the magnitude of errors, but still spread
them among several elements in the multiple dimensions of the
output due to repetitive operations with the corrupted data. If
the scheduler or a hardware routine are corrupted, the outcome

could range from the crash of a device to several improperly
scheduled threads producing incorrect data.

A corrupted output is not always critical in HPC applica-
tions. Floating-point operations’ results, for instance, have an
intrinsic variance [44]. A radiation-induced error that affects
the least significant bits of the mantissa of a float output
element could then have little to no effect on the application
correctness. Additionally, physical simulations accept them as
correct values in a given range [14], [19]. If the value of the
corrupted output element is inside the accepted margin we may
still consider it as correct. Lately, various works have discussed
the preference of not pursuing strict output correctness in HPC
to improve performance and efficiency [13], [10], [16].

In this paper, we aim at applying the concept of inexactness
to radiation-induced errors. In fact, some corruption could still
be tolerable if we consider imprecise computations on HPC
systems. Understanding how off this incorrect output could be
from the correct one, and how errors may affect the output
on different architectures is essential to precisely evaluate the
effect of radiation in current and future HPC machines.

III. METRICS
We select four metrics to characterize radiation-induced

output errors and to discuss their criticality in HPC applica-
tions: the number of incorrect elements, relative error, mean
relative error, and spatial locality.

As will be detailed in Section IV-D, we design our ex-
periments to have at most one neutron generating a failure per
execution. When multiple elements in the output are corrupted
it means that the effect of that single impinging neutron
propagates and spreads affecting multiple processes or values.
The higher the number of incorrect elements in the output
data, the more likely for a code to propagate the error and
exacerbate the number of incorrect elements in the output. The
number of incorrect elements, then, correlates well with the
algorithm and architecture sensitivities.

The number of incorrect elements is especially significant
for parallel architectures. Accelerators like Intel Xeon Phi and
NVIDIA GPUs have dozens or thousands of cores that share
different levels of resources. If a shared resource is corrupted,
several threads may produce incorrect data. Moreover, each
device handles parallelism differently. NVIDIA has simple
cores and a hardware scheduler [31], [30] while Intel uses
more complex cores and a complete operating system with
software scheduler [21], [22]. The corruption of the scheduler
or operating system is likely to affect the execution of multiple
threads.

To measure output error magnitude we calculate the rela-
tive error which is given by the following equation:

relative error =
|read− expected|
|expected|

× 100.

Where read is the value of the corrupted element and expected
is the correct one. Relative error is a measure of how off
the corrupted result is from what is expected, expressed in
percentage. The relative error of a corrupted element that has
a value which is ten times the expected will be 900%. If an
algorithm produces text as output, one could apply relative
error treating the output as integer.

The mean of relative errors is obtained averaging the
relative errors of all the corrupted elements in the output.
The mean of relative errors gives an overview of how much

the overall corrupted output differs from the expected one. In
our analysis we correlate the mean of relative errors with the
number of incorrect elements. This correlation highlights how
many elements were corrupted and how much those elements
differ from the expected value. We can then distinguish sit-
uations in which radiation produces few corrupted elements
that are significantly different from the expected value, and
situations in which the corruption affects a lot of elements
which are only slightly different from the expected value.

We also use the relative error to filter those errors that
significantly impact the results and those errors that could be
ignored. As discussed in Section II-B, some applications may
accept as correct results that slightly wander off the precise
value. For instance, a seismic wave application accepts misfits
of about 4% [14]. Additionally, the relative error becomes
fundamental for imprecise computations [2], [16], [10]. In
this work, being conservative, we chose to consider only mis-
matches with relative errors greater than 2%. We are aware that
the accuracy or relative error allowed by a scientific application
or imprecise computations may vary widely. Hence, we made
available all our corrupted outputs in a publicly accessible
repository [1] so to allow users to apply different filters.

When we apply the filter, we ignore all incorrect elements
whose relative error is lower than 2%. We remove faulty exe-
cutions where there are no mismatches left after the filter. As
will be shown in Section V, several errors could have a relative
error inferior to some parameterized threshold. Considering
every mismatch as an error would be, then, an ineffective
evaluation of resilience and error criticality. Therefore, the
reliability of architectures and algorithms that produce low
relative errors could be immensely far from the real one.

It is common for HPC output data to be structured as two or
three-dimensional arrays. The spatial locality of errors, then,
identifies the output errors pattern. When several elements are
corrupted, but they do not share the same position in one of
the axis, they are tagged as random errors. When the corrupted
elements share one, two, or three dimensions of the axis we
classify them as line, square, or cubic respectively. The spatial
locality of errors is important to understand error propagation
in the considered architecture and how data is actually used
in the device. Locality information can be fruitfully used to
evaluate software-based hardening strategies detection efficacy.
For example, the Algorithm-Based Fault Tolerance (ABFT)
DGEMM can detect and correct single and line errors [20],
[33] but not square errors. Therefore, by knowing the spatial
locality we can evaluate if it is wise to implement ABFT. It
is worth noting that the spatial locality can be deeply affected
by the relative error, as the number of incorrect elements can
decrease as we apply the filter.

The four presented metrics can be used in conjunction to
better understand the reliability of an algorithm or architecture
and conceive a solution to improve their resilience. The
number of incorrect elements in the output can indicate the
magnitude of error propagation. Correlating the number of
incorrect elements with the mean relative error provides an
overview of output correctness. Locality can give insights on
errors propagation and help to understand data placement or
organization. Locality could also contribute to the development
and use of detection and correction strategies [8].

IV. METHODOLOGY
In this section, after introducing the tested devices, we

present the selected codes and the reason for the chosen input
sizes. Finally, we describe the experimental procedure adopted
for our studies.

A. Tested Devices
The K40 board includes a Kepler architecture based on the

GK110b GPU chip [29]. The GK110b is fabricated using 28nm
planar bulk technology from TSMC and includes 15 Streaming
Multiprocessors (SMs), up to 2048 threads/SM, 30 Mbit total
register file (RF), 960 KB total L1 cache/Shared memory
(64 KB per SM), 1536 KB L2 cache, and 12 GB GDDR5
(which is not irradiated).

