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Abstract—In this work, we propose FUSE, a novel GPU
cache system that integrates spin-transfer torque magnetic
random-access memory (STT-MRAM) into the on-chip L1D
cache. FUSE can minimize the number of outgoing memory
accesses over the interconnection network of GPU’s multipro-
cessors, which in turn can considerably improve the level of
massive computing parallelism in GPUs. Specifically, FUSE
predicts a read-level of GPU memory accesses by extracting
GPU runtime information and places write-once-read-multiple
(WORM) data blocks into the STT-MRAM, while accommodat-
ing write-multiple data blocks over a small portion of SRAM in
the L1D cache. To further reduce the off-chip memory accesses,
FUSE also allows WORM data blocks to be allocated anywhere
in the STT-MRAM by approximating the associativity with the
limited number of tag comparators and I/O peripherals. Our
evaluation results show that, in comparison to a traditional
GPU cache, our proposed heterogeneous cache reduces the
number of outgoing memory references by 32% across the
interconnection network, thereby improving the overall per-
formance by 217% and reducing energy cost by 53%.

Keywords-GPU; L1D cache; STT-MRAM; NVM; heteroge-
neous cache system; associativity approximation; read-level
predictor;

I. INTRODUCTION

Modern GPUs can achieve an outstanding performance

with low power, which makes them very attractive for many

non-graphics applications such as big-data analytics and

scientific programs [1], [2], [3], [4], in addition to graphics

applications.

To properly utilize the massive computational parallelism,

most GPUs employ multiple streaming multiprocessors

(SMs) with large private register files. These large register

files remove all the overheads imposed by task switches by

accommodating multiple contexts along with many threads.

However, owing to a large number of task contexts that each

SM needs to keep track of, the private register files occupy

a significant on-chip area. For example, Tesla P100, one of

the recent NVIDIA GPUs [5], employs a 256KB register

file per SM, which is 5× larger than the level one data

(L1D) cache. In fact, these register files occupy 62% of the

total private memory area. The register files and L1D cache

This paper is accepted by and will be published at 25th IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA
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Figure 1: Overhead analysis for off-chip memory.

in many GPUs are integrated with the SMs on the same

chip for active threads to hold their contexts and data. On

the other hand, the SMs interface with off-chip memory to

handle large I/O data for data-intensive applications. The

off-chip DRAM is shared (as a global memory) by all

the SMs through a high-speed interconnection network [6].

Even though this off-chip memory architecture allows GPU

kernels to process their data without a host-side software

intervention, a reference to the off-chip memory requires

going through all the hardware modules in the outgoing

datapath of the GPU.

Many large-scale GPU applications generate various ir-

regular memory accesses, which need a relatively shorter

response time. However, the DRAM employed by modern

GPUs is designed for bringing out data with higher band-

width using a wide I/O interface rather than shorter latency

[7]. The long datapath between an SM and the DRAM also

contributes to the latency of the off-chip memory accesses.

Therefore, the off-chip access latency is much longer than

the on-chip access latency. To be precise, we performed a

simulation-based study, and the impact of the off-chip mem-

ory references on execution latency and energy consumption

are shown in Figure 1. In this evaluation, we execute a

diverse set of data-processing benchmarks [8], [9], [10], [11]

using a popular GPU model [6]. The latency consumed by

outgoing memory requests, on average, accounts for 75%

of the total GPU device execution time (cf. Figure 1a).

Similarly, the I/O service for off-chip data accesses takes

up 71% of the total GPU energy (cf. Figure 1b). Even

though there are many prior studies designed to optimize

the on-chip memory accesses [12], [13] or parallelize kernel

executions, one can observe from this analysis that such

optimizations can only improve the overall performance of

modern GPUs by at most 33%. Consequently, the long

http://arxiv.org/abs/1903.01776v2


latency and high energy incurred when accessing off-chip

memory can be bottlenecks to deriving the full benefits of

massive parallelism in GPUs.

Obviously, to maximize the performance of multi-

threaded kernel executions, it is necessary for SMs to

minimize the number of outgoing memory accesses on the

GPU datapath. One simple solution can be to employ a larger

L1D cache to accommodate the outgoing memory requests,

thereby placing as many of them as possible close to the

SMs. However, this simplistic solution is practically infeasi-

ble to achieve, since just enlarging L1D cache can severely

reduce the on-chip space, which is already consumed by

the GPU cores and register files. This in turn can reduce

the maximum number of threads that could be executed in

parallel, and can eventually deteriorate the throughput of

GPU.

Instead, the emerging concept of non-volatile memory

(NVM) can be an option to overcome the on-chip area

constraints and increase the storage capacity of L1D cache.

Specifically, spin-transfer torque magnetic RAM (STT-

MRAM) has great potential to replace SRAM on-chip

modules. Thanks to its low-bit cost and small cell size,

STT-MRAM can expand L1D cache capacity by around 4X

(under the same area budget) [14].

However, there are two main challenges to realizing this

solution. First, constructing an L1D cache with pure STT-

MRAM can considerably degrade the overall performance,

irrespective of its superiority in terms of memory density. In

fact, a write on STT-MRAM requires 5× longer operational

time and consumes 3× higher power than an SRAM write,

owing to the material-level characteristics of STT-MRAM

[15]. Second, even with 4X bigger storage capacity that STT-

MRAM delivers, the on-chip area of GPU is still insufficient

to employ an ideal L1D cache, which could completely

eliminate cache thrashing [16].

In this work, we propose FUSE, a novel heterogeneous

GPU cache that integrates STT-MRAM into on-chip mem-

ory. The proposed FUSE can improve the overall GPU per-

formance by significantly reducing the overheads imposed

by off-chip memory accesses, while efficiently mitigating

the write penalty of STT-MRAM. Our FUSE keeps a small

portion of SRAM in the L1D cache to accommodate write-

multiple data blocks, whereas it locates write-once-read-

multiple (WORM) data blocks in the STT-MRAM that re-

sides in its on-chip cache. FUSE can intelligently place each

data block on either SRAM or STT-MRAM by employing a

simple but effective online predictor that speculates a read-

level for incoming memory references. We also introduce an

associativity approximation logic that allocates WORM data

blocks to any location in the STT-MRAM, while satisfying

the tight on-chip area budget. Our contributions in this work

can be summarized as follows:

• Efficient heterogeneous GPU cache. Our design exposes

SRAM banks and STT-MRAM banks as one large on-chip
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Figure 2: GPU baseline architecture.

storage pool to the GPU cores by enabling two memory

modules fully operate in parallel. To this end, we apply

non-blocking mechanism that internally employs a simple

swap buffer and a tag queue. The swap buffer frees SRAM

from a hindrance to buffer the data that should be evicted

to STT-MRAM, while the tag queue allows STT-MRAM

to serve memory requests without any stall. Overall, FUSE

can improve performance by 217%, on average, and reduce

the energy by 53%, in comparison to an SRAM-based L1D

cache under diverse GPU application executions.

• Designing a smart data placement strategy. We observed

that a majority of data blocks (around 90%) experience

WORM access patterns, which can render most bypassing

approaches [13], [17], [18] in GPU impractical. Motivated

by this, we design a read-level predictor that detects WORM

data blocks by being aware of the execution behavior of

kernels at runtime. We dynamically schedule the placement

of data blocks associated with WORM into STT-MRAM,

while forwarding the heavy writes to SRAM. By accurately

tracking the history of GPU memory accesses, our data

placement strategy can improve the GPU performance by

36%, as compared to a conventional heterogeneous L1D

cache.

• Approximated NVM cache. We propose an associativity

approximation that fully utilizes STT-MRAM, while match-

ing the area budget of a conventional set-associative cache.

