
A Hybrid Framework for Fast and Accurate GPU Performance Estimation through
Source-Level Analysis and Trace-Based Simulation

Xiebing Wang∗, Kai Huang†, Alois Knoll∗ and Xuehai Qian‡

∗Department of Informatics, Technical University of Munich, Munich, Germany
†School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China

‡Department of Computer Science, University of Southern California, Los Angles, USA
∗{wangxie, knoll}@in.tum.de, †huangk36@mail.sysu.edu.cn, ‡xuehai.qian@usc.edu

Abstract—This paper proposes a hybrid framework for
fast and accurate performance estimation of OpenCL kernels
running on GPUs. The kernel execution flow is statically
analyzed and thereupon the execution trace is generated via
a loop-based bidirectional branch search. Then the trace is
dynamically simulated to perform a dummy execution of the
kernel to obtain the estimated time. The framework does
not rely on profiling or measurement results which are used
in conventional performance estimation techniques. Moreover,
the lightweight trace-based simulation consumes much less
time than a fine-grained GPU simulator. Our framework can
accurately grasp the variation trend of the execution time in the
design space and robustly predict the performance of the ker-
nels across two generations of recent Nvidia GPU architectures.
Experiments on four Commercial Off-The-Shelf (COTS) GPUs
show that our framework can predict the runtime performance
with average Mean Absolute Percentage Error (MAPE) of
17.04% and time consumption of a few seconds. We also
demonstrate the practicability of our framework with a real-
world application.

I. INTRODUCTION

To fully exploit the computing power of GPU, program
developers need a deep understanding of its parallel working
mechanism, in order to efficiently process the workload at
runtime. This poses a challenge for non-expert users be-
cause they have no prior knowledge about elaborate parallel
programming. To solve this, two approaches, namely auto-
tuning and performance estimation, are used to help seek
the optimal execution from the vast program design space.
Traditional auto-tuning searches through either the whole
[1] [2] or a sliced [3] [4] design space, which causes a
considerable amount of time. Although this time cost can
be reduced by optimization [5] or machine learning based
algorithms [6], the relevance between the program input
configuration and the resulted performance gain still remains
obscure. Therefore, performance estimation is essential to
crack the internal program runtime behavior so as to improve
the external program execution efficiency.

State-of-the-art GPU performance estimation still suffers
from several constraints. First, performance model always
needs to be subtly tuned for the appropriate configurations
of the target program to obtain convincing estimations. This
makes it rather difficult to derive a general-purpose instead
of application-oriented method. Secondly, performance esti-
mation approaches can hardly keep up with the rapid archi-
tectural change of contemporary GPUs, due to the continu-
ously promotion and upgrade of Commercial Off-The-Shelf

(COTS) products. Although machine learning based methods
[7] [8] [9] are applicable to general platforms, the off-line
feature sampling of the hardware counter metrics over the
huge design space incurs a significant amount of time and
the trained model is sensitive to unknown applications. Last
but not least, there still exists possibility to improve the
accuracy and usability of state-of-the-art GPU performance
models [10]. Although fine-grained GPU simulators could
give rather accurate estimations, the extremely large time
consumption makes it unsuitable for practical use [11] [12].

To address the aforementioned issues, this paper pro-
poses a hybrid framework to estimate the performance of
parallel applications on the GPU. We target OpenCL [13]
workload because OpenCL is a cross-platform standard and
therefore the proposed framework can still be applied to
other accelerators. The high-level kernel source code is first
transformed into LLVM [14] Intermediate Representation
(IR) instructions, from which the program execution trace
is generated based on GPU’s philosophy of parallelism. We
developed a lightweight simulator to dynamically consume
the arithmetic and memory access operations in the exe-
cution trace in granularity of 32 work items or so-called
warps. The hardware specification and micro-benchmarking
metrics are also fed to this simulator to obtain the estimated
execution time.

In contrast to conventional analytical or machine learn-
ing based methods, our framework does not require extra
hardware performance counter metrics captured by a third-
party profiler, or measurement results which are obtained
after executing the whole or a portion of the target kernel
before the estimation. Meanwhile, unlike fine-grained GPU
simulators that spend simulation time in the scale of hours
[15] [16], our framework can give estimation results in a
few seconds. For the evaluation, we validate our framework
with 20 different kernels from the Rodinia [17] benchmark.
We conduct a design space exploration of all possible input
parameter combinations which counts to in total 306,558
cases. Experiments on four COTS Nvidia GPUs across two
architectures (Kepler and Maxwell) show that our frame-
work can accurately grasp the variation trend of the kernel
execution time in the design space, which indicates that
our framework can also be utilized to find the optimal
execution in the vast design space. On average, the proposed
framework can give performance estimation with Mean
Absolute Percentage Error (MAPE) of 17.04%. Moreover,



Source Code

Clang LLVM analyzeKernel Pass

IR Instruction Pruning

Loop Bound Analysis

CFG Branch Extraction

Runtime Behavior Analysis

Warp-based Branch Analysis

Execution Trace Extraction

Cache Behavior Analysis

IR Pipeline SimulationNVCC

Hardware specification

Micro-benchmarking

Bitcode

Kernel compilation information

CFG, branch condition, loop bound, etc.

Execution trace, cache miss info.

Cache spec.

SM config., etc.

Arithmetic latency
Memory access latency
Cache config.

Estimated Time

Figure 1: Overview of the performance estimation framework.

the case study on a real-world lane detection application
achieves prediction accuracy with MAPE of 17.38%. The
contributions of this paper are as follows:

• We propose a hybrid framework that combines source-
level analysis and trace-based simulation to predict the
performance of GPU kernels. The execution trace of the
target kernel is statically generated and then simulated
to estimate the runtime performance.

• We propose a loop-based bidirectional branch search
algorithm to extract the kernel execution trace that
models the warp execution flow of the GPU kernel.

• We develop a lightweight simulator to mimic the kernel
execution and then predict the runtime performance
results, taking into consideration both the IR instruc-
tion pipeline and cache modeling. The simulator can
accurately predict the performance of kernels running
across different GPU platforms in a few seconds.

• We demonstrate the accuracy and practicability of our
framework with the Rodinia [17] benchmark and a real-
world application, on four Nvidia GPUs across two
generations of recent architectures.

The remainder of this paper is organized as follows: Sec-
tion II gives overview of the proposed framework. Section III
and Section IV presents the source-level analysis and trace-
based simulation, respectively. Section V gives experimental
analysis and Section VI presents a lane detection case study.
Section VII is related work and Section VIII concludes.