The Xeon Phi board, codenamed Knights Corner, is the
coprocessor 3120A [21], [22]. The coprocessor is fabricated
using 22nm with the Intel 3-D Trigate transistors. The chip
includes 57 physical in-order cores with four hardware threads
and 32 512-wide vector registers per core. The board has 6GB
GDDR5 (which is not irradiated) with 64 KB L1 cache and
512 KB private L2 cache for each core (a total of 3648 KB
and 29184 KB for L1 and L2 caches, respectively). L2 caches
are fully coherent and connected using a bidirectional 64 bytes
wide data ring.

The physical implementations of Intel and NVIDIA devices
are extremely different. 3-D transistors have shown a 10×
reduced per bit sensitivity to neutron compared to planar
devices [28]. The raw resources corruption probability for
the Xeon Phi is then expected to be lower then for the
K40. Unfortunately, as circuit level details are proprietary,
it is not possible to evaluate the devices low-level resources
sensitivity. A direct comparison between NVIDIA and Intel
devices physical implementation reliability is then unfeasible
and out of the scope of this paper. We focus on the criticality
of radiation-induced error, which depends on how the errors
propagate till the application output and is related to the device
architecture.

NVIDIA’s and Intel’s management of parallel processes are
extremely different and may impact both the device efficiency
and reliability. NVIDIA has a hardware scheduler while Intel
relies on a dedicated Operating System (OS) to orchestrate
execution. The characterization of the parallel threads man-
agement is part of the goal of our test procedure (details in
Section IV-C).

B. Selected Algorithms
Several benchmark suites are available for performance and

efficiency evaluation of computer architectures [5], [46], [9],
[12]. A standard set of benchmarks for the reliability evaluation
of HPC devices has not been establish, yet. General guidelines
for reliability evaluation of computing devices suggest to con-
sider codes from different domains and comprising different
computation and communication patterns [3], [32]. Hence,
we choose: a Matrix Multiplication (DGEMM) benchmark,
LavaMD, HotSpot (mini-apps from the Rodinia benchmark
suite) [12], and CLAMR (a DOE mini-app) [19]. The bench-
marks are selected also as they are representative of different
application classes: algebraic applications, particles simula-
tion, physics simulation, and fluid dynamics. Additionally, as
detailed in the following, each code is likely to stimulate
specific resources on the Xeon Phi and K40. Hence, we believe
that results obtained with the selected benchmarks could be,
under certain premises, generalized to similar applications. It is

worth noting that radiation experimental evaluation should be
restrained to few benchmarks because of beam time limitations
and the need to gather a statistically significant amount of data.

To broaden the representativeness of the selected applica-
tions, we have classified each code using some general pa-
rameters such as: resources bounding the execution (i.e. either
CPU or memory), load balance (balanced or imbalanced), and
the regularity of the memory access pattern – which affects the
capacity of the algorithm to profit from the memory hierarchy
(e.g., coalesced accesses). Table I shows the classification for
the selected applications.

DGEMM is a Dense Linear Algebra [3] code that imple-
ments an optimized Matrix Multiplication, which serves as
a cornerstone code for several applications and performance
evaluation tools. Memory accesses are coalesced or vectorized,
which results in a better memory locality and a high device
utilization, but also stresses the register file, local memory, and
Floating Point Unit (FPU). DGEMM is selected as represen-
tative of highly arithmetic codes performing compute-bound
tasks with O(N3) in compute and O(N2) in space. Also,
DGEMM is representative of those applications with static
partitioning of the data among the computational resources,
working on a data structure with a regular access pattern. We
believe the error criticality of DGEMM to be of great impor-
tance for the HPC community as several HPC applications
employ DGEMM, including Linpack, which is used to rank
supercomputers [15].

LavaMD is a solver that uses Finite Difference Methods
(FDM) to calculate particle potential and relocation due to
mutual forces between particles within a large 3D space,
behaving as an N-Body Method [3]. This space is divided
into large boxes, that are allocated to individual blocks of
threads [12]. The main computation in LavaMD lies on dot
products with floating-point data, where each thread computes
the interaction of one particle with all particles in neighboring
boxes (26 neighbor boxes in the cutoff radius plus the home
box allocated to the block of threads). As the home box and a
neighbor box are kept at all times in local memory, LavaMD
stresses local memory the most. LavaMD is selected as a
benchmark representative of Multi-physics Particle Dynamics
Code (ddcMD) applications [39], [38]. Also, as the application
calculates the interactions with the particles in neighboring
boxes, boxes in the borders of the simulated space will have
less neighbors to compute, generating some load imbalance.
Finally, LavaMD has a regular access pattern for calculating
the interaction of particles inside a single box that produces
coalesced accesses to memory.

HotSpot is a physics simulation code that simulates the
energy dissipation on an architectural floor plan to estimate
processor temperature [12]. At each iteration, HotSpot com-
putes the average temperature on areas of the chip based on
their previous temperature and power input. The code is a
2D stencil computing on single precision floating-point values.
Given its small local memory footprint, a high number of
iterations using local memory and registers only, and use of
single-precision instead of double-precision, HotSpot achieves
the highest occupancy among tested codes. We used HotSpot
as a representative Structured Grid code [3], a pattern present
in several applications used in HPC systems that solves Partial
Differential Equations, like in geophysics [14], and deeply
studied by the community [27]. The problem being solved by
HotSpot is representative of a more general class of problems,

TABLE I: Classification of parallel kernels.

Bound by Load Balance Memory Access

DGEMM CPU Balanced Regular
LavaMD Memory Imbalanced Regular
HotSpot Memory Balanced Regular
CLAMR CPU Imbalanced Irregular

where the operational intensity1 is low enough to make the
problem memory bound. Also, HotSpot does not suffer from
any kind of load imbalance, as the calculation remains the
same along its domain, which also favors a regular memory
access pattern.

CLAMR is a DOE homemade fluid dynamics application,
representative of classified LANL supercomputers workloads.
CLAMR simulates the long range propagation of waves using
a cell-based adaptive mesh refinement implementation [19].
By using the shallow water equations (conservation of mass,
x momentum, and y momentum) and by assuming that the
fluid bottom is flat and that the flow in the vertical direction
is negligible, the simulation is implemented by having each
cell of the 2D space computed by a thread. CLAMR stresses
FPU resources (by being compute-bound and working over
double-precision floating-point data), control flow resources
(the kernel uses several tests to handle questions like border
conditions), and device control resources due to its large
number of kernel calls and changes in number of threads
between time steps to re-balance the load among computational
resources.