Our approximation logic places cache blocks in anywhere

within STT-MRAM similar to a fully-associative cache, and

serves the incoming requests as fast as a set associative

cache would do by leveraging a counting bloom filter

for rapid tag searching. The evaluation results reveal that

this approximation technique can reduce the L1D cache

misses by 23%, on average, and improve the overall system

performance by 172%, compared to a set-associative NVM

cache.

II. BACKGROUND

A. GPU Architecture

Figure 2 illustrates a typical GPU architecture that em-

ploys a dozen of SMs (i.e., simple in-order shader cores).

Each SM consists of a compute unit and private on-chip

memories. The compute unit contains 32 CUDA cores,

which are organized as an in-order execution pipeline to

process a group of 32 independent threads, referred to as a

warp, per GPU clock cycle [19]. To keep the pipeline busy,



GPU schedules hundreds of threads within each SM and

supports seamless context switches at the hardware level to

eliminate the context switch penalty. On the other hand, the

small private memories within each SM are used to cache

instructions and data for fast response, while all input data

are placed into a large shared off-chip memory (DRAM).

The off-chip memory is connected to the SMs as a shared

resource through an interconnection network and the data

to be transferred are buffered in shared L2 caches [20].

To access global data, the SMs need to go through all

the components that exist in the data path to the off-chip

memory behind the network.

1) Private On-Chip Memory Components:

Registers. Unlike CPUs that have a few registers, GPUs

employ a large number of register files per SM to avoid the

potential context switch overheads (without OS support). A

GPU launches as many warps as possible in an SM, based

on the availability of registers, to take advantage of massive

parallelism without unnecessary register spilling. Since all

the execution contexts for thread groups, such as local

variables, always reside in the register files, the launched

warps are never “switched out”. Even though the private

register files allow the GPU to avoid all the procedures

related to saving and restoring registers to/from memory,

the registers occupy a significant portion of the on-chip area

(e.g., 62% of the private memory area in PASCAL GPU [5])

to maintain a large number of contexts.

Shared memory. The shared memory (also known as the

scratchpad memory) is manually manipulated by program-

mers to load/store temporary data from/to registers for inter-

warp communication. While the size of the shared memory

can be reconfigured by reducing the size of the L1D cache,

it should be determined at compile time. In addition, since

all the shared memory references are statically determined

and pinned, the off-chip memory traffic does not directly

depend on its storage capacity or dynamic memory reference

characteristics, but on the dynamic behaviors of applications.

L1 data cache. The L1D cache in GPU is, in practice,

organized as a non-blocking SRAM-based cache [21]. It is

coupled with a parallel lower-level memory system by lever-

aging the miss status holding register (MSHR), which allows

multiple misses to be merged with a primary miss (if it does

not get issued to the next level of memory). While the L1D

cache is designed to enable fast data access response and

hide long off-chip memory access latency, the performance

of a given GPU can significantly vary based on its storage

capacity and cache organization. Specifically, modern GPUs

execute thousands of threads, but their L1D caches are too

small to accommodate all the data (i.e., up to 48KB per SM)

[19]. This, in turn, leads to intensive competition among

all active warps to grab cache lines and introduces cache

thrashing, which replaces many data blocks before they are

actually re-referred. To get a better insight, we evaluated

the performance of seven representative memory-intensive
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Figure 3: Performance for various L1D caches.
workloads [8], [9] by using a popular GPU simulator [6],

and the collected results are plotted in Figure 3. In this

evaluation, the “Vanilla GPU” employs a small-sized L1D

cache similar to that of GTX480 GPU [22], whereas the

“Oracle GPU” employs an ideal L1D cache that has enough

capacity to avoid cache thrashing. The Oracle GPU reduces

the L1D cache miss rate by 58%, which in turn improves

the overall performance by 6×, compared to Vanilla GPU.

2) Shared L2 Cache and DRAM: To support the data

parallelism enabled by SMs, a GPU employs a large off-chip

memory (i.e., DRAM) and L2 caches through a high-speed

interconnection network. While the private on-chip memory

modules are directly connected, the off-chip DRAM and

L2 caches are connected to SM cores via an interconnect,

which contributes to a significant round trip latency [13]. In

addition, a memory reference, which misses in the private

on-chip memory, experiences the latency of the L2 cache,

which is 60 times longer than that of the L1D cache,

as all the data are protected by ECC and its banks are

shared by all SMs [6]. If data does not exist in the L2

cache, the request is served by a global memory (DRAM).

GPU DRAM is connected to the L2 cache through multiple

memory channels. GPU DRAM also drastically increases

the off-chip memory access latency, owing to i) its wide I/O

interface that operates on a low frequency and ii) compli-

cated I/O procedures to service a memory reference. The

DRAM of a GPU employs a memory interface, that is 4X

wider than a conventional DRAM, thereby enabling higher

bandwidth with lower power and heat dispersal requirement.

Even though this design concept can make GPU DRAM

a high-performance module, the latency of GPU DRAM

is slower than the conventional DRAM due to its com-

plex internal timing. Further, DRAM has memory-specific

operation delays such as precharges, which make DRAM

much slower than on-chip storage. Modern DRAMs also

queue all incoming references into multiple request queues

for memory coalescing and reordering [23]. Note that, as

shown in Figure 1, the off-chip memory references account

for 75% of the total execution time and also consume 71%

of the total computing energy.

B. STT-MRAM

Figures 4a and 4b show the basic cell structures for SRAM

and STT-MRAM, respectively. An SRAM cell comprises six

transistors that hold 1-bit data in latch-like structures (cross-

coupled inverter), which exhibits excellent performance in
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Figure 4: (a) SRAM memory cell, (b) STT-MRAM

memory cell and (c) MTJ structure.

terms of both latency and dynamic energy for both read

and write operations. However, the six-transistor structure

requires 140F 2 space [24] and consumes a high static power

due to sub-threshold and gate leakage currents. On the other

hand, an STT-MRAM cell consists of a magnetic tunnel

junction (MTJ) and a single access transistor. This compact

one-transistor-one-MTJ design leads to an STT-MRAM cell

area of 36F
2 [25], [26], [27], which makes STT-MRAM

about 4X denser compared to SRAM.

Architecture. As shown in Figure 4c, an MTJ consists of

two ferro-magnetic layers, a free layer and a fixed layer,

which are isolated by oxide. The resistance of MTJ varies

on the basis of the polarity of the free layer and the fixed

layer. Specifically, if the two layers have the same polarity

(parallel), MTJ exhibits low resistance, and it is typically

considered as logic “0”. Otherwise, if the two layers have

the opposite polarity (anti-parallel), MTJ has high resistance,

and it is denoted as logic “1”. STT-MRAM writes data by

using polarized electrons to directly torque the magnetic

state of the free layer. As its writing process needs to

physically rotate the MTJ free layer, an STT-MRAM write

requires a long operation time and consumes a large amount

of energy. On the other hand, the read operation is carried out

by measuring the resistance of the cell. For this reason, STT-

MRAM exhibits excellent read latency and energy, which

can be comparable to SRAM. However, the long latency

and high energy consumption on writes make it difficult for

STT-MRAM to directly replace SRAM-based on-chip cache.