II. FRAMEWORK OVERVIEW

Figure 1 gives the overview of the proposed performance
estimation framework. The kernel source code is first pro-
cessed by Clang compiler to generate the LLVM bitcode file
that contains IR instructions of the target kernel. Meanwhile,
the source file is passed to NVCC compiler to obtain kernel
compilation information that includes the detailed runtime
resource usage of the kernel, such as the number of used on-
chip registers and used shared memory size. The framework
mainly contains two modules, i.e. the source-level analysis
and the subsequent trace-based simulation. In the source-
level analysis module, the kernel bitcode file is processed by
an LLVM analyzeKernel pass and the execution trace
is subsequently extracted from the kernel runtime behavior
analysis. The analyzeKernel pass prunes IR instructions
in the basic blocks so that only the arithmetic and memory

access operations, which contribute to the kernel execution
time, are retained. The execution flow information, such
as the loop statements and the branches, is extracted and
analyzed for the following execution trace generation.

Given the Control Flow Graph (CFG) and the execution
flow information, the kernel runtime behavior is then an-
alyzed and the execution trace is generated in granularity
of warps. The cache miss/hit information is subsequently
obtained according to the cache specification and the ex-
ecution trace. The simulation module mimics the kernel
runtime behavior by virtue of constructing an IR instruction
pipeline and consuming the execution trace iteratively. A
set of micro-benchmarks are used to calibrate the target
GPU to obtain the hardware metrics such as latencies of
the arithmetic operations, latencies of the memory access
operations, and the cache configurations. These hardware
metrics, together with the hardware specification, the kernel
compilation information, the kernel execution trace, and the
cache miss information, are fed to the simulator to estimate
the final execution time.

III. SOURCE-LEVEL ANALYSIS

A. LLVM analyzeKernel pass
The analyzeKernel pass collects the basic blocks and

builds the CFG of the target kernel. For each basic block,
we document the IR instructions to construct the intra-block
execution trace. The execution flow information used to
generate the execution trace is obtained via the three steps
illustrated as follows.

1) IR instruction pruning: We assume that the execution
time is mainly consumed by the arithmetic and memory
access operations. Therefore for each basic block, we filter
out the time-cost-irrelevant instructions such as the LLVM-
specific intrinsic annotations llvm.lifetime.start,
llvm.lifetime.end, the memory address calculation
instruction getelementptr, the data type conversion
instructions trunc, ext, and so on. Note that here these
instructions are only removed from the execution trace, but
are still used for the later control flow analysis.

As for function calls, we observe that the call in-
struction appears only when invoking 1© the OpenCL
work-item built-in functions, such as get_global_id,
get_local_id, etc., 2© the synchronization function
barrier, or 3© the LLVM intrinsic functions such as



llvm.fmuladd.f32, etc. The subfunctions in the source
code are replaced by detailed instructions and therefore non-
existent in the bitcode file. Consequently, we record all
the related information about these function calls and this
information is used to assist the execution trace generation
whenever necessary. The OpenCL work-item built-in func-
tions are highlighted because their return values typically
serve as memory address indices that directly determine
the memory access pattern. The synchronization function is
labelled as a flag that notifies the wait signal of the warp
execution in the pipeline. The LLVM intrinsic functions are
also converted to the corresponding arithmetic operations in
the kernel execution trace.

2) Loop bound analysis: Instead of deducing a precise
value of the loop trip count, we attempt to estimate the
loop bound of each basic block in the loop. The reasons
are multifold. First, state-of-the-art static loop analysis is
still an open problem [18] and therefore it is impossible
to adopt a generic method to obtain the loop trip count
of arbitrary code blocks. Secondly, in general, the input
of parallel applications is a regular rectangle- or cuboid-
like grid that can be ideally decomposed and mapped to the
threads on the GPU. The formation of the high-level loop
code is regular in the majority of the cases. Lastly, the loop
bound manifests an extreme case of the execution of the loop
and this scenario should also be considered when analyzing
the performance of the kernel executions.

We first use Loopus [19] to analyze the loop bound. We
observe that Loopus can handle simple loops, i.e., when
the loop induction variable is a fixed constant. For more
complicated loops, the loop bound is first determined by
performing an LLVM Scalar Evolution (SE) analysis [20]
of the basic blocks in the loop. The SE analysis gives an
explicit bound if the target basic block either is within a
single-exit loop or has a predictable backedge taken count.

When both Loopus and LLVM SE analysis fail to give
outputs, an extra static analysis of the loops is performed to
further extract the loop bound. The main idea of this static
analysis is to identify the loop induction variable and track
its value at the scope of the entire kernel function. First,
the exit basic blocks of the loop are collected, from which
the true exit basic block is set as the loop latch block. The
terminator of the true exit basic block is the loop induction
instruction and we observe that for all the test kernels this
instruction is a conditional branch form of a br instruction.
The conditional branch has two arguments, of which the first
is either the loop induction variable or the loop induction
variable updated with a increment of the loop step size,
and the second is the end value, which is loop invariant,
of the loop induction variable. In LLVM, the loop induction
variable is represented as a Static Single Assignment (SSA)
and this SSA could be: 1© binary operation such as add,
mul, etc. 2© load instruction. 3© phi instruction. In case
1©, we traverse all the phi nodes in the loop header block,

from which the loop induction variable is set as the phi
node of which the return value equals the updated loop

induction variable, when taking the loop latch block as the
incoming value. With regards to case 2©, we track all the
store instructions that write data to the pointer argument of
this load instruction, by virtue of the memory dependency
analysis. The memory write value of the store instruction
that lies outside of and closest to the loop is deemed the start
value, which is also loop invariant, of the loop induction
variable. For case 3©, we also traverse all the phi nodes
in the loop header block and extract the phi node which
equals the loop induction instruction. Then the updated value
of the loop induction variable equals the return value of this
phi node when taking the loop latch block as the incoming
value. With the start value, the end value, and the step
size of the loop induction variable obtained, the loop bound
is calculated as the induction time of the loop induction
variable within the loop: loopBound = endValue−startValue

stepSize .
With regards to the nest loops, the analyzed result only

indicates the loop bound of the basic block at its current loop
level and each of the outer loop bound values equals the loop
bound value of one of the preceding basic blocks, which lies
exactly at its corresponding loop level. For each basic block
in the nest loop, at each upper loop level, we record its
closest preceding basic block so that the nest loop chain is
maintained, for ease of the later execution trace generation.
If the deduced loop bound relies on the induction variable
of the outer loop, then we record the different loop bound
values when the outer loop iterates. During our experiments,
the aforementioned static analysis manages to give the loop
bound of all the loop basic blocks in the test kernels.