It is worth noting that even if the high level code of
the selected algorithms is the same for both devices, the
post compiler code may be very different between the K40
and the Xeon Phi. This is due to different architectures and
compilers. Nevertheless, as highlighted earlier in the section,
the selected set of codes is heterogeneous in the sense that
each stimulates a particular kind of resources the most. To
reach the solution, both Xeon Phi and K40 devices are forced
to use those resources.

C. Selected Input Sizes
To have a proper reliability evaluation, it is essential to

fully utilize the device resources. An underused device can give
different error criticalities due to smaller resource usage and
fewer threads created. Input sizes were tailored to achieve high
resource utilization (e.g., over 97.5% multiprocessor activity
on the K40). This includes register files, cache memories,
buses, ALUs, FPUs, control resources, and others. Table II
resumes the input size and number of threads generated for
each kernel and the selected configuration to achieve high
resource usage. DGEMM input sizes (cell per matrix side)
were varied between 210 × 210 and 213 × 213 in powers of
two. LavaMD’s number of cubes in each dimension of a 3D
grid was set to 13, 15, 19, and 23 (each cube contains 100
particles on Xeon Phi and 192 particles on K40. The number
of particles was selected to best fit the hardware).

As tested input sizes are sufficient to saturate most of
the resources on both devices, a bigger input size does not

1ratio between floating point operations and bytes brought from mem-
ory [45]

TABLE II: Parallel kernels’ details.

Domain Input size #Threads

DGEMM Linear algebra square matrix side
(210 − 213)

side2/16

LavaMD Molecular
dynamics

grid size
(13, 15, 29, 23)

grid size3× #particles (100 on
Xeon Phi, 192 on K40)

HotSpot Physics simula-
tion

#cells (1024×1024) #cells

CLAMR Fluid dynamics #cells (512 × 512) #cells or more (AMR)

increase the amount of resources required for computation and
should not affect FIT [7]. However, increasing the input size
increases the number of instantiated parallel processes, and
modifies the shared resources distributions. Moreover, for most
HPC applications the throughput is strongly dependent on the
input size. Evaluating how error criticality changes with input
size provides novel insights on parallel processes management
reliability.

HotSpot’s 2D stencil includes 1024 × 1024 cells. The
workload employed in CLAMR is the standard test problem
of a circular dam break. The mesh starts with 512× 512 cells
and simulates 5, 000 timesteps.

D. Neutron Beam Test Experimental Setup
Fault injection simulations are one of the possible ways

to evaluate applications reliability by measuring their Archi-
tectural Vulnerability Factor (AVF) (i.e., the probability for
a failure in a resource to be observed at the output [26]) or
Program Vulnerability Factor (PVF) [37]. Some recent works
evaluate the AVF for various parallel algorithms executed
on GPUs [17], [40], [43]. Fault injectors provide the user
with access to only a limited set of GPU resources. Thus,
not all the possible sources of errors can be considered.
Hardware schedulers and dispatchers as well as the PCIe
controller, for instance, are among the inaccessible resources.
Due to the limitations of fault injection, we take advantage
of the controlled neutron beam to perform the error criticality
analysis.

Experiments were performed at the LANSCE facility, Los
Alamos, NM, and at the ISIS facility, RAL, Didcot, UK.
LANSCE and ISIS fluxes are suitable to mimic the terrestrial
neutron flux effects on electronic devices [42]. This means
that error rates measured at LANSCE or ISIS scaled down
to the natural flux provide the predicted error rates on a
realistic application expressed in Failure In Time (FIT). The
neutron flux available at LANSCE or ISIS was between
1 × 105n/(cm2 × s) or 2.5 × 106n/(cm2 × s), about 6 to
8 orders of magnitude higher than the atmospheric neutron
flux at sea level (13n/(cm2×h) [23]). Tests were conducted
for more than 400 hours of beam time. As we test multiple
boards in parallel (two Xeon Phis and two K40), we report here
results obtained in 800 hours of effective test per architecture.
If scaled to the natural environment, our results cover at least
8 × 108 hours of normal operations, which are about 91,000
years.

In a realistic environment, it is highly likely to have
no more than one corruption during a single execution. To
maintain this behavior, experiments were tuned to guarantee
observed output error rates lower than 10−3 errors/execution,
ensuring that the probability of more than one neutron gener-
ating a failure in a single code execution remains negligible.

neutrons	

Fig. 1: Part of the experimental setup at LANSCE. Neutrons
direction is indicated by the arrow.

The beam was restricted to a spot with a diameter of
2 inches, which was enough to fully irradiate the K40 and
Xeon Phi chips without directly affecting nearby board power
control circuitry and DRAM chips. This implies that data
stored in the main memory is not to be corrupted, allowing
an analysis focused on the devices’ core reliability.

Figure 1 shows part of the experimental setup mounted at
LANSCE. We irradiate a total of 2 Xeon Phis and 2 K40s,
placed at different distances from the neutron source. A de-
rating factor was applied to consider distance attenuation. After
the de-rating the device radiation sensitivity seemed indepen-
dent on the position, suggesting that the neutron attenuation
caused by other boards between the source and the device
under test is negligible.

A host computer initializes the test sending pre-selected
input to the accelerator and gathers results, comparing them
with a pre-computed golden output. When a mismatch is
detected, the execution is marked as affected by an error.
To avoid precision and round-off issues, golden outputs were
calculated on the very same device used for experiments. Input
values were ensured to be small enough to avoid overflow but
still big enough to be considered representative. Additionally,
to avoid biases on input values, small input sizes are a subset
of big input sizes and input has been generated balancing the
number of 0s and 1s.