Challenges. Even though STT-MRAM can increase the

storage capacity of the L1D cache by 4X, it does not

completely address a cache thrashing issue. To be precise,

we also simulate a GPU that employs STT-MRAM (“STT-

MRAM GPU”) and compare its cache miss rate with the

“Vanilla GPU” and the “Oracle GPU”, which employ a

popular L1D cache configuration and ideal configuration,

respectively. As shown in Figure 3a, the STT-MRAM GPU

suffers from cache misses more than 39%, on average,

compared to the Oracle GPU. This is because irregular

memory accesses originating from multiple GPU threads

interfere with one another, which in turn leads to cache

thrashing. In particular, STT-MRAM GPU reduces the L1D

cache miss rate by less than 10%, as compared to the Vanilla

GPU in cases of ATAX, BICG, and GESUMMV. The reason

why the STT-MRAM GPU has poor performance for these

workloads is because of the write penalty exhibited by STT-

MRAM as well as the memory access irregularity.
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Figure 5: High-level view of the proposed FUSE.

III. FUSING STT-MRAM WITH L1D CACHE

A. Heterogeneous Storage

Overall architecture. Figure 5 illustrates a high-level view

of our FUSE. SRAM and STT-MRAM are organized as

separate cache banks, each employing their own individual

data arrays and tag arrays, but operate as one large on-chip

L1D cache. GPU cores in an SM can communicate with the

on-chip cache controller over a 128B wide data bus, and this

controller connects SRAM and STT-MRAM through a 64B

wide data bus and independent 38-bit control lines. Since

each thread (in a warp) can access a 4B data, executing

a warp requires bringing in/out 128B data over a 700Mhz

external bus. The 128B requests from the external interface

can be coalesced and delivered by the 64B wide 1.4GHz

internal data bus. We also employ 38-bit cache control lines,

which are mainly used for delivering memory addresses

(32 bits) and commands such as read and write signals (2

bits), byte-enable signals (3 bits), and acknowledge (1 bit)

of our hybrid storage. All the misses from the heterogeneous

cache are issued to the underlying MSHR that handles non-

blocking memory operations and are delivered to the off-chip

memory over an interconnection network.

Read-level analysis. The simplest way to utilize the memory

heterogeneity is to place all incoming data into SRAM

first and leverage STT-MRAM as a victim buffer of the

SRAM [28]. However, we observe that this simplisitic

dynamic data placement strategy introduces excessive cache

evictions from SRAM to STT-MRAM, due to the limited

associativity and small storage capacity of the former. This

in turn degrades the overall system performance by 63%, on

average, compared to the Oracle GPU. To address this, we

analyzed the data block access patterns across diverse data-

processing benchmarks [8], [9], [10], [11], and the results are

shown in Figure 6. For this evaluation, we traced all memory

references, and based on read-level for each data block

address, we categorized them into four types of requests: i)

write-multiple (WM), ii) read-intensive, iii) write-once-read-

multiple (WORM), and iv) write-once-read-once (WORO).

WM indicates that the block has multiple updates, which

may introduce many write hits on the cache. Read-intensive

means the block is referred to by a few writes but by

many reads. WORM is a purely read-oriented block, which

refers to a block that only has a write and is never touched

again over the entire execution of an application. Since a
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Figure 6: Read-level analysis.

WORO data block is referred once during the execution,

it is not necessary to put it in on-chip cache. There are

three observations behind this analysis. First, since most data

blocks are classified as WORM (80% of total data blocks,

on average), if there is a cache large enough to hold WORM

data blocks, it can cut the off-chip memory accesses signifi-

cantly. Second, there are several workloads (e.g., PVC, PVR,

SS) that also include many WM data blocks. Due to the long

STT-MRAM write latency, accommodating WM data blocks

in STT-MRAM can deteriorate system performance. Third,

as read-intensive data blocks have a few writes, SRAM is the

best candidate to accommodate the data blocks. If SRAM

size is not sufficient to hold the read-intensive data blocks,

placing the data blocks in STT-MRAM can increase read

cache hits and reduce off-chip memory accesses. Note that,

if we bypass WORM accesses, it will introduce multiple

writes for cache fills in a near future, which can also bear

the brunt of the write penalty imposed by STT-MRAM.

Heterogeneity management. Motivated by the aforemen-

tioned observations, our FUSE employs a cache controller

that speculates the type of memory access based on GPU

runtime information and can treat it accordingly. The cache

controller refers to a program counter (PC) indexed table

(inspired by [29], [30], [31]), which records data access

history of different PCs, to make a decision for the read-

level of incoming memory references. Even though this

is a simple history-based prediction, the speculation can

be very effective in GPU, considering that i) each SM

executes multiple thread groups that share all the same

kernel instances, and ii) their memory references requested

by the same PC generate access patterns similar to each

other. Based on the prediction result, our cache controller

places the corresponding cache line either at SRAM or STT-

MRAM or evicts data to either STT-MRAM or L2 cache.

Thus, only single data copy exists in either SRAM or STT-

MRAM, which guarantees data consistency in hybrid L1D

cache. Since the cache controller may result in a wrong

prediction, it is possible to place WORM data into SRAM,

or to allocate WM data into STT-MRAM. In the former

case, the cache controller migrates data from SRAM to

STT-MRAM, which introduces a write and a read for STT-

MRAM and SRAM, respectively. If the latter is a wrong

prediction, it migrates data from STT-MRAM to SRAM

right away and invalidates data in STT-MRAM, before

SRAM serves the requests. The misprediction introduces ex-

tra cache operations, but the overall performance should be

much better than pulling/pushing the data from/to the GPU

DRAM. Our read-level predictor also exhibits a satisfactory

prediction accuracy to reduce such overhead.
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Figure 7: Performance for various L1D caches.

Migrating data from SRAM to STT-MRAM (on an in-

ternal cache replacement) can stall the instruction pipeline

of the SM, due to long write latency of STT-MRAM. To

avoid instruction stalls, we introduce a swap buffer, crossing

different bank domain boundaries, which consists of multiple

128-byte data registers shared by both SRAM and STT-

MRAM banks. The details of swap buffer will be discussed

in Section IV-A.

B. Associativity Approximation

The theoretical feature size limit of STT-MRAM (around

36F 2) makes it impossible for FUSE to accommodate all

WORM data blocks (including read-intensive) and elim-

inate GPU cache thrashing. Thus, one possible solution

to minimize the number of outgoing memory requests is

to place data into any entry of on-chip cache blocks like

a fully-associative cache. However, the main hurdles that

a fully-associative cache in GPU computing faces are its

high hardware-level complexity and the operational costs

of checking all tags in parallel. For example, 16KB fully-

associative cache takes up 30.6 × more chip area and

consumes 28.3 times more power than 4-way set associative

cache [32]. The main reason why the fully-associative cache

occupies most on-chip area and consumes higher energy is

the tag search: the fully-associative cache needs as many

comparators (that work in parallel) as its cache lines.

Our FUSE employs an associativity approximation logic

to secure more WORM (and read-intensive) data by putting

them in anywhere in STT-MRAM, while satisfying the tight

on-chip area budget. Figure 7 shows details of the proposed

associativity approximation logic. Generally speaking, the

approximation logic serializes the tag comparison to some

extent and uses a limited number of parallel comparators

with polling logic – in this work, there are four comparators.

In each cycle, an index is inserted into the tag array decoder

by the polling logic, and the tags of the same index are

sensed out to compare them with the tag of incoming

request. To avoid the long latency and energy overheads

imposed by the serialized operations, the approximation

logic has multiple Counting Bloom Filters (CBFs) in front

of the polling logic. It partitions the whole tag array as

multiple data sets, each being mapped to a specific CBF,

and examines whether target data resides in a data set by

testing the corresponding CBF.

While CBFs can effectively reduce tag search iterations

by narrowing down search regions from the whole tag array
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Figure 8: Bus arbitration for data and MSHR.
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Figure 9: Decision tree of the arbitrator.

to a few tag entries, the wrong results of CBFs can introduce

multiple tag search iterations. In the worst case, the tag

polling circuit generates all tag array indices to find out

the target tag set. By carefully tuning the configurations of

the approximation logic, we observe that tag search with

the assistance of the approximation logic takes only 1 or

2 cycles across all the GPU workloads that we tested.