3) CFG branch extraction: We extract the triggering
condition of each branch by analyzing the phi and br
instructions within the head and tail basic blocks of that
branch path. The br instruction is associated with a cmp
instruction from which we can deduce the branch condition.
The branch condition is an expression that contains the
logical operation combination of several variables of which
some are conditional variables and the other are constants.
The conditional variable is represented as an SSA and it
can be further refined with one or more SSAs associated
with it. This is done by an iterative search, which terminates
when the termination SSA is: 1© a kernel argument. 2© a
temporary variable. 3© a memory load of the data pointed
by a kernel argument, which is a pointer parameter.

B. Runtime Behavior Analysis
1) Warp-based branch analysis: To determine whether a

branch condition is hit or miss, we evaluate the execution
of the branch paths in granularity of warps. As shown in
Section III-A3, the values of the branch conditional variables
can be classified into three cases. For case 1©, this branch
path is easily determined to be hit or miss since the input
kernel arguments are known. In case 2©, if the temporary
variable is thread-ID-dependent, i.e., the variable is the
return value of the aforementioned OpenCL work-item built-
in functions, then this branch path can also be determined
to be hit or miss, given the warp ID and the global and local
work size configuration of the target kernel. If the temporary



Algorithm 1: Execution Trace Generation

Input: CFG Entry Node B, CFG Exit Node E, Backedge Set BE,
Non-backedge Set NE, Basic Block Data Description List
BBInfoList, Warp ID wid, Mask Array M

Output: Kernel Execution Trace T
1 T ←∅, T←∅, τ ← B � Initialize the execution trace with entry node B
2 updateExecTrace(τ , T, BBInfoList, wid, M)
3 ST←∅ � Initialize a stack to store the header nodes of multiple branch paths
4 while τ �= E ∧¬ E.isVisited do � Terminate when exit node is visited
5 τ ← getTraceSuccNode(τ , B, BBInfoList, ST, T, BE, NE)
6 updateExecTrace(τ , T, BBInfoList, wid, M)

7 for i ← 0 to T.size() do
8 if M[i]! = 0 then � Remove branch miss nodes from the generated trace
9 T ← T+{T.at(i)}

10 return T

variable is the loop induction variable, we can also mask or
unmask this branch path, depending on the logical result
of the branch condition at different loop iterations. For the
remaining cases we assume this branch path is always hit.
For case 3©, because the value of this memory load can only
be determined at runtime, for the sake of conservation we
also assume this branch path is always hit.

2) Execution trace generation: Let’s first consider how
GPU walks along the CFG to execute the kernel. For Nvidia
GPUs, each OpenCL work item instance is mapped to a
thread and a group of 32 threads are bound together to
execute the instance in lock-step manner. This group of
threads is called a warp for Nvidia GPUs and the counterpart
for AMD GPUs is termed wavefront. When there exists
branch divergence within a warp, the threads would consume
the instructions in both branch paths and each thread only
reserves the processed result of the path where the branch
condition is hit. Turning back to the CFG, the basic blocks
within different branches are consecutively visited as if they
are sequentially processed.

We generate the execution trace in granularity of warps.
Therefore for the case when the branch condition is thread-
ID-dependent, the branch miss information is transformed
and associated with the warp ID, given the global and local
work size configurations. The basic block is represented as
the data structure shown in Listing 1.

struct BasicBlockInfo {
string BBName; // name of current BB
list<int> branchMissWarpID; // IDs of the warps that trigger branch miss
// branch miss info at different loop iteration
// string: name of the basic block that triggers the branch miss
// int: the exact iteration number for basic block #string when branch miss
map<string, int> branchMissLoopConfig;
int loopDepth; // greater than 1 when current BB is in a loop
string loopBoundExpr; // the loop bound expression
// BBs of which the loop bounds determine current BB’s loop bound
vector<string> associatedBBs;
string precedBB; // preceding BB closest to current BB at upper loop level
vector<int> bounds; // integer values of loop bounds at each loop level
vector<int> unvisitedCount; // store the visited counters at each loop level
bool isVisited; // true if current BB is visited over at each loop level

};
list<BasicBlockInfo> BBInfoList; // list of data description for BBs in CFG

Listing 1: Sample code of the basic block data description.

The information about the branch miss due to the warp
divergence and loop iterations is respectively stored in the

branchMissWarpID and branchMissLoopConfig
fields. The loopDepth field indicates the loop depth of the
basic block. Particularly, this value is set to 1 if the basic
block is not in a loop. The analyzed loop bound result is
stored in the loopBoundExpr field. As this expression
only indicates the loop bound of the basic block at its
current loop level, the actual loop bound values at each loop
level are calculated each time this basic block is visited
and these values are stored in the bounds field. If the
loop bound of the basic block is dependent on other basic
blocks, these associated basic blocks are stored as well (the
associatedBBs field). The preceding basic block that is
closest to the current basic block but lies at the upper loop
level is stored in the precedBB field so as to maintain the
nest loop chain. During the execution trace generation, the
visited counters of the basic block (the unvisitedCount
field) are recorded to indicate the visited status of the basic
block, i.e., at which loop level and with how many times
the current basic block is already visited. The isVisited
boolean is set to TRUE only if the basic block is visited
over at each loop level with the number of times equal to
the actual loop bound. Finally, the data descriptions of all the
basic blocks in the CFG are stored in a list BBInfoList.

Given the kernel CFG G = (V,E,B,E), where V is the set
of basic block nodes, E is the set of basic block connections,
B is the entry node and E is the exit node, the kernel
execution trace is generated via a loop-based bidirectional
branch search shown in Algorithm 1. The CFG is first passed
to a circular check to spilt the edge set E into the backedge
set BE and the non-backedge set NE. In this way, the CFG
is transformed into a Directed Acyclic Graph (DAG) and
the paths between any two nodes can be represented as finite
sequences of which all the nodes belong to the non-backedge
set NE. By default we have the following assumption:

Denote Vc as a set of nodes that construct a circle c in
the CFG, if there exists another circle node set Vc′ , then
formula (Vc ⊂ Vc′)∨ (Vc ⊃ Vc′)∨ (Vc ∩Vc′ = ∅) always
holds.

This assumption is reasonable for real-world program
because a node in a loop can only be reached from the
nodes in its surrounding loops but can never reach the nodes
in another loop that is beyond all of the outer loop layers
of the original loop. The above assumption ensures that no
backedge would wander among different circles in the CFG.