V. RELIABILITY AND CRITICALITY
EVALUATION

This section evaluates error criticality of HPC application
classes. The analysis is based on the metrics proposed in
Section III using the codes and methodology presented in
Section IV. While this paper focuses only on SDCs, with our
methodology it is also possible to measure radiation-induced
crash and hang rates. As a reference, we measured that SDCs
are between 1.1 to tens of times more likely than crashes and
hangs for both the K40 and Xeon Phi. For DGEMM, K40
experienced between 1.1× to 4× more SDCs than crashes
and hangs (the larger the input, the higher the crashes and
hangs rate), while for Xeon Phi SDCs are about 4× more
likely than crashes and hangs (independently on the input).
For LavaMD, K40 has about 3× and Xeon Phi from 3× to
12× (increasing with input size) more SDCs than crashes
and hangs. For HotSpot, K40 has 7× and Xeon Phi has
3× more SDCs. Observed differences may be dependent on
algorithm control-flow characteristics, control logic sensitivity,

instruction cache proprieties, or architecture peculiarities. We
consider crashes and hangs less critical than SDCs as, for their
nature, they are detectable. A detailed analysis of crashes and
hangs causes and effects is then out of the scope of this paper.
In the following, we consider only SDCs obtained during our
radiation experiments.

Results are presented as relative FIT, expressed in arbitrary
units (a.u.). Absolute FIT are considered business-sensitive
data and are not included in this paper to protect our industrial
partners. Nevertheless, as we use the same normalization for
each device and code, relative FIT data still allows cross com-
parisons between codes and devices. As stated in Section IV-A,
Xeon Phi and K40 have extremely different architectures built
with different transistor layouts. The scope of this paper is not
to exhaustively compare the error rate of the two devices, but
rather to evaluate and compare the corrupted output criticality
for different classes of algorithms with different input sizes
executed in different HPC accelerators.

A. DGEMM

●

● ●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●

●
●
●

●●●●

●●

●●

●

●●

0

25

50

75

≥ 100

0 5000 10000 15000 ≥ 20000
Number of Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Input Dimension ● 1024x1024 2048x2048 4096x4096

(a) K40.

●●●

0

25

50

75

≥ 100

0 5000 10000 15000 ≥ 20000
Number of Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Input Dimension ● 1024x1024 2048x2048 4096x4096 8192x8192

(b) Xeon Phi.

Fig. 2: DGEMM Mean relative error and Incorrect Elements.

Figures 2a and 2b show the mean relative error correlated
with the number of corrupted elements for the faulty executions
of DGEMM executed with 3 and 4 input sizes on K40 and
Xeon Phi, respectively. It is worth noting that, to improve
figure quality, for DGEMM we assign a 100% relative error to
all those errors with a relative error higher or equal to 100%.

Most executions had a small number of incorrect elements
in both architectures (at most 0.4% of output elements cor-
rupted). The number of incorrect elements grows together
with input size. We recall that, as described in Section IV-D,
observed (multiple) corrupted elements are caused by a single
impinging particle. When multiple corrupted elements affect
the output it means that the initial corruption propagates
disturbing the calculation of more than one element. An
increase of DGEMM input size requires a higher number of
parallel processes and a higher amount of shared resources
(like caches). A corruption in either one is likely to cause
multiple corrupted elements.

As shown in Fig. 2b, the mean relative error is extremely
high on the Xeon Phi. Almost all the corrupted elements are
extremely different from the expected value, independent of
the number of corrupted elements or input dimension.

For the K40, about 75% of radiation-induced output errors
have a lower than 10% mean relative error. The K40 has overall
fewer corrupted elements and those elements’ values are less
different to the expected ones than on the Xeon Phi, indicating
that DGEMM errors are then to be considered less critical on
the K40 than on the Xeon Phi.

All
> 2%

All

> 2%

All

> 2%

0

50

100

150

1024 2048 4096
Input Dimension

F
IT

 [a
.u

.]

Square Line Single Random

(a) K40.

All

All All

All

0

5

10

15

20

1024 2048 4096 8192
Input Dimension

F
IT

 [a
.u

.]

Square Line Single Random

(b) Xeon Phi.

Fig. 3: DGEMM spatial locality and magnitude.

Figures 3a and 3b present the spatial locality and relative
errors for DGEMM executed on K40 and Xeon Phi. For
each input size, we show the relative FIT break down into

the different error patterns detected with our spatial locality
analysis. For each dimension we report two FIT break downs,
one considering all the corrupted executions and one applying
the 2% relative error filter (All and > 2%, respectively, in
Figure 3a). For the > 2% break down, we do not consider
as corrupted those output elements with a relative error lower
than 2%. As for the Xeon Phi no relative error was lower than
2%, we present only the FIT break down for all errors. For the
K40, on the contrary, 50% to 75% corrupted executions had all
the elements with a relative error lower than 2%. Therefore, if
we tolerate 2% of discrepancy from the correct value, K40’s
reliability is at least 60% better than when considering all
mismatches.

It is worth noting that for the K40 errors distribution
changes when results are filtered with the 2% tolerance.
Random distributed errors almost disappear while single and
line errors are significantly lowered. The 2% filter does not
clear those incorrect elements with a magnitude higher than
2%. One execution classified as square may change to line
or single when some elements are filtered. Unfortunately, the
spatial distribution after the filter depends on the magnitude of
each incorrect element and cannot be easily predicted.

Spatial locality has a strong impact on the effectiveness
of hardening strategies like ABFT [20]. Single and line are
easily corrected in linear time on parallel devices [33], [47]
while square and random errors are more difficult to detect
and correct. Therefore, applying ABFT, DGEMM would be
affected by only 20% to 40% of all errors on K40, and 60%
to 80% on Xeon Phi.

Even if an exhaustive comparison between K40 and Xeon
Phi is out of the scope of this paper, comparing Figures 3a
and 3b it is clear that even considering a 2% tolerance in the
output, the K40 has still a higher error rate than the Xeon
Phi. If ABFT is applied to both devices the error rates become
comparable.

It is interesting to notice that the input size has a strong
impact on K40 FIT but not on Xeon Phi FIT. From 29×29 to
211×211 K40 FIT increases of 7× for ALL and 5× for > 2%
while Xeon Phi FIT increases of only 1.8×. As discussed
in Section IV-C, the different behavior between NVIDIA and
Intel devices when input size is increased depends mainly
on two reasons that derive from the different parallel threads
management philosophies:

(1) Increasing the number of parallel threads increases the
scheduler strain required to manage and dispatch threads. The
scheduler on NVIDIA devices is implemented in hardware
and has already been demonstrated to contribute to the device
radiation sensitivity [34]. Intel Xeon Phi relies on the operating
system to manage execution [22] which may be less suscepti-
ble to radiation-induced failures. It is worth noting that while
the K40 thread management seems to increase its sensitivity,
it may be more efficient. The K40 may then produce more
correct data before experiencing a failure [34].