Specifically, we compare the average performance (i.e., IPC)

exhibited by our associativity approximation logic against

that on a fully-associative cache. As shown in Figure 7b, the

performance difference between the two is under 2% across

all the benchmarks we tested. This is because, even though

the tag search latency of approximation logic sometimes is

longer than that of the fully-associative cache, the tag search

does not stall the instruction execution pipeline by buffering

the requests in tag queue. The design of tag queue will be

explained shortly.

IV. IMPLEMENTATION DETAILS

A. Arbitration Logic

Basic control. Figures 8 and 9 illustrate the control con-

nection and decision tree of the FUSE arbitration logic,

respectively. The main role of the arbitrator is to establish an

appropriate datapath for a memory service by considering

the status of each memory module and the decision tree.

Thus, it has a set of status registers, each representing the

result of SRAM, STT-MRAM, and associativity approxi-

mation logic. A status register can indicate either a hit,

a miss, or a busy state. If a hit is observed in SRAM,

the arbitrator terminates the tag search performed at STT-

MRAM side and assigns the ownership of internal data bus

to SRAM, so that the memory reference can be immediately

serviced. If the hit is on STT-MRAM, the arbitrator checks

the result of prediction and services the request from STT-

MRAM. In the case of WM, the arbitrator migrates data

from STT-MRAM to SRAM. In cases where a cache line

is evicted from SRAM, the arbitrator checks the read-level

predictor and evicts the cache line to L2 cache, if there is a

WORO block. Otherwise, the data is evicted to STT-MRAM

through the swap buffer and tag queue, as will be explained

shortly. On the other hand, if a miss is observed, the cache

controller needs to allocate a block (i.e., cache placement)
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Figure 10: Architecture for non-blocking cache.

by referring the result of prediction. In cases where a cache

placement is required, it checks the read-level predictor and

evicts the cache line to proper places. In addition, as WORM

data blocks are placed when a cache miss is observed, the

arbitrator needs to control the destination of its cache fill

response. To this end, the arbitrator manipulates the miss

status hold register (MSHR) before forwarding the memory

reference to L2 cache. Specifically, as shown in Figure 8a, a

classic MSHR table [33] contains a “destination bits” field,

which indicates the destination address of the GPU module

(e.g., instruction cache, data cache, or register files). We

extend this field to identify the different cache lines that

belong to SRAM or STT-RAM by specifying internal cache

bank IDs.

It is to be noted that the execution of arbitration logic

can harmonize with the procedure of cache access in a

lockstep. In addition, our RTL synthesis experiment reveals

the arbitration logic costs less than 1 ns, which is shorter

than the single clock cycle of the L1D cache. Considering

that the latency of arbitration logic is much shorter than that

of cache access, we believe that our arbitration logic is not

on the critical path and does not hurt the throughput of the

L1D cache.

Tag queue. STT-MRAM latency can vary based on the

results of tag search and write penalty. This, in turn, may

stall the instruction pipeline of SM to a certain extent. To

make STT-MRAM a non-blocking module, we employ a

tag queue, which can contain a command type, tag and

index for multiple memory references (up to 16). This tag

queue can improve bank-level parallelism within our hybrid

storage by managing the memory requests that wait for a

STT-MRAM service. Even though STT-MRAM is designed

towards accommodating WORM data blocks, in cases where

we have a write update for the data on STT-MRAM (due to

a misprediction), our cache controller flushes the tag queue

(if there is a waiting request) and handles the write. This

is because the tag queue can contain only meta-information

for the request, whereas a write is associated with 128 bytes

data in GPUs. We observed that this flush situation exists

for only 7% of the total memory requests across all the

workloads tested.

Swap buffer. We introduce a swap buffer to connect dif-

ferent bank domain boundaries and hide the write penalty

in cases where there is a cache line eviction from SRAM.

The swap buffer employs a few 128-byte data registers (up

to 3 in this design), and each can buffer write data during

STT-MRAM operations. When the cache controller evicts a

line from SRAM, the data is immediately available from the
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Figure 11: Read-level predictor.

swap buffer, but this approach requires snooping the buffer

for coherence management. Wu et al. [34] proposed a non-

blocking swap buffer solution by adding extra comparators,

data port, and data path to the swap buffer. Unfortunately,

this solution does not fit well with our GPU L1D cache

design due to high space cost. Instead, we address the

coherence issue of non-blocking swap buffer by leveraging

the aforementioned tag queue. As shown in Figure 10, when

a data block is evicted from SRAM to STT-MRAM, the

data block is directly migrated to the swap buffer. In the

meantime, our cache controller rephrases the tag bits of the

data block and index bits as a memory request and pushes

it into the tag queue. Unlike a write on WORM update (i.e.,

wrong prediction), the target data exists in the swap buffer,

which does not require flushing the tag queue. We mark this

command with “F” in the tag queue, indicating a migration

operation from swap buffer to STT-MRAM bank. Since

the tag queue is managed as FIFO for only read and “F”

operations, matching a command and the corresponding data

between the tag queue and swap buffer is straightforward.

Therefore, FUSE can simply handle cache coherence in the

heterogeneous storage without snooping.

B. Read-Level Prediction

Our read-level predictor is aware of GPU memory access

patterns by leveraging a PC-based predictor, which is similar

to the one proposed in [29], [30], [31]. Our prediction

logic includes a memory request sampler and the predic-

tion history table. Figure 11a shows the detailed structure

information for our predictor. The sampler consists of four

sets, each containing eight entries, and operates like a 8-

way set associative cache that employs LRU replacement

policy. Each entry of the sampler stores information of

the sampled memory request, including 1 valid bit (“V”),

1 used bit (“U”), 3 LRU control bits (“RP’), 15 partial

memory address bits (“Tag”), and 9 partial PC address bits

(“Signature”). In GPUs, warps from a given kernel are likely

to execute a same set of instructions. Motivated by this, the

sampler examines the memory requests generated from four

representative warps (out of 48 warps) and places them into

different sets in the sampler based on their warp number.

The incoming requests should be compared with the “Tag”

bits in the sampler. If there is a miss, the new request is filled

into the sampler entry and its “U” is reset to 0. Otherwise,

a read/write hit in the entry sets “U” to 1.

The prediction history table is updated based on the result

of sampler (e.g., hit or miss) and is referred by our arbitration
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Figure 12: (a-c) Baseline counting bloom filter opera-

tions, (d) NVM-based CBF structure.

logic to make a decision on read-level. Specifically, the his-

tory table is composed of an SRAM array that includes 512

entries indexed by “Signature”. The table entry maintains a

1-bit R/W status and 4-bit counter. If there is a hit observed

by the sampler, the counter of the history table referred

by the corresponding “Signature” decreases. In case of a

data eviction at the sampler, if “U” of the sampler is 0, the

corresponding counter increases. Thus, if a counter is greater

than a threshold (unusedth), the corresponding cache line

is considered by arbitration logic as WORO. In this work,

we observed the optimal unusedth is fourteen across all the

workloads tested. In contrast, if the counter is less than 1,

the corresponding cache line is classified as either WORM

or WM, based on whether the status bit is ‘R’ or ‘W’. At

the initial phase, the counter and status bit of a target entry

are set to eight and ‘R’, respectively. If the counter is in a

range between 2 and unusedth - 1, our arbitrator regards

the target cache line as neutral, which covers read-intensive

block (cf. Figure 6).