We perform a loop-based bidirectional branch search of
the CFG to generate the kernel execution trace. As shown
in Algorithm 1, the execution trace starts from the entry
node B and terminates when the exit node E is visited.
A node stack ST is used to store the header nodes of
multiple branch paths. An array M is used to store the
mask values for each node in the candidate trace T. The
mask value is set to 0 when the node to be appended to
T is a branch miss node. For each candidate node τ to
be appended to T, a function updateExecTrace() is
invoked to update the visited counters of τ and another
function getTraceSuccNode() is used to obtain the



Algorithm 2: updateExecTrace(τ , T, BBInfoList, wid, M)

Input: Candidate Node τ , Candidate Trace T, Basic Block Data
Description List BBInfoList, Warp ID wid, Mask Array
M

1 τ.bounds ← calcLoopBound(τ , BBInfoList) � update loop bounds
2 loopLevelVisitedCount ← 0, unvisitedLoopLevel ← 0
3 isBranchMissWarp ← FALSE, isBranchMissLoop ← FALSE
4 for i ← 0 to τ.loopDepth do
5 if τ.unvisitedCount〈i〉 = 0 then � i-th loop level is visited
6 loopLevelVisitedCount ← loopLevelVisitedCount+1

7 else � currently the trace iterates exactly at the i-th level of the loop
8 unvisitedLoopLevel ← i
9 break

10 if loopLevelVisitedCount �= τ.loopDepth then
11 for j ← 0 to unvisitedLoopLevel do � reset loop bounds
12 τ.unvisitedCount〈 j〉 ← τ.bounds〈 j〉
13 τ.unvisitedCount〈0〉 ← τ.unvisitedCount〈0〉−1

14 else � τ is visited over when the visited-loop-level count equals the loop depth
15 τ.isVisited ← TRUE

16 isBranchMissWarp ← checkBranchMissWarp(τ , wid)
17 isBranchMissLoop ← checkBranchMissLoop(τ , BBInfoList)

// set the mask value to 0 when τ is a branch miss node, otherwise set it to 1
18 M.add(¬ isBranchMissWarp ∧ ¬ isBranchMissLoop)
19 T← T+{τ}

successor node of τ to be appended to T. Finally, the branch
miss nodes are removed from T, based on the mask array
M, to generate the kernel execution trace T.

The implementation of function updateExecTrace()
is shown in Algorithm 2. First, the loop bounds of the
candidate node τ can be determined because these values are
related to the loop bound expression (τ.loopBoundExpr)
and the current loop iterations and loop bounds of the as-
sociated basic blocks (τ.associatedBBs), and all these
information can be calculated before visiting τ at its current
loop level (Line 1 in Algorithm 2). Subsequently, the visited
counters of τ are checked to determine at which loop level
the node τ is visited (Line 4−7 in Algorithm 2). Each
time the unvisited count value at the innermost loop level is
decreased by 1 (Line 13 in Algorithm 2). The update of the
visited counters is implemented via a decrement operation
with borrowing, i.e., each time the unvisited count value at
loop level λ is reduced to zero, this value is reset to the loop
bound at loop level λ and the unvisited count at loop level
(λ +1) is decreased by 1 (Line 11−11 in Algorithm 2). If
the unvisited count values of τ at all loop levels are zero,
then this node is labeled as visited (Line 15 in Algorithm
2). At last, the branch miss information is used to determine
whether τ is a branch miss mode. The corresponding mask
value is written to the mask array M and node τ is appended
to the candidate trace T (Line 16−19 in Algorithm 2).

Algorithm 3 gives the detailed implementation of the
function getTraceSuccNode(). To find the successor
node of τ to be appended to T, the backedge set BE is first
searched to get the destination node (element in DBE) of the
backedge whose source node is τ (Line 2−2 in Algorithm
3). The candidate backedge nodes (elements in D

′
BE

) are
chosen from the nodes in DBE of which the unvisited count
value at the innermost loop level equals neither zero nor the
loop bound value (Line 4−4 in Algorithm 3). The successor

Algorithm 3: getTraceSuccNode(τ , B, BBInfoList, ST, T,
BE, NE)

Input: Current Trace Tail Node τ , CFG Entry Node B, Basic Block
Data Description List BBInfoList, Node Stack ST,
Candidate Trace T, Backedge Set BE, Non-backedge Set NE

Output: Candidate Trace Successor Node τ (overwritten)

1 DBE ←∅, D′
BE

←∅, DNE ←∅, D′
NE

←∅, SNE ←∅

// first try to find a candidate successor node from the backedges
2 if ∃ be ∈ BE,τ = be.srcNode then
3 DBE = {be.destNode | be ∈ BE,τ = be.srcNode}
4 foreach dbe ∈ DBE do � get candidate nodes that are not visited over
5 if dbe.unvisitedCount〈0〉% dbe.bounds〈0〉 �= 0 then
6 D

′
BE

← D
′
BE

+ {dbe}
7 if D′

BE
�=∅ then

8 if τ ∈ D
′
BE

then � there is a backedge from τ to itself
9 return τ � τ is not visited over at its current loop level

10 else
11 foreach d′

be ∈ D
′
BE

do
12 PB ← getNodesInPath(d′

be, τ)

13 IBE ← D
′
BE

∩PB

14 if IBE �=∅ then
15 return IBE〈0〉 � return the closest-to-τ node

// backedge search fails, try to find the successor node from the non-backedges
16 else if ∃ ne ∈ NE,τ = ne.srcNode then
17 DNE = {ne.destNode | ne ∈ NE,τ = ne.srcNode}
18 foreach dne ∈ DNE do � get the closest-to-τ non-backedge nodes
19 PN ← getNodesInPath(τ , dne)
20 if DNE ∩PN =∅ then
21 D

′
NE

← D
′
NE

+ {dne}
22 if D′

NE
�=∅ then

23 foreach d′
ne ∈ D

′
NE

do � get nodes in other backedges
24 if ∃ ben ∈ BE, d′

ne = ben.srcNode then
25 SNE ← SNE + {d′

ne}
26 sne = (SNE �=∅) ? SNE〈0〉 : D

′
NE

〈0〉 � candidate successor
27 if ST �=∅ then
28 PS ← getNodesInPath(B, sne)
29 if ST〈topElement〉 ∈ PS then
30 τ ← ST〈topElement〉, ST.pop()
31 else � the stack top node denotes another branch path
32 τ ← sne � but the current path is not visited over

33 return τ
34 else � the current path is the last path of the current branch
35 D

′
NE

← D
′
NE

−{sne} � return the candidate successor node
foreach d′′

ne ∈ D
′
NE

do � store the remaining header nodes
36 ST.push(d′′

ne)

37 return sne

// all edges starting from τ are visited, get the successor from the node stack
38 else
39 τ ← ST〈topElement〉, ST.pop()
40 return τ

node of τ to be appended to T is either itself if τ is in D
′
BE

or the closest-to-τ node in the intersection set of D
′
BE

and
the path node set PB in which each node denotes a reachable
path to τ (Line 8−10 in Algorithm 3).