(2) NVIDIA and Intel adopt opposite solutions to manage
those threads that are active but waiting to be dispatched.
On the K40, active threads’ data is kept in registers while
other threads are being executed. A larger number of threads
increases, then, the time data stays exposed in registers waiting
to be used. The available ECC on K40 registers mitigates this
effect, but data may still sit in internal queues or flip-flops that
are not protected. On the contrary Xeon Phi waits for current
threads (up to four per core) to finish before launching other

●●●●●●●●●

●

●●●● ●● ●

5000

10000

15000

≥ 20000

0 1000 2000 3000 4000 ≥ 5000
Number of Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Input Dimension ● 15 19 23

(a) K40.

●●

●

●
●

●●

●

●
●

●
●

●
●●

●

●
●
●●

●

●
● ●

●

●
●

●
●●

●●●
●●

●

●

●
●●
●●●

● ●

●

●

●

●● ●

●●
● ●●

●
●

●

●

●●●●

●

●

●

●●
●

●
●● ●

●●

●

●●
●●

●

●

●●
●●●●●

●

0

5000

10000

15000

≥ 20000

0 1000 2000 3000 4000 ≥ 5000
Number of Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)
Input Dimension ● 13 15 19 23

(b) Xeon Phi.

Fig. 4: LavaMD Mean relative error and Incorrect Elements.

ones. Subsequent threads’ data sit in the DRAM, so there is
no expected FIT increase caused by additional threads.

B. LavaMD
Mean relative error and number of incorrect elements for

LavaMD are reported in Figures 4a and 4b. As the mean
relative error is extremely high for LavaMD we represent errors
with a mean average error up to 20,000%. Executions with a
mean average error higher or equal to 20,000% are shown
as 20,000% to improve figure quality). We hypothesize that
the higher relative error of LavaMD compared to DGEMM is
related to the exponentiation operation used when computing
particle interactions, which can turn small value variations
into large differences. The number of incorrect elements, on
the contrary, is low and concentrated for the K40. Xeon Phi
shows a higher number of corrupted elements than the K40
but a much lower average error. Although K40 simulates more
particles than Xeon Phi (192 and 100 per box, respectively),
Xeon Phi is affected by a larger number of incorrect elements.
However, those corrupted elements for the Xeon Phi have an
overall lower difference with the expected values.

Spatial locality and relative error for LavaMD is presented
in Figures 5a and 5b. K40 has no errors with a relative error
lower than 2% while Xeon Phi has only about one tenth of
errors lower than the 2% threshold. Spatial locality highlights
that most of the errors for Xeon Phi are cubic and square. K40

All

All

All

0

200

400

600

15 19 23
Input Dimension

F
IT

 [a
.u

.]

Cubic Square Line Single Random

(a) K40.

All

> 2%

All
> 2%

All
> 2%

All
> 2%

0

5

10

15

20

13 15 19 23
Input Dimension

F
IT

 [a
.u

.]

Cubic Square Line Single Random

(b) Xeon Phi.

Fig. 5: LavaMD spatial locality and magnitude.

corrupted output affected by cubic and square error patterns
are 40% to 60% of the total. The spatial locality for Xeon Phi
is related to the larger number of incorrect elements which
corresponds to an increased spatial area of corrupted data. As
Xeon Phis have larger shared cache memories, it is easier for a
single impinging particle to affect data used by multiple cores
when running LavaMD.

The percentage of K40 corrupted outputs with cubic and
square error patterns are decreasing as the input dimension
grows (55% of all corrupted output for 15 cubes, 50% for 19,
and 42% for 23). With a larger input, more threads have to
be scheduled and more data has to be read and written. The
increased pressure in the GPU reduces the sharing of resources
like caches, increasing the isolation between blocks of threads.
This isolation, in turn, reduces the probability of corrupted data
to be shared among many blocks, causing less cubic and square
errors.

For the K40, LavaMD’s FIT rate increase with input size is
only about 30% from one input size to the next one, definitely
less than for DGEMM. This is only in apparent contrast with
(1) and (2). In fact, LavaMD makes heavy usage of local
memory (≈14 KB per block of threads), which limits the
number of active threads at any given time on the K40. Thus,
the increase in number of active threads is limited for LavaMD,
reducing the impact of the scheduler strain.

●●●●●●

●

●● ●0

5

10

15

20

≥ 25

0 10000 20000 30000 40000 ≥ 50000
Number of Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

(a) K40.

●

● ●

●● ●

●

●● ● ●●● ●● ●● ●●●

●

●● ●● ●● ●

●

● ● ●

●

●● ●

●

●● ●●

●

●●0

5

10

15

20

≥ 25

0 10000 20000 30000 40000 ≥ 50000
Number of Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

(b) Xeon Phi.

Fig. 6: HotSpot Mean relative error and Incorrect Elements.

C. HotSpot
HotSpot values for mean relative error and incorrect el-

ements are shown in Figures 6a and 6b. HotSpot shows
an extremely low mean relative error (lower than 25% in
all cases) independent of the number of incorrect elements
for both architectures, which is due to intrinsic algorithm
characteristics. HotSpot simulates energy dissipation taking
into consideration the power input and the temperature of
nearby cells. Therefore, errors will eventually dissipate as the
result tend to reach an equilibrium. Analyzing the number of
incorrect elements in Figures 6a and 6b, it is clear that Xeon
Phi shows a greater tendency to have multiple errors than K40.
K40, in fact, has at most about 50,000 incorrect elements in
the output while Xeon Phi experienced up to 130,000 incorrect
elements in the output (executions with a number of incorrect
elements higher or equal to 50,000 are shown as 50,000 to
improve figure quality).

Figures 7a and 7b depict the spatial locality and relative
errors for HotSpot. Both architectures presented only square
and line errors. The computation of each cell takes as direct
input the values of the neighbor cells. Therefore, one single
error will affect neighbor cells in the next iteration, always
increasing spatial locality criticality. Considering only errors
above 2%, HotSpot shows the most expressive results as
we could consider as correct about 80% to 95% of faulty

All

> 2%
0

10

20

30

40

1024
Input Dimension

F
IT

 [a
.u

.]