C. NVM-based Counting Bloom Filter

Baseline bloom filter. A counting bloom filter (CBF) is a

space-efficient data structure, that can be used to test whether

an element is a member of a specific set [35]. Figure 12

shows the CBF logic structure, which consists of multiple

hash functions and a 1D counter array. The target data for a

test is converted to several keys by hashing functions. These

keys are then used as an address offset to access the counter

array. If data is inserted in a data set, hash functions generate

keys from the data (cf. Figure 12a); these keys are used

for locating specific counters in the counter array, and it

then increments the counters by 1. All these procedures are

referred to as increment. In contrast, in cases where data

is evicted from the data set (cf. Figure 12b), the counters

corresponding to its keys decrement by 1, referred to as

decrement. Figure 12c shows how to examine if data exists

in the data set. In this test, if one of the counters contains

value ‘0’, it means that data does not exist in its data set,

and is called “negative”. Otherwise, it probably exists in the

data set, which is referred to as “positive”. If the values in

the checked counters are modified by other stored data, this



General Configuration L1-SRAM By-NVM Hybrid Base-FUSE FA-FUSE Dy-FUSE

SMs/Request Q./swap buffer entries 15/16/3 SRAM/STT-MRAM size (KB) 32/0 0/128 16/64 16/64 16/64 16/64

CBF #/hash function # 128/3 SRAM/STT-MRAM leakage Power (mW) 58/0 0/2.8 36/2.6 36/2.6 36/2.4 36/2.4

Threads/Warp, Warps/SM, CTAs/SM 32, 48, 8 SRAM Set/Associativity 64/4 0/0 64/2 64/2 64/2 64/2

L1 SRAM/STT-MRAM latency 1/1 (R), 1/5-cycle (W) SRAM Sense Amplifier/Comparator 4/4 0/0 2/2 2/2 2/2 2/2

L2 cache size/sets/assoc./latency 786KB/64/8/1-cycle SRAM Read/Write Energy (nJ/access) 0.15/0.12 0 0.09/0.07 0.09/0.07 0.09/0.07 0.09/0.07

sampler assoc./sets 8/4 STT-MRAM Set/Associativity 0/0 256/4 256/2 256/2 1/512 1/512

Pred. history table entries/thres. 1024/14/1 STT-MRAM Sense Amplifier/Comparator 0/0 4/4 2/2 2/2 1/4 1/4

DRAM channels/tCL/tRCD/tRAS 6/12/12/28 STT-MRAM Read/Write Energy (nJ/access) 0/0 1.2/2.9 0.26/2.4 0.26/2.4 0.26/2.4 0.26/2.4

Table I: GPU simulation configuration.

App APKI Bypass ratio Suite App APKI Bypass ratio Suite

2DCONV 9 0.26 [8] 2MM 10 0.6 [8]

gaussian 8.5 0.36 [10] 3MM 10 0.49 [8]

srad v1 3.5 0.38 [9] GEMM 136 0.61 [8]

ATAX 64 0.9 [8] SYR2K 108 0.02 [8]

BICG 64 0.9 [8] histo 9.6 0.63 [10]

GESUMMV 12 0.96 [8] mri-g 3.3 0.13 [10]

FDTD-2D 18 0.27 [8] pathf 1.2 0.92 [9]

MVT 64 0.91 [8] cfd 4.5 0.81 [9]

II 77 0.54 [11] PVC 37 0.18 [11]

SS 30 0.80 [11] SM 140 0.02 [11]

PVR 14 0.33 [11]

Table II: GPU benchmarks.

results in false prediction, called as “false positive”.

Hardware support and modification. The hardware struc-

ture is scalable, as our associativity approximation utilizes

multiple CBFs. However, each baseline CBF needs multiple

latches and transistors, which may occupy too much area

of SRAM and violate L1D cache area constraints. Thus, we

modify the baseline to use a separate STT-MRAM rather

than SRAM in our heterogeneous storage, called NVM-CBF.

As shown in Figure 12d, it integrates the baseline CBFs in

a 2D array structure by vertically locating a 2-bit counter

array in the 2D MTJ island so that all counter arrays can

share peripherals and I/O circuits. X-decoder simultaneously

activates multiple sets of target rows associated with hashed

keys, and all data stored in the arrays are compared to a

reference voltage between the voltage of completely-zero or

non-zero, and sensed out through a read port to distinguish

between positive or negative. Owing to parallel operations

of NVM-CBF, a test can be completed within the cycles of

a single STT-MRAM read. For the increment and decrement

operations, a Y-decoder enables a specific column based

on the target CBF ID and updates the revised counters

through a write port. We configure an X-decoder, X-WL

(wordline), X-SL (sourceline), and X-BL (bitline) to transfer

the voltage of an activated storage cell to X-SA (sensing

amplifier), while using a Y-decoder, Y-WL, Y-SL, and Y-

BL to connect Y-SA/Y-WD (sense amplifier/write driver) to

the target storage core. We verify the NVM-CBF design

by prototyping the circuit and simulating the read/program

operations in Cadence [36].

Since STT-MRAM has mostly WORM data for better data

reuse rather than going through the entire GPU memory hi-

erarchy, the operation type of most accesses for NVM-CBFs

is “test”. Our experiments with CACTI [32] indicates that

“test” procedure costs 591 ps, which is much shorter than

a single cache cycle. Even in cases of increment/decrement

on NVM-CBF, its latency can be overlapped with that of

the corresponding STT-MRAM data array write operation.

The number of hash functions, the number of CBFs, the

length of the counter array, and the size of each counter

can significantly impact CBF’s performance. We tune these

four parameters based on the observation, and achieve best

performance with 3 hash functions and 128 CBFs, each

having 16 2-bit counters. This takes 512B area in total,

making NVM-CBF small enough.

V. EVALUATION

Simulation methodology. We implemented FUSE on top of

GPGPU-Sim 3.2.2 [6]. We used 15 SMs with 32KB register

files per SM, which can execute up to 48 warps per SM

and total 1536 threads per SM. The interconnection network

is configured as a butterfly topology with 27 nodes (i.e.,

15 SMs and 12 L2 cache banks). Our simulator employs 6

DRAM channels, each connecting to 2 L2 cache banks. We

adopt the latency models and replacement policies of L1D

cache, L2 cache and off-chip DRAM from GPGPU-Sim,

which has been verified with real GPU devices [37], [38].

As the circuit complexity of LRU is not affordable in a full-

associative cache, in our experiments we employ FIFO as

the replacement policy of STT-MRAM bank. Other popular

low-cost cache replacement policies can also be integrated

in the STT-MRAM bank [39]. We used GPUWattch [40]

to evaluate the power consumption of the simulated GPU

system, while leveraging CACTI 6.5 [32] and NVsim [41] to

estimate the latency and power values of STT-MRAM bank

as well as peripheral circuits. The detailed energy models

of an SRAM bank and an STT-MRAM bank are given in

Table I.

L1D configurations. We evaluate the performances of seven

different L1Ds, and their important characteristics are given

in Table I. While L1-SRAM is configured as a 4-way set-

associative SRAM-based on-chip cache, FA-SRAM recon-

structs L1-SRAM as a fully-associative cache. By-NVM is

implemented with pure STT-MRAM that integrates dead-

write prediction [30] to avoid frequent STT-MRAM writes.

By-NVM bypasses deadwrite, which is written once but

not re-referenced before getting evicted from the cache.

Hybrid integrates 2-way associative SRAM bank and 2-

way associative STT-MRAM bank within the same chip.