If there exists no backedge that starts from τ , or all the
backedges starting from τ are visited N times where N is
the loop bound in the innermost level, the non-backedge
set NE is searched to obtain the closest-to-τ non-backedge
destination node set D

′
NE

(Line 16−16 in Algorithm 3).
The first node in D

′
NE

is chosen as a candidate successor
node sne if none of the nodes in D

′
NE

is a source node of
a backedge, otherwise this source node becomes sne (Line



26 in Algorithm 3). If node stack ST is not empty and the
stack top node ST〈topElement〉 lies between a reachable
path from the entry node B to sne, then the successor node
of τ to be appended to T is ST〈topElement〉, otherwise
the successor node to be appended to T is sne (Line 27−27
in Algorithm 3). If ST is empty, then sne is the successor
node of τ to be appended to T and the remaining nodes in
D
′
NE

are pushed into ST (Line 35−34 in Algorithm 3).
If all the edges starting from τ are visited, then the stack

top node ST〈topElement〉 is popped as successor node
of τ to be appended to T (Line 39−40 in Algorithm 3).

3) Cache behavior analysis: As modern GPUs have
rather complex memory hierarchy that comprises caches,
we first use micro-benchmarks to obtain the cache hit and
miss latencies of the local, constant, and global memory
accesses. As the local memory in OpenCL is mapped to
the GPU shared memory, we notice that the local memory
access has no caching issue and therefore does not differ-
entiate the cache hit/miss access, which is also observed
and demonstrated by the micro-benchmarking results. When
handling the constant and the global memory accesses,
the SMs first try to fetch the data in the constant or L2
data cache and if cache miss occurs, the data are fetched
again from the off-chip DRAM. To model this caching
behavior, we dissect the constant data cache and the L2
cache with micro-benchmarks [21] [22] to obtain the detailed
cache configurations, such as the cache size, the cache line
size, and the cache associativity. In OpenCL, the observed
constant memory size is 64KB and the DRAM size is
obtained from the official documents. The L2 cache size is
obtained from the CUDA built-in querying commands. We
assume that all the caches use the least recently used (LRU)
replacement policy.

For each memory access, i.e. the load or store IR
instruction in the execution trace, we obtain the memory
referencing address and analyze the number of memory
transactions that a warp would perform for this memory
instruction, since the threads in a warp often coalesce the
data fetch if the memory addresses for the threads are
contiguous. As we do not execute the kernel on the real
platform, we construct a virtual addressing space of the
constant data cache and the L2 cache, and then assign
the specific addresses to the constant and global variables
according to their data size. In this way, the cache behavior
is analyzed using the reuse distance theory and the cache
hit/miss for each memory transaction is estimated given the
cache configuration [23].

4) Discussion: Limitation As we do not use profiling
or measurement results of the target kernel, the execution
behavior of irregular kernels cannot be exactly determined
by the static analysis. Consequently the loop bound analysis
and the warp-based branch analysis produce slightly pes-
simistic results when the values of the loop trip count and the
branch condition rely on the values of the program runtime
parameters. However, the major part of the applications
that can potentially benefit from GPU acceleration exhibit
relatively regular shapes, i.e., the loop trip count is rather

stable and the number of branches is minimized by the
program developer as well. With regards to the kernels
with data-dependent divergence, because the static analysis
module can still extract the branch condition and loop
iteration variables of the control statements, the dynamic
execution flow can also be determined if all the input data
are known in advance. However this needs the step-by-step
simulation of the program execution, which may incur much
more time consumption. This is one aspect of future work.

Scalability analysis The proposed performance analysis
framework in this paper targets OpenCL kernels and there-
fore it can be extended to any platform that supports OpenCL
applications. For other parallel languages such as CUDA,
since our framework takes LLVM bitcode files as input,
CUDA kernels can also be analyzed if either the LLVM
bitcode file of the kernel can be obtained or the CUDA
kernels can be transformed into the OpenCL counterparts.

IV. TRACE-BASED SIMULATION

The execution trace T generated from the source-level
analysis is warp-ID-dependent and during the simulation
each warp consumes its corresponding trace. To estimate
the kernel execution time with given program input and the
global and local work size configurations, we construct an
IR instruction pipeline and then simulate the trace on the
pipeline in granularity of a round of active work groups.

A. IR instruction pipeline

1) Determining the number of active work groups: Given
a kernel with NDRange configuration as global work size
Sglobal and local work size Slocal . Each work item consumes
Nreg on-chip registers (private memory) and Nsm bytes shared
memory (local memory). The number of active work groups
Nawg per Streaming Multiprocessor (SM) is subject to three
constraints: the architectural limit, the register limit, and
the shared memory limit. The architectural limit of the
allocatable work groups is

Nlim wg arch = min(Bwg SM,� Bwarp SM

Nwarp per wg
�) (1)

Nwarp per wg = �Slocal

Twarp
� (2)

where Nwarp per wg is the number of warps per work group,
Twarp is the number of threads per warp, Bwg SM and
Bwarp SM is the maximum allocatable work groups and
warps per SM, respectively. The number of total on-chip
registers limits the maximum concurrent work group as

Nlim wg reg =

{
0, Nreg > Breg wi

�Nlim warp reg
Nwarp per wg

�×�Breg SM
Breg wg

�,otherwise (3)

Nlim warp reg = f loor(
Breg wg

ceil(Nreg ×Twarp,Greg)
,Gwarp) (4)

where Breg wi, Breg SM , and Breg wg are the maximum al-
locatable registers per work item, SM, and work group,



Computation Memory waiting Constant memory delay
Local memory delay Global memory delay Barrier

Warp
1
2
3
4
5
6
7
8

Group #1

Group #2

0 t1 t2 t3 t4 . . . Timelinetime interval

Synchronization

Synchronization

tgap

Figure 2: Simulation of a sample execution trace on the warp pipeline.

respectively. Greg and Gwarp are the minimum allocation
unit of register and warp, respectively. Nlim warp reg is the
maximum number of potentially allocatable active warps
subject to limited on-chip registers. ceil(x,y) and f loor(x,y)
are functions used to round the value x up and down to the
nearest multiple of y, respectively. The number of active
work groups due to shared memory limit is calculated as

Nlim wg sm =

{
0, Nsm alloc > Bsm wg

� Bsm SM
Nsm alloc

�, otherwise (5)

Nsm alloc = ceil(Nsm,Gsm) (6)

where Bsm wg and Bsm SM are the maximum allocatable
shared memory size per work group and SM, respectively.
Nsm alloc is the actual allocated shared memory size per work
group and Gsm is the minimal shared memory allocation size.