Square Line Single Random

(a) K40.

All

> 2%

0.0

2.5

5.0

7.5

10.0

1024
Input Dimension

F
IT

 [a
.u

.]

Square Line Single Random

(b) Xeon Phi.

Fig. 7: HotSpot spatial locality and magnitude.

executions for Xeon Phi and K40, respectively.
HotSpot can greatly recover from errors naturally due

to algorithm characteristics. Most of the faulty executions
presented errors smaller than 2%. HotSpot is intrinsically
robust and considering all mismatches as an error would erro-
neously decrease its resilience. Therefore, one can imprecisely
classify HotSpot with a radiation sensitivity up to 95% higher
considering any mismatch with the expected value as the sole
metric.

The evaluation of neighbors to detect disparities coming
from errors in Stencil-like applications like HotSpot can be
difficult. The criticality results show that an error could be
dissipated to neighbors leading to small disparities but with
significant accumulated error in the affected elements. Thus,
to detect an error, the checking routine would need to be ex-
ecuted constantly, reducing performance. The system entropy
could be evaluated to detect a widespread error in stencil-like
applications, especially if the system is isolated and the entropy
need to be constant. However, for non-isolated systems, if
the growing or lowering of system entropy is well-behaved,
the entropy could be checked at regular time intervals to
detect disturbances caused by induced errors. The time interval
could be adjusted to better detect errors without affecting
performance too much.

●

● ●● ● ●● ●● ●●

●

●●

●

●

●

●●

●●●

●

●

●●●

●●●

●

●

●●

●●●

●

●

●●

●

●●

●●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●

●●●●●●●●●

●

●●●

●

●

●●

●

●●●●●

●●

●

●●●

●●●●

●

●

●●

●●●

●

●

●
●

●

●

●●

●

●●●

●●

●

●

25

50

75

100

0e+00 1e+05 2e+05 3e+05
Incorrect Elements

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Fig. 8: CLAMR Mean relative error and Incorrect Elements for
Xeon Phi.

Fig. 9: CLAMR Error Locality Map. The output result is
represented as a 2D matrix. Red dots are incorrect elements.

D. CLAMR
Fig. 8 shows the mean relative error and number of incor-

rect elements for CLAMR on Xeon Phi. We do not have the
results for K40 as CLAMR is a LANL’s proprietary workload
to be used in supercomputers like Trinity, which will be based
on Xeon Phis.

CLAMR shows a mean relative error between 25% and 50%
while incorrect elements are definitely high. When mapping
the incorrect elements to the 2D grid, most of the forms were
similar to the one presented in the Fig. 9. We can see that
a wave of incorrect elements was propagating confirming the
fault injection analysis performed in [19]. Incorrect elements
are, then, not isolated, affecting first the neighborhood and
propagating as a wave, increasing the number of incorrect
elements as the executions continue.

All the faulty elements of CLAMR have relative errors
greater than 2%. Square errors amount to 99% of spatial
locality as the errors propagate to all directions as depicted
in Fig. 9. CLAMR works with the shallow waters equations
considering momentum as well as mass. CLAMR errors may
change the total mass of the system and will not be recovered
as the execution continue, on the contrary, because of the
mass conservation principle, the error will keep affecting the
solution. Therefore, among all the codes studied in this work,
the error criticality of CLAMR was the most sensitive to
radiation-induced errors.

The sparse spatial location of incorrect elements with a

moderate to low relative error makes it hard to provide efficient
techniques for detecting errors. Similar to HotSpot, one of
the few ways that can be used to detect errors is to evaluate
the whole system taking advantage of the mass conservation
principle, where the summation of all the incorrect elements’
errors can lead to a detectable mass difference. This mass
check technique has already been implemented in CLAMR
and fault injection showed a fault coverage of 82% [4].
Furthermore, the load imbalance of the algorithm can provide
opportunities to include mass-consistency checking routines
that introduce little overhead to the overall execution time.

E. Discussion
The tested codes were selected as they stimulate specific

resources, and have peculiar control flow or arithmetic char-
acteristics. Thus, it is reasonable to correlate the particular
behaviors observed for Xeon Phi and K40 with the code
proprieties. Additionally, in some cases we can extend the
experimental criticality analysis to other codes that share the
same principles and data structures of the tested codes.

DGEMM is part of several applications and similar codes
are even used as the standard HPC performance benchmark.
Our analysis shows that K40 provides a lower error criticality
(i.e., smaller difference with the expected value and fewer
corrupted elements) for applications using DGEMM. We be-
lieve this is an intrinsic characteristic of GPUs, which have
shortened and faster pipelines compared to CPUs. As a result,
purely arithmetic operations, that are not based on control-flow
instructions, are likely to be executed in a faster and more
reliable way on a GPU.

Solvers using FDM like LavaMD will have a lower relative
error on Xeon Phi, in contrast to DGEMM. Transcendental
functions play a key role in FDMs performance and reliability.
In the case of LavaMD, the exponentiation operations can turn
small value variations into large differences. This is especially
critical for the K40, for which all the SDCs are significantly
different from the expected value. A hypothesis is that the
transcendental function unit in the K40 is more prone to
corruption. Its reliability should be improved in the future.
Also, LavaMD performs dot products between particles which
prevent the attenuation of transient errors with other correctly
calculated particles.

While the Xeon Phi seems more resilient than the K40
when executing LavaMD, it produced more incorrect elements,
leading to a more widespread spatial locality. To choose
the platform in which to execute a FDM algorithm, it is
fundamental to evaluate the trade-off between having more
incorrect elements with lower relative errors (so the Xeon Phi)
or the contrary (so the K40). Such a trade-off strictly depends
on how FDMs outputs are used.

Stencil applications have been proved to be the most
resilient ones. HotSpot showed that most of the errors have less
than 2% of relative error. K40 seems slightly more resilient
than Xeon Phi as the former shows less incorrect elements
than the latter. We believe this behavior to be common for
stencil applications that iteratively update the solution based
on the current state. For these applications a transient fault
could modify the current simulation state but, in the following
iterations, the error is smoothed and filtered.