Since Hybrid does not implement swap buffers or tag

queue, any write on STT-MRAM will result in a long L1D

cache stall. Base-FUSE integrates swap buffers and tag

queue into Hybrid. The difference between Base-FUSE

and FA-FUSE is that FA-FUSE configures an STT-MRAM

bank as approximate fully-associative cache. In addition,
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Figure 13: Normalized IPC.
Dy-FUSE optimizes FA-FUSE by employing a read-level

predictor to intelligently place cache blocks in either SRAM

bank or STT-MRAM bank. All above caches are constructed

with the same area budget that L1-SRAM uses.

Workloads. We evaluate a large collection of workloads

from PolyBench [8], Rodinia [9], Parboil [10], and Mars

[11] benchmarks. While PolyBench is a set of benchmarks

that contain static control parts, and the workloads we tested

are mainly related for polyhedral computation. Rodinia con-

siders bioinformatics, data mining and classical algorithm,

and Mars is a kind of MapReduce framework optimized

GPU that includes inverted indexing and page view count.

Lastly, Parboil is a collection of different scientific and com-

mercial kernels including image processing, biomolecular

simulation, fluid dynamics, and astronomy. Considering the

space limit, we first evaluate all the workloads, exclude the

results, which exhibit similar performance behavior each

other, and select 21 representative workloads among them.

These 21 workloads exhibit different memory access patterns

in terms of memory regularity (or lack of it) and read/write

intensiveness. We give brief descriptions, access per Kilo-

instruction (APKI), and bypass ratio for By-NVM in Table

II. To perform our evaluations with fidelity, all workloads

we tested have more than one billion instructions.

A. Overall Performance Analysis

Instructions per cycle (IPC). Figure 13 shows the IPC

values of the seven L1D configurations evaluated with

our workloads, normalized to L1-SRAM. We note that

FA-SRAM and By-NVM improve the performance by 63%

and 41%, respectively, in regular read-intensive workloads

(e.g., 2DCONV and gaussian) and irregular workloads

(e.g., ATAX and GESUM), compared to L1-SRAM. This

is because both FA-SRAM and By-NVM can accommo-

date more memory requests by taking advantage of full

associativity and leveraging the large STT-MRAM capacity,

respectively. However, FA-SRAM is not a realistic option,

due to its complex circuit design and high area overhead,

while By-NVM suffers from long STT-MRAM write la-

tency and long off-chip access delay caused by deadwrite

eviction. The performance of By-NVM is 43% worse than

L1-SRAM in the write-intensive workloads such as 2MM

and 3MM). Hybrid can reduce the STT-MRAM write

penalty by fusing SRAM and STT-MRAM in the on-

chip cache. However, without full optimization, Hybrid

degrades the performance by 23%, compared to L1-SRAM,

in all the workloads. Since Base-FUSE, FA-FUSE, and

Dy-FUSE optimize Hybrid from different aspects, they

achieve, on average, 11%, 206%, and 398% higher IPC than

Hybrid, respectively. This is because, instead of stalling for

STT-MRAM writes, Base-FUSE enables an SRAM bank

to serve future data requests and buffers the future STT-

MRAM requests and data in the tag array and the swap

buffer, respectively. Compared to Base-FUSE, FA-FUSE

implements a realistic fully-associative STT-MRAM cache

to accommodate as many memory requests as possible,

and it improves the IPC by 4.1x in irregular workloads

(e.g., ATAX, and GEMM). Dy-FUSE performs better than

FA-FUSE by 23.7%, on average, across all the workloads.

This is because Dy-FUSE can predict the access patterns

of data requests and reduce the number of writes in STT-

MRAM. Although By-NVM can allocate more STT-MRAM

space than Dy-FUSE, its effectiveness in reducing L1D

cache miss rate is limited. As a result, Dy-FUSE improves

performance by 101%, compared to By-NVM.

Cache miss rate. Figure 14 plots the L1D cache miss rates

for different L1D cache options across different workloads.

Among all tested L1D cache options, L1-SRAM has the

highest cache miss rate in most workloads, due to the limited

on-chip cache resources. FA-SRAM reduce the cache miss

rate by 29%, on average, compare to L1-SRAM. This is

because, the full associativity of FA-SRAM can effectively

reduce the L1D cache conflict misses. Since By-NVM has

3x larger capacity than L1-SRAM (and consequently it can

accommodate more cache requests), it exhibits a 24% lower

L1D miss rate than L1-SRAM in read-intensive workloads

(e.g., 2DCONV). However, the on-chip cache miss rate of

By-NVM depends on how many data requests have been

bypassed to off-chip memories. For example, only 24% of

data requests are bypassed in 2DCONV, as indicated in

Table II. On the other hand, 2MM and 3MM, which contain

more than 40% of write requests, bypass more than 80%

of data requests. As a result, By-NVM has 28% higher

L1D cache miss rate than L1-SRAM in 2MM and 3MM,

on average. Since workloads with irregular access patterns

(e.g., ATAX and BICG) cannot reuse data blocks due to

cache thrashing, such non-reused data blocks are regarded

as deadwrite in By-NVM, which in turn generates a high

bypassing ratio. Although By-NVM cannot reduce miss rates

in these workloads, the data requests are directly bypassed to

the underlying L2 cache without any pause to obtain a free

cache line in L1D cache, and this in turn results in higher

performance improvement (cf., Figure 13). Hybrid and all

FUSE caches exhibit 21.6% lower on-chip cache miss rate

than that of L1-SRAM, on average, across all workloads.

This is because these cache configurations increase the total

on-chip cache size to better serve data requests from a

massive number of active warps. Since Base-FUSE and

Hybrid have similar L1D cache internal architectures,

except for swap buffers and tag queue, they achieve the
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Figure 15: L1D cache stalls caused by STT-MRAM and

tag searching.

same on-chip cache miss rate, which is 10.5% lower than

that of L1-SRAM. On the other hand, FA-FUSE can reduce

the on-chip cache miss rate by up to 86% in irregular

workloads 2MM, 3MM, ATAX, BICG, GEMM, GESUM, II,

MVT, PVC, SS, SM, and SYR2K. This is because configuring

STT-MRAM as a fully-associative cache can successfully

reduce cache conflicts and accommodate as many irregular

cache access patterns as possible. Lastly, since our read-level

predictor is designed to detect the correct cache bank to put

data blocks rather than modifying the placement/replacement

policy for each cache bank, there is little difference between

FA-FUSE and Dy-FUSE as far as cache miss rate is

concerned.

L1D cache stalls. Figure 15 shows the number of stalls

caused by STT-MRAM writes (STT-MRAM stall) and tag

searching (tag search stall) in Hybrid, Base-FUSE, and

FA-FUSE across all evaluated workloads. Note that the

stalls are normalized to the STT-MRAM stalls of Hybrid.

As shown in the figure, Base-FUSE can effectively reduce

the number of L1D cache stalls by 78%, compared to

Hybrid, on average. This is because Base-FUSE en-

ables SRAM bank and the associativity approximation logic

unblocked, even though STT-MRAM is busy for serving

data writes. On the other hand, FA-FUSE can reduce the

number of L1D stalls by 18%, compared to Base-FUSE.

This is because the fully-associative STT-MRAM bank in

FA-FUSE can keep more data requests which in turn

reduces the number of cache misses in the L1D STT-MRAM

bank. While the associativity approximation logic introduces
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Figure 16: Read-level predictor accuracy.
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Figure 17: L1D energy normalized to L1-SRAM.

the penalty of tag search stall in FA-FUSE, this overhead

is only 3% of STT-MRAM stalls in Hybrid.