With Equation (1), (3) and (5), the number of active work
groups for a kernel is therefore determined as

Nawg = min(Nlim wg arch,Nlim wg reg,Nlim wg sm) (7)

2) Determining the latencies of the arithmetic and mem-
ory access operations: The execution trace consists of the
arithmetic and memory access operations to be executed on
the target GPU. To obtain the latencies of these operations,
we use a set of OpenCL micro-benchmarks to measure the
arithmetical and memory throughout of the target GPU [24].
We consider the basic arithmetic operations listed in Table I
and the latencies of memory access from the OpenCL local,
constant, and global memory. The private memory access
is essentially on-chip register read/write and this memory
access is deemed arithmetic operation since the pre-allocated
registers are excluded by individual work item and therefore
accessing them incurs no contention latency. The profiling
of basic arithmetic operations is conducted over a set of
computation-intensive kernels which repeatedly execute the
desired operations for millions of times. To prevent the
compiler optimization, the source and destination operands
are exchanged after each time the operation is completed.
By fine tuning the local and global work size of each
kernel, the number of active warps per SM is thereupon
dynamically regulated so as to obtain the corresponding
execution latencies ranging from the minimal to the maximal
attainable number of active warps.

With regards to the memory access, we use pointer chas-
ing to generate continuous data access to a large array filled

in the respective memory space. To measure the cache hit
and miss latencies, the pointer chasing stride offset is set to 1
and the cache line size, respectively. During the simulation,
the memory latency is scaled with a factor equaling the ratio
of the maximal to the actual number of active warps, since
all the active warps share the memory bandwidth equally.
The profiled results of the memory access characterize the
average time period that starts from the memory instruction
issue stage to the final data acquisition stage. We term this
whole time period as the memory access “latency” and this
time cost is differentiated from the time period when the
data is actually read/written by the hardware control circuit,
which is called memory access “delay”. We assume memory
access delay is fixed while memory access latency varies
depending on whether the access is a cache hit or miss.

B. Calculating the trace simulation time

Given the kernel execution trace T, the latencies of the
arithmetic and memory access operations LAT, and the cache
miss information cacheMissInfo in the trace, we devel-
op a lightweight simulator to manoeuvre a dummy execution
of the kernel with a round of active work groups Nawg. A
sample simulation of this active work groups is conducted
on the IR instruction pipeline and the time consumption can

be denoted as T spec(LAT,cacheMissInfo)
pipeline(Nawg,T)

. The estimated

execution time of the kernel run is

Tkernel = T spec(LAT,cacheMissInfo)
pipeline(Nawg,T)

×� Sglobal

Slocal ×NSM
�× 1

Nawg
(8)

where NSM is the total number of SMs on the target GPU.
The trace simulation is implemented with a group of

active warps continually consuming the arithmetic and mem-
ory access operations in presence of the shared resource
and cache contention. For each memory access, we assume
memory read/write delay is constant while the waiting period
of servicing memory read/write varies depending on whether
the memory access is cache hit or miss. We model the
latency of memory read/write as three parts: the pre-waiting
latency, the read/write delay and the post-waiting latency, of

Table I: List of profiled arithmetic operation types.

Data type Operations
int/uint add, sub, mul, div, rem, mad, shl, shr

float/double add, sub, mul, div, mad
float/double sin, cos, tan, exp, log, sqr, sqrt



Table II: Summary of the parameters used in our performance estimation framework.

No. Parameter Definition Obtained
1 Sglobal Number of global work size Program configuration

2 Slocal Number of local work size Program configuration

3 Nreg Number of registers used per work item Kernel compilation

4 Nsm Bytes of shared memory used per work item Kernel compilation

5 Bwg SM Maximum allocatable work groups per SM Hardware specification

6 Bwarp SM Maximum allocatable warps per SM Hardware specification

7 Breg wi Number of maximum allocatable registers per work item Hardware specification

8 Breg SM Number of maximum allocatable registers per SM Hardware specification

9 Breg wg Number of maximum allocatable registers per work group Hardware specification

10 Bsm wg Bytes of maximum allocatable shared memory per work group Hardware specification

11 Bsm SM Bytes of maximum allocatable shared memory per SM Hardware specification

12 Gsm Number of minimum allocation bytes of shared memory Hardware specification

13 Greg Number of minimum allocation unit of registers Hardware specification

14 Gwarp Number of minimum allocation unit of warps Hardware specification

15 FREQcore Clock frequency of the thread core on target GPU Hardware specification

16 NSM Number of SMs on target GPU Hardware specification

17 Twarp Number of thread cores per warp Hardware specification

18 Nawg Number of active work groups Equation 7

19 LAT Latencies of arithmetic and memory access operations Micro-benchmarking

20 cacheMissInfo Cache hit/miss information about the memory access Cache behavior analysis

21 T Kernel execution trace Algorithm 1

22 T spec(LAT,cacheMissInfo)

pipeline(Nawg ,T)
Estimated kernel execution time with a round of active work groups Simulation

23 Tkernel Estimated total kernel execution time Equation 8

which the sum is the profiled cache hit or miss latency.

For better illustration, Figure 2 gives an example to illus-
trate how an execution trace is fed into the warp pipeline.
The sample trace is defined as (comp, constMemAccess,
comp, localMemAccess, barrier, comp, globalMemAccess).
The number of active work groups is 2 and each work group
consists of 4 warps. Each time before a warp consumes a
new operation in the trace, it will first check whether the
required contention resource is idle. If so it would lock
the resource and notify a value denoting the latency of
consuming the current operation, otherwise it would notify a
value denoting the time needed to wait until the resource is
released. If the warp hits a barrier for synchronization, it will
notify value 0 and wait for the other warps in the same work
group to arrive at this barrier. A global timer starts at time
point 0 and increases by a unit of time interval (indicated by
the time point of t1, t2, t3, . . . on the Timeline-axis in Figure
2) when all the active warps have notified a time value.
During every time interval, the timer checks the notification
time of each warp and chooses the minimum positive time
value as the incremental time interval. Once all the active
warps finish their own traces, the global timer gives the total
time of consuming the execution trace.