Fluid dynamics like CLAMR are less reliable, especially
simulations that involve invariants such as mass or energy
conservation. The impact of errors in such algorithms only

increases with execution time as the invariant is now altered,
affecting neighbor elements in the following iterations.

Based on our experimental analysis we can compare the
reliability of some peculiarities of Xeon Phi and K40 archi-
tectures. Xeon Phi shows a tendency to have more incorrect
elements than K40. Xeon Phi has larger caches than K40, so
its data is not evicted as often. Hence, corrupted data, once
in the caches, will be used by more elements before eviction.
As a result, the same error spreads affecting several output
elements.

The comparison of results with different input sizes for
DGEMM and LavaMD highlights that the hardware scheduler
makes the FIT rate dependent on the number of instantiated
threads. On the contrary, the Xeon Phi operating system seems
less prone to be corrupted. It is worth noting that the hardware
scheduler may be more efficient, reducing the execution time
and, thus, the number of neutrons that hit the device during
computation. Other architectural decisions like long pipelines
or large caches that keep alive data for a long time during
computation modify both the code reliability and execution
time, enhancing performance but leaving data more exposed
to radiation strikes. Thus, the architectural design must tune
the performance gain obtained by such decisions with the
reliability issues incurred [35].

Finally, the spatial locality and magnitude of the errors
measured for the different applications and devices can help
users understand incorrect results generated from radiation-
induced errors, and guide the usage of detectors and replication
mechanisms [8].

VI. CONCLUSION AND FUTURE WORK

In this paper we have addressed the error criticality in HPC
systems. As radiation effects are a huge concern for today’s
HPC machines, it is fundamental to deeply understand the
impact of errors in the applications’ output.

We have selected four metrics to qualify and quantify
radiation-induced errors on two state-of-the-art accelerators
(Xeon Phi and K40) executing three representative benchmarks
and an application. The unprecedented amount of beam time
and experimental data available permits a deep and represen-
tative study of modern HPC accelerators reliability.

The selected metrics allow a deep understanding of
radiation-induced corruptions as well as a correlation between
observed error patterns and device architecture. Additionally,
as the selected codes are representative of broader algorithm
classes we can extend and generalize (under certain premises)
the performed analysis.

We show that K40 is clearly more resilient when do-
ing DGEMM (considering relative error and error locality).
LavaMD has smaller relative errors on Xeon Phi but errors
are spread (cubic). HotSpot, being an iterative stencil, has a
very small relative error but very spread errors (mostly square).
Finally, CLAMR differs from HotSpot with spread errors but
with large relative errors (wave of errors).

In the future we plan to perform fault injection on both the
K40 and Xeon Phi to detect the sources for the most critical
errors. This information is going to be used to apply selective
hardening to only those procedures, variables, or resources
whose corruption is likely to produce the observed critical
errors.

ACKNOWLEDGMENTS
This work was supported by the STIC-AmSud/CAPES

scientific cooperation program under the EnergySFE research
project grant 99999.007556/2015-02, EU H2020 Programme,
and MCTI/RNP-Brazil under the HPC4E Project, grant agree-
ment n° 689772. Tested K40 boards were donated thanks to
Steve Keckler, Timothy Tsai, and Siva Hari from NVIDIA.

REFERENCES
[1] “Log data,” https://github.com/UFRGS-CAROL/HPCA2017-log-data,

2016.
[2] “Why a chip that’s bad at math can help com-

puters tackle harder problems,” 2016. [Online]. Avail-
able: ”https://www.technologyreview.com/s/601263/why-a-chip-thats-
bad-at-math-can-help-computers-tackle-harder-problems/”

[3] K. Asanovic et al., “The Landscape of Parallel Computing
Research: A View from Berkeley,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

[4] B. Atkinson, N. Debardeleben, Q. Guan, R. Robey, and W. M. Jones,
“Fault injection experiments with the clamr hydrodynamics mini-app,”
in Software Reliability Engineering Workshops (ISSREW), 2014 IEEE
International Symposium on, Nov 2014, pp. 6–9.

[5] D. Bailey, Barsck, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, S. Fineberg, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga, “The NAS Parallel Benchmarks,” NASA Ames Research
Center, RNR Technical Report RNR-94-007, 1994. [Online]. Available:
http://hpc.sagepub.com/cgi/content/abstract/5/3/63

[6] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305–316, Sept 2005.

[7] ——, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305–316, Sept 2005.

[8] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,
Exploring Partial Replication to Improve Lightweight Silent Data
Corruption Detection for HPC Applications. Cham: Springer
International Publishing, 2016, pp. 419–430. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-43659-3 31

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[10] M. A. Breuer, “Multi-media applications and imprecise computation,”
in Digital System Design, 2005. Proceedings. 8th Euromicro Conference
on. IEEE, 2005, pp. 2–7.

[11] S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger,
“Comparison of error rates in combinational and sequential logic,”
Nuclear Science, IEEE Transactions on, vol. 44, no. 6, pp. 2209–2216,
1997.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on, Oct. 2009, pp. 44–54. [Online]. Available:
http://dx.doi.org/10.1109/IISWC.2009.5306797

[13] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, and G. L.
Lee, “Determinism and reproducibility in large-scale HPC systems,” in
Workshop on Determinism and Correctness in Parallel Programming
(WoDet), 2013.

[14] J. de la Puente, M. Ferrer, M. Hanzich, J. E. Castillo, and J. M. Cela,
“Mimetic seismic wave modeling including topography on deformed
staggered grids,” GEOPHYSICS, vol. 79, no. 3, pp. T125–T141, 2014.

[15] J. Dongarra, H. Meuer, and E. Strohmaier, “TOP500 Supercomputer
Sites: June 2016,” 2016. [Online]. Available: http://www.top500.org

[16] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, Nov 2004.

[17] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A methodology for evaluating the error resilience of GPGPU appli-
cations,” in Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, March 2014, pp. 221–230.

[18] L. A. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, S. Keckler, K. Pattabiraman, R. Rech, and M. S. Reorda,
“GPGPUs: How to Combine High Computational Power with High
Reliability,” in 2014 Design Automation and Test in Europe Conference
and Exhibition, Dresden, Germany, 2014.