Read-level predictor. We set up the read-level predictor

based on empirical configurations of the entries and sets

in sampler as well as the entries and the thresholds in

prediction history table (cf., Table I). Figure 16 shows the

prediction accuracy of our read-level predictor for each

workload. Specifically, we mark a prediction as “True”,

if data is predicted as WM and it experiences multiple

writes before eviction or data is predicted as WORM/WORO

and it experiences only singular write. In comparison, the

prediction is marked as “False”, if data is predicted as WM

but it experiences singular write before eviction, or data

is predicted as WORM/WORO but it experiences multiple

writes. Finally, the prediction is marked as “Neutral”, if the

read-level predictor could not provide prediction. As shown

in Figure 16, our read-level predictor can give prediction

accuracy of 95%, on average, across all workloads, and the

prediction accuracy decreases to 85% in the worst case.

Thanks to the accurate prediction, Dy-FUSE can signifi-

cantly reduce the number of data migrations between SRAM

and STT-MRAM, which addresses the overheads caused by

STT-MRAM writes.

L1D Energy. Figure 17 plots the L1D cache energy of

different cache configurations, which are normalized to

L1-SRAM. As shown in the figure, L1-SRAM consumes

the lowest energy in the compute-intensive workloads that

exhibit low APKI (e.g., 2DCONV, 2MM, and 3MM). This is

because the small-size SRAM cache consumes much lower

read/write power than STT-MRAM of the same area size

(cf. Table I). On the other hand, for the irregular workloads

and data-intensive workloads (e.g., ATAX, BICG, and MVT),

L1-SRAM consumes 6x, 5.6x, and 8.4x higher energy higher

than By-NVM, FA-FUSE, and Dy-FUSE. Since L1-SRAM

requires much longer execution time due to the high L1D

cache miss rate, it wastes a huge amount of energy due

to SRAM’s high leakage power. Even though By-NVM

can bypass deadwrite to avoid unnecessary write energy

consumption in STT-MRAM, it still suffers from the low

energy efficiency imposed by cache write updates or read

misses. On the other hand, FUSE can accommodate most

of the write updates and read misses in SRAM, which in

turn reduces the write energy. FA-FUSE and Dy-FUSE can

reduce energy consumption by 16% and 24% compared to

By-NVM, as they feature sufficient memory (SRAM) space

to accommodate the writes. Dy-FUSE can reduce the energy

consumption by 7%, compared to FA-FUSE. This is because
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Figure 18: Performance comparison of different SRAM

and STT-MRAM ratio in L1D cache.
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Figure 19: Performance in Volta GPU.

Dy-FUSE employs a read-level predictor to accurately put

WM data in SRAM and read-intensive data in STT-MRAM

separately.

B. Sensitivity Study

SRAM-to-STT-MRAM ratios. We evaluate various STT-

MRAM/SRAM configurations to seek the optimal one that

exhibits the best performance across all workloads we tested.

Figure 18 shows the IPC and L1D miss rates of different

configurations which are normalized to “1/16”. Note that,

1/16 indicates that 1/16 of L1D cache space is allocated

as SRAM bank and the remaining space is used by STT-

MRAM. As shown in Figure 18a, 1/2 achieves the best

performance among all the configurations that we evaluated.

This is because, compared to 1/2, allocating more space

for SRAM (e.g., 3/4) reduces the overall L1D cache

capacity by 30%, which in turn increases the cache miss rate

compared to 1/2 (cf., Figure 18b) by 4%, on average. Even

though allocating more space for STT-MRAM (e.g., 1/16,

1/8, and 1/4) can increase L1D cache space by 53%, 45%,

and 30%, compared to 1/2, only 0.7%, 0.68%, and 0.51%

of L1D cache miss rate reduction can be observed in Figure

18b. This is because our associativity approximation logic

can maximize the utilization of STT-MRAM cache, which

reduces the demands for bigger cache capacity. However,

since less space is allocated for SRAM in 1/16, 1/8, and

1/4, the limited capacity of SRAM cannot accommodate

all write-multiple (WM) data, which in turn increases the

number of STT-MRAM writes and introduces a significant

overhead imposed by write penalties of STT-MRAM. Based

on the above evaluation results, we identify 1/2 as the

optimal STT-MRAM/SRAM configuration.

Volta GPU. By default, GPGPU-Sim simulator only pro-

vides configurations that mimic Fermi [37] and Kepler [38]

architectures. Consequently, we revised its GPU architecture
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Figure 20: The false positive rate in CBF.

model to model the latest Volta GPU [42]. Specifically,

we increased the number of SMs to 84, modified the L2

cache size to 6 MB, and increased the memory bandwidth

to 900 GB/s. As the L1 cache in Volta GPU is reconfigurable

(ranging from 32 KB to 128 KB), we configured a 128

KB L1 cache to evaluate the impact of large L1 cache.

Figure 19 gives the performance of L1-SRAM, By-NVM,

Hybrid, and our FUSE caches in terms of IPC values

under the tested workloads. All the results are normalized to

L1-SRAM. As shown in the figure, it is beneficial to enlarge

the L1D cache capacity further by employing STT-MRAM.

Specifically, compared to L1-SRAM, By-NVM is able to

accommodate more memory requests in its L1D cache,

which in turn improves the overall performance by 57% in

the irregular workloads (e.g., ATAX and GESUM). While

By-NVM achieves poor performance in the write-intensive

workloads due to its long STT-MRAM write latency, thanks

to the optimized architecture that fuses SRAM and STT-

MRAM, the Base-FUSE, FA-FUSE and Dy-FUSE suc-

cessfully mitigate the write penalty, which in turn improves

the performance by 37%, 71%, and 82%, compared to

By-NVM. Overall, Base-FUSE, FA-FUSE and Dy-FUSE

improve the performance by 35%, 82%, and 96%, compared

to L1-SRAM.

False positives of CBF. The performance of CBF is one

of the factors that impact the efficiency of the associativity

approximation logic and the overall system performance.

Figure 20 illustrates the effects of employing a different

number of hash functions and increasing the data set sizes on

the false positive rate. CBF-Xfunc indicates employing X

hash functions and Xslots means each data set has X slots.

Increasing the number of hash functions effectively reduces

the number of false positives (cf. Figure 20a). Specifically,

CBF-3func with 3 hash functions reduces the number

of false positives by 98.4%, compared to CBF-1func

with single hash function. While employing more hash

functions can reduce the number of false positives further,

the performance improvement would get saturated. The large

data set space such as 128slots and 64slots reduces

the number of false positives by 99% and 97%, respectively,

compared to 32slots (cf. Figure 20b). This is because,

a larger data set space reduces the possibility for hash

functions to generate same hash key from different inputs. To

minimize the impact of false positives, we select 128slots

as our CBF configuration.



Components Transistors Components Transistors

L1-SRAM

data array 1,572,864 write driver 58,520

tag array 32,256 comparator 976

sense amplifier 66,880 decoder 1,124

Dy-FUSE

data array 1,572,864 write driver 45,980

tag array 43,776 comparator 1,458

sense amplifier 48,070 decoder 1,686

NVM-CBF 10,944 swap buffer 3,072

request queue 15,360 read-level predic. 2,320

Table III: Area estimation of L1-SRAM and Dy-FUSE.

C. Area Overhead Analysis

Table III lists the area estimation of each component

employed in a 32KB L1-SRAM and Dy-FUSE in terms of

the number of transistors.

SRAM-based cache. Considering that a 6T structure of

an SRAM cell, the 32KB data array requires 1.5 million

transistors. We assume each tag entry contains 19-bit tag,

1-bit valid bit, and 1-bit dirty bit. Thus, 32K transistors

are required for a 32KB tag array. The sense amplifier

of SRAM-based cache typically composes 8T sensing and

8T latch circuits to sense and hold 1-bit data, while the

write driver consists of 14T to write 1-bit data. Overall, the

SRAM-based cache needs 37K and 32K transistors to build

its sensing amplifier and write driver, respectively. In our

design, 4T comparison circuit can compare 1 tag bit; the total

number of transistors to build comparators is around 976.