C. Discussion and summary

As observed in Figure 2, the execution time of the sample
trace is computation-bound and the synchronization latency
is hidden by the computation pipeline. However, if there
exist more memory access operations before the barrier,
there would be a gap between the 2-nd and 3-rd computation
component (indicated by time point tgap in Figure 2) and in
this case the synchronization latency would contribute to the
final execution time. Consequently, analytical performance
estimation methods are normally subject to kernel variances
because the order that the computation and memory com-
ponents appear in the execution trace is inconstant and

unpredictable, which has a tremendous impact on calculating
the consuming latency of the instruction pipeline.

Table II summarizes the parameters used in our pro-
posed framework. As shown, our method requires neither
the pre-execution of the whole or a portion of the target
kernel nor the profiled results of the hardware performance
counter metrics. The used information are the program
configuration parameters, kernel compilation report, and the
hardware specifications. The micro-benchmarking metrics
are obtained by calibrating the target GPU once and these
data can be reused for the performance prediction of all
the kernels running on this platform. During the simulation,
each kernel takes the same kernel compilation results and
the same group of execution traces as inputs. For each
specific run, only the corresponding global and local work
size configurations are fed to the simulator to obtain the
estimated results. Moreover, only a round of active work
groups is actually fed to the pipeline and therefore the
simulation time cost is small.

Overall speaking, compared with traditional architectural
simulation methods [25], the proposed framework requires
less input information and can give faster estimation out-
comes. Our framework does not require the instruction trace
representatives generated from the kernel runs, which is
subject to specific workloads and may incur substantial effort
when the input parameters vary a lot.

V. EXPERIMENTS AND DISCUSSION

A. Experimental setup
We use four COTS GPUs to evaluate our performance es-

timation framework and the detailed information is shown in
Table III: Hardware specification of the test GPUs.

Name Architecture SMs/Cores Clock freq.(MHz)
Quadro K600 Kepler GK107 1/192 876

GeForce GTX645 Kepler GK106 3/384 824

Quadro K620 Maxwell GM107 3/384 1058

GeForce 940M Maxwell GM108 3/384 1072



Table IV: Accuracy and simulation time consumption of testing our framework on the Rodinia [17] benchmark.

Benchmark name Kernel name
Number of Average MAPE (%) Time
total design trace Quadro GeForce Quadro GeForce per

configurations length K600 GTX645 K620 940M run (ms)

backprop
bpnn adjust weights 11,450 41 24.24 24.34 22.16 22.12 23.03
bpnn layerforward 11,450 74 19.38 27.05 21.14 26.55 40.08

bfs
BFS 1 14,028 79 11.55 7.969 10.16 20.47 60.09
BFS 2 14,028 7 14.43 20.24 9.879 11.73 10.40

b+tree
findK 42,000 100 35.68 31.12 8.941 12.86 72.93
findRangeK 42,000 163 40.63 39.80 13.42 13.42 119.66

cfd

compute flux 3,072 616 15.32 19.81 9.077 14.41 77.55
compute step factor 3,072 33 12.83 27.76 43.04 3.315 14.01
initialize variables 3,072 18 11.89 9.149 29.65 7.902 15.38
memset 12 2 8.085 25.80 6.803 18.83 7.081
time step 3,072 31 5.191 18.38 18.04 16.20 23.78

hotspot hotspot 1,024 22,093 15.36 14.21 4.325 9.389 4,130.09

kmeans
kmeans c 40,000 2,338 12.95 22.99 19.06 20.37 824.60
kmeans swap 40,000 533 10.23 19.80 15.76 17.74 219.67

lud lud internal 8,267 108 17.41 23.18 8.278 34.18 45.10

nn nearestNeighbor 66 9 10.89 26.84 7.090 12.38 6.030

nw
nw kernel1 19,408 1,431 9.228 21.88 9.090 25.86 65.27
nw kernel2 19,408 1,431 9.239 24.69 8.551 24.87 63.99

particlefilter particle naive 104 52,387 19.59 16.99 13.82 11.93 11,751.93

pathfinder dynproc 31,025 1,469 3.716 6.560 14.33 9.737 1,055.97

Average 15,327.9 4,148.15
15.39 21.43 14.63 16.71 931.3317.04

Table III. These GPUs are from recent Kepler and Maxwell
architectures with different compute capacities so as to
demonstrate the robustness of our framework. We test the
framework with 20 OpenCL kernels from the Rodinia [17]
benchmark. We use the default input from the benchmarks
and conduct a design space exploration that results in a total
of 306,558 estimation runs. The simulation is performed on
a desktop computer with an Intel R© CoreTM i7-3770 CPU.

B. Prediction results
1) Accuracy: Table IV presents the experimental results.

The third column in Table IV lists the number of total design
configurations of each kernel and the fourth column indicates
the average number of IR instructions in the execution trace
during the simulation. The average MAPE on the four GPUs
is 17.04% and on each GPU, the optimal kernel prediction
can achieve an average MAPE of less than 7%. Overall, our
performance estimation framework is robust and accurate.

To observe how close our predicted outcome can get to
the actual measured results, we plot the result comparison
in Figure 3. Due to space limitations, Figure 3 only presents
the results of Quadro K620 and the remaining GPUs show
similar trends. To clearly show the variation trend of the
execution time, for some kernels we only plot partial results
in the whole design space because the curves become too
dense if the total number of design configurations is too
large. The design configuration ID on the x-axis represents
the number of different program input and local work size
settings. The execution time results are sorted in an ascend-
ing order with the global and local work size as primary and
secondary key, respectively. For some kernels, the program
input is also taken as the sorting key. Note that the number of
total design configurations is very large and therefore is rep-
resented in the scientific notation format, except for kernel
memset, nearestNeighbor and particle_naive.
The y-axes of kernel findK, findRangeK, kmeans_c,
kmeans_swap, particle_naive and dynproc are

represented in logarithmic scale because the execution time
shows several orders of magnitude difference in the absolute
value. On the whole view, our predicted results accurately
follow the variation trend of the actual execution time across
the design space. This reveals that the execution trace and
the simulation remarkably reflect the runtime behavior of
the kernels, which means that our framework can also help
users find the optimal execution even for a vast design space.

As observed in Figure 3, the MAPE turns out higher
when the actual execution time is a few microseconds,
particularly for kernel nw_kernel1 and nw_kernel2
(shown in Figure 3q and 3r). This is because in these cases
the kernel overhead dominates the execution time and the
predicted time is only a small portion that contributes to
the final runtime performance. The kernel overhead includes
prerequisite resource allocation, warp scheduling, and kernel
launching, etc. The measurement of kernel overhead is
infeasible as it is strongly associated with the specific kernel.
A possible way is to attach a fixed threshold to the predicted
outcome, but again how to set this threshold is pendent.

backprop The MAPEs of this application across four
GPUs are quite stable (around 25% in Table IV). The main
error source of kernel bpnn_adjust_weights is that
there are multiple thread-ID-dependent branches and nest
branches in the execution flow. Our generated execution
trace covers as more branches as possible if the estimated
run might step into that branch, thus incurring slight over-
estimation in some cases (shown in Figure 3a). For kernel
bpnn_layerforward, the underestimation in Figure 3b
comes from barrier synchronization and kernel overhead.

bfs The prediction of this application is better than
backprop, due to the much less branches. As seen in Figure
3c and 3d, kernel BFS_1 suffers from larger overestimation
than BFS_2 when the work group size is very small, this is
caused by the assumed more cache misses than expected.

b+tree The MAPEs of the kernels in this application



(a) bpnn adjust weights (b) bpnn layerforward (c) BFS 1 (d) BFS 2

(e) findK (f) findRangeK (g) compute flux (h) compute step factor

(i) initialize variables (j) memset (k) time step (l) hotspot

(m) kmeans c (n) kmeans swap (o) lud internal (p) nearestNeighbor

(q) nw kernel1 (r) nw kernel2 (s) particle naive (t) dynproc

Figure 3: Comparison of the estimated and measured execution time of the test kernels in Table IV (Quadro K620).

are higher on Kepler than Maxwell GPUs. One possible
explanation is that the kernels contain structure data and
how these data are organized in memory varies across
architectures. Moreover, the multiple runtime-dependent nest
branches in the main loop body of both kernels cause work-
load imbalance and also deteriorate the prediction accuracy.

cfd Estimation of kernel initialize_variables
shows slightly better accuracy in the variation amplitude
(Figure 3i), which is the same case as kernel memset
(Figure 3j). For the remaining three kernels, the error stems
from the variant memory access behavior.

hotspot This application contains rather regular work-
load distribution across work items and our framework
performs the prediction very well, as shown in Figure 3l.
The minor underestimation is caused by the kernel overhead,
because the execution time of this kernel is less than 60 us.

kmeans Figure 3m and 3n show that predicted outcome
of kernel kmeans_swap reveals larger fluctuations than
kmeans_c. We attribute this to the continuous global mem-
ory data exchange which incurs irregular memory access.

lud & nn These two applications exhibit rather accurate
predictions since both kernels have no branch divergence
and lud_internal only has a loop with fixed bound.

nw Both nw_kernel1 and nw_kernel2 have several

runtime-dependent branches, which makes the estimation
more pessimistic. However, Figure 3q and 3r reveal counter-
expectation results. The reason is that kernel overhead also
contributes to the MAPE and it is nonnegligible because
the total execution time is only a few microseconds. Conse-
quently, kernel overhead compensates for the overestimation
and even increases the time consumption for most cases.

particlefilter Our predicted execution time shows over-
estimation for kernel particle_naive in Figure 3s,
because there exists runtime-dependent branches in the loop,
which constructs the unevenly distributed workload across
work items. Our estimation always assumes the longer exe-
cution trace for all the warps and therefore is conservative.

pathfinder Similar to lud and nn, prediction results on
this application is rather accurate, as loops are iterated with
fixed times and the branches are equally visited by the warps.

To summary, our hybrid framework performs well on the
test benchmarks in terms of MAPE. The variation trend of
the kernel execution time in the design space is accurately
captured by the estimated results. However, the influence of
the kernel overhead is significant when the overall execution
time is very small, i.e., a few microseconds in our test. In
these cases, the dominant factor that contributes to the kernel
execution time is not the computation and memory access la-



(a) KERNEL PRE (k600) (b) KERNEL PRE (gtx645) (c) KERNEL PRE (k620) (d) KERNEL PRE (940m)

(e) KERNEL LD (k600) (f) KERNEL LD (gtx645) (g) KERNEL LD (k620) (h) KERNEL LD (940m)

(i) KERNEL PF (k600) (j) KERNEL PF (gtx645) (k) KERNEL PF (k620) (l) KERNEL PF (940m)

Figure 4: Comparison of the estimated and measured results of the lane detection on different GPUs.

tency but the interference from the overhead. Our framework
may incur overestimation for irregular workloads, due to the
conservative branch divergence analysis. However, note that
bfs is also an irregular application and our framework can
still gives rather good estimation results.

2) Simulation time cost: The last column in Table IV
presents the average simulation time of predicting the exe-
cution time of each kernel run. As shown, on average our
framework can give prediction results within 0.931 second,
which is much faster than using a fine-grained simulator [15]
[16]. The consumed times of estimating kernel hotspot
and particle_naive are longer than the remaining
kernels due to their extremely long execution traces.

We compare the simulation time of our framework with
the widely-used GPGPU-Sim [25] and Table V gives the
results. As shown, the simulation cost of our method is only
a few seconds, while GPGPU-Sim takes time in magnitude
of minutes. Our framework achieves an average speedup of
164.39× over GPGPU-Sim, in terms of the simulation time
cost, on the test benchmarks.

VI. CASE STUDY WITH LANE DETECTION

To demonstrate the effectiveness of the proposed frame-
work, we use a real-world lane detection [26] as test case.
The algorithm consists of three steps, namely pre-processing,
lane detection, and lane tracking. For each image frame,

Table V: Comparison of the simulation time costs of

GPGPU-Sim [25] and our framework.

Benchmark Simulation time (ms) SpeedupGPGPU-Sim Our framework
bfs 4,517,000 70.49 64,080.01

hotspot 200,000 4,130.09 48.43

lud 168,000 45.10 3,725.06

nn 3,000 6.030 497.51

nw 1,673,000 129.26 12,942.91

pathfinder 280,000 1,055.97 265.16

Geo. mean 244,433.52 148.69 164.39

the pre-processing step extracts the information about the
lane markings and then passes the processed image to the
next step. Depending on whether the estimated positions of
the lane markings in previous frame can still be applied
to the current frame, the image is processed either reusing
the lane detection step to detect the positions or using
particle filter to track the previous positions of the lane
markings. The aforementioned three steps are mapped to
three kernels and Table VI gives the program configuration
of the application during our experiment