[19] Q. Guan, N. DeBardeleben, B. Artkinson, R. Robey, and W. Jones, “To-
wards Building Resilient Scientific Applications: Resilience Analysis on
the Impact of Soft Error and Transient Error Tolerance with the CLAMR
Hydrodynamics Mini-App,” in Cluster Computing (CLUSTER), 2015
IEEE International Conference on, Sept 2015, pp. 176–179.

[20] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” Computers, IEEE Transactions on, vol. C-33, no. 6,
pp. 518–528, June 1984.

[21] “An Overview of Programming for Intel Xeon processors
and Intel Xeon Phi coprocessors,” Intel. [Online]. Avail-
able: http://download.intel.com/newsroom/kits/xeon/phi/pdfs/overview-
programming-intel-xeon-intel-xeon-phi-coprocessors.pdf

[22] “Intel Xeon Phi Coprocessor System Soft-
ware Developers Guide,” Intel. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/09/07/xeon-
phi-coprocessor-system-software-developers-guide.pdf

[23] JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” JEDEC
Standard, Tech. Rep. JESD89A, 2006.

[24] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[25] N. Mahatme, T. Jagannathan, L. Massengill, B. Bhuva, S.-J. Wen, and
R. Wong, “Comparison of Combinational and Sequential Error Rates
for a Deep Submicron Process,” Nuclear Science, IEEE Transactions
on, vol. 58, no. 6, pp. 2719–2725, 2011.

[26] S. S. Mukherjee et al., “A systematic methodology to compute the ar-
chitectural vulnerability factors for a high-performance microprocessor,”
in Proceedings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 2003.

[27] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5dd
blocking optimization for stencil computations on modern cpus and
gpus,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–13. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.2

[28] J. Noh, V. Correas, S. Lee, J. Jeon, I. Nofal, J. Cerba, H. Belhaddad,
D. Alexandrescu, Y. Lee, and S. Kwon, “Study of neutron soft error
rate (ser) sensitivity: Investigation of upset mechanisms by comparative
simulation of finfet and planar mosfet srams,” Nuclear Science, IEEE
Transactions on, vol. 62, no. 4, pp. 1642–1649, Aug 2015.

[29] “NVIDIAs Next Generation CUDA Compute Architecture: Kepler
GK110,” NVIDIA. [Online]. Available: http://www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[30] “CUDA C Programming Guide,” http://docs.nvidia.com/cuda/cuda-c-
programming-guide/, NVIDIA, 2015.

[31] “Kepler Tuning Guide :: CUDA Toolkit Documentation,” http://docs.
nvidia.com/cuda/kepler-tuning-guide/, NVIDIA, 2015.

[32] H. Quinn, W. H. Robinson, P. Rech, M. Aguirre, A. Barnard, M. Des-
ogus, L. Entrena, M. Garcia-Valderas, S. M. Guertin, D. Kaeli, F. L.
Kastensmidt, B. T. Kiddie, A. Sanchez-Clemente, M. S. Reorda, L. Ster-
pone, and M. Wirthlin, “Using benchmarks for radiation testing of
microprocessors and fpgas,” IEEE Transactions on Nuclear Science,
vol. 62, no. 6, pp. 2547–2554, Dec 2015.

[33] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An Efficient and Ex-
perimentally Tuned Software-Based Hardening Strategy for Matrix
Multiplication on GPUs,” Nuclear Science, IEEE Transactions on,
vol. 60, no. 4, pp. 2797–2804, 2013.

[34] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of GPUs
Parallelism Management on Safety-Critical and HPC Applications Reli-
ability,” in IEEE International Conference on Dependable Systems and
Networks (DSN 2014), Atlanta, USA, 2014.

[35] G. Reis, J. Chang, N. Vachharajani, and S. Mukherjee, “Design and
evaluation of hybrid fault-detection systems,” in Proceedings of the
2005 International Symposium on Computer Architecture, ISCA’05.
IEEE Press, 2005, pp. 148–159.

[36] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” International Journal of High Perfor-
mance Computing Applications, pp. 1–45, 2014.

[37] V. Sridharan and D. R. Kaeli, “The effect of input data on program
vulnerability,” in Proceedings of the 2009 Workshop on Silicon Errors
in Logic and System Effects, ser. SELSE ’09, 2009.

[38] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R.
de Supinski, J. Sexton, and J. Gunnels, “100+ tflop solidification sim-
ulations on bluegene/l,” in Proceedings of IEEE/ACM Supercomputing,
vol. 5, 2005.

[39] L. G. Szafaryn, T. Gamblin, B. R. De Supinski, and K. Skadron, “Expe-
riences with achieving portability across heterogeneous architectures,”
Proceedings of WOLFHPC, in Conjunction with ICS, Tucson, 2011.

[40] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulner-
ability on GPGPU microarchitecture,” in Workload Characterization
(IISWC), 2011 IEEE International Symposium on, Nov 2011, pp. 226–
235.

[41] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. Debardeleben, P. Navaux, L. Carro, and A. B.
Bland, “Understanding GPU Errors on Large-scale HPC Systems and
the Implications for System Design and Operation,” in Proceedings of

21st IEEE Symp. on High Performance Computer Architecture (HPCA).
ACM, 2015.

[42] M. Violante, L. Sterpone, A. Manuzzato, S. Gerardin, P. Rech,
M. Bagatin, A. Paccagnella, C. Andreani, G. Gorini, A. Pietropaolo,
G. Cardarilli, S. Pontarelli, and C. Frost, “A New Hardware/Software
Platform and a New 1/E Neutron Source for Soft Error Studies: Testing
FPGAs at the ISIS Facility,” Nuclear Science, IEEE Transactions on,
vol. 54, no. 4, pp. 1184–1189, 2007.

[43] M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and
D. Kaeli, “Calculating architectural vulnerability factors for spatial
multi-bit transient faults,” in Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on, Dec 2014, pp. 293–
305.

[44] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Dover
Publications, Incorporated, 1994.

[45] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[46] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” in
ACM SIGARCH Computer Architecture News, vol. 23, no. 2. ACM,
1995, pp. 24–36.

[47] H.-J. Wunderlich, C. Braun, and S. Halder, “Efficacy and efficiency of
algorithm-based fault-tolerance on gpus,” in On-Line Testing Symposium
(IOLTS), 2013 IEEE 19th International, July 2013, pp. 240–243.