Lastly, the procedure of address decoding can be divided

into three stages: predecoding, combination, and wordline

driving. Among them, the predecoding stage uses a couple

of 2-4 and 3-8 decoders, the combination stage employs a

NOR gate for each wordline, and the wordline driving stage

utilizes tri-state inverters to drive each wordline. Considering

all, the required number of transistors for address decoding

is 1124.

Dy-FUSE. Thanks to the serialization of our tag array and

data array accesses in the STT-MRAM, FUSE architecture

is able to reduce the space allocated for sensing amplifier

and write driver in the SRAM-based cache, and leverages

the free space to accommodate 4 extra components: two

128-bit sensing amplifiers, two decoders, and 128 sets of

NVM-CBFs, each containing 64 2-bit STT-MRAM based

counters (4 transistors and 2 MTJ for each counter); a swap

buffer with 3 entries, each entry requiring 1024 transistors;

a request queue with 16 entries, each entry requiring 960

transistors; a sampler and a prediction table within a read-

level predictor, require 648 transistors and 1672 transistors,

respectively. Our synthesis analysis reports that Dy-FUSE

exceeds the L1D cache area by less than 0.7%.

VI. DISCUSSION

Embedded DRAM (eDRAM) and STT-MRAM are

promising memory technologies as CPU/GPU cache. While

eDRAM can provide higher cache density than SRAM,

its feature size (60-100 F
2) is much bigger than that of

STT-MRAM (6-50 F
2). As FUSE prefers large capacities,

STT-MRAM is selected as candidate. STT-MRAM also

exhibits better performance and higher power-efficiency than

eDRAM, as eDRAM incurs extra time and power to refresh

its cells in every 40 us.

However, STT-MRAM suffers from long write latency.

Prior work [43], [44] proposed to leverage SRAM to hide

this write penalty and explored the feasibility of architecting

CPU L1 cache and GPU register file with a SRAM/STT-

MRAM hybrid. Fabricating SRAM/STT-MRAM hybrid in

the same die is also proven to be feasible. While the

commercial prototype of the hybrid SRAM and STT-MRAM

cache is currently not available in the market, [45] presents

a research sample which integrates STT-MRAM cells into

CMOS circuit with copper interconnect technology.

Unlike CPU, GPU L1D cache does not support any

cache coherence protocol in hardware. Instead, it adopts a

weak consistency model, which relies on the synchronization

between the kernels as well as the synchronization primitives

in user programs to maintain data consistency. While prior

work [46], [17] assumes that CUDA cores write through

dirty L1D cache blocks to the shared L2 cache to ensure data

consistency, L1D cache actually is implemented as write-

back cache with the support of synchronization. Thus, in

this paper, we adopt a write-back policy in L1D cache.

To allocate more L1D cache space for the data-intensive

workloads, academia and industry adopt a unified on-chip

memory space consisting of L1D cache and shared memory

(as well as register files). When allocating more memory

space as L1D cache, it has to reduce the capacity of

shared memory and register files. This in turn can hurt

the performance of data-intensive workloads, which have

high demands for large shared memory and register files. In

contrast, FUSE increases the L1D cache size by leveraging

larger STT-MRAM bank, which does not sacrifice the size

of shared memory and register files. In addition, FUSE also

simplifies the circuit design of the unified memory space.

VII. RELATED WORK

Cache bypassing and warp throttling. There are many

prior studies oriented towards eliminating GPU L1D cache

thrashing. For example, [13], [47], [48], [49], [50] propose

to bypass part of data requests to the off-chip memory in

an attempt to protect data blocks in L1D cache from early

eviction. However, these bypass strategies can degrade the

overall performance and make energy efficiency worse, since

they typically introduce more off-chip access overheads. In

addition, it is challenging to employ them in an STT-MRAM

cache, as they are unaware of write accesses, which can

introduce long write delays. Rogers et al [51] propose to

throttle the number of warps that compete for L1D cache

so as to minimize cache thrashing. However, doing so can

harm the overall performance due to the reduced thread-

level parallelism. In contrast, FUSE maximizes the number

of active threads, while minimizing the number of off-

chip memory accesses by employing an NVM-based full-



associative L1D cache to accommodate as many memory

requests as possible.

Hybrid caches. Many prior studies [52], [53], [43], [54]

have successfully orchestrated STT-MRAM in CPU caches

by being aware of the access patterns exhibited by the CPU.

However, they, unfortunately, cannot be directly applied to

GPGPU, as the SIMT execution on GPU generates different

access patterns from CPU. In particular, the read-level

predictor in FUSE is tailored to GPU, which can speculate

access patterns generated by SIMT execution. Sun et al. and

Choi et al. [55], [56] detail the design of heterogeneous

SRAM/STT-MRAM architectures. More specifically, while

[56] proposes to architect an SRAM-based tag array and

an STT-MRAM-based data array to leverage the unique

advantages of each, the proposed hybrid cache architecture

requires a large cache capacity and is sensitive to I/O access

patterns, which may not be beneficial for the small-sized

GPU L1D cache. In comparison, [55] propose a new cache

layout for hybrid SRAM and STT-MRAM in CPU shared

L2 NUCA cache. However, this design may not blend well

with the private L1D cache in GPUs. Compared to prior

work, FUSE customizes its hybrid cache architecture to

work with the GPU L1D cache by carefully considering area

constraints, cache layout, and peripheral circuits.

STT-MRAM integration in GPUs. There also exist prior

efforts that try to incorporate NVM in a GPU memory

hierarchy. Samavatian et al. [57] presents a new L2 cache

that integrates low-retention STT-MRAM and long-retention

STT-MRAM arrays. To reduce the write penalty of STT-

MRAM, [57] proposes to store write-intensive data in low-

retention STT-MRAM and store read-only data in high-

retention STT-MRAM. Compared to [57], we propose to

fuse L1 SRAM with STT-MRAM, which can eliminate

the refresh overhead of low-retention STT-MRAM. In ad-

dition, FUSE employs a new approximate full-associative

cache architecture and introduces a highly-accurate read-

level predictor based on program-counter. Wang and Xie

[58] propose an STT-MRAM based GPU register file archi-

tecture. It addresses the write penalty of STT-MRAM by

enabling simultaneous reads and writes in the same bank,

and by adding an SRAM buffer to accommodate repeated

writes. However, such techniques cannot be applied to the

L1D cache, as it has a different architecture compared to

register file, and the repeated writes on the same data are

not observed in L1D cache.

Full associativity. Jouppi [59] proposes a full-associative

victim cache to decrease the number of conflict misses

caused by direct-mapped caches in CPUs. However, this

approach cannot aid to improve cache hit rate in GPU, as the

limited capacity of victim cache (e.g., 16 cache lines) makes

it hard to accommodate all cache misses from a massive

number of threads (more than thousand). In contrast, FUSE

leverages an associativity approximation logic to configure

a full-associative L1D cache, and this provides sufficient

capacity to reduce as many cache misses as possible.

VIII. CONCLUSION

In this work, we proposed FUSE, a novel heterogeneous

GPU cache that effectively increases L1D cache capacity

by fusing STT-MRAM into on-chip L1D cache. FUSE

can improve the overall GPU performance by reducing

the overheads imposed by off-chip memory accesses, while

efficiently mitigating the write penalty of STT-MRAM. Our

extensive evaluations indicate that FUSE exhibits 217%

better performance compared to a traditional SRAM-based

approach and saves about 53% energy over it.
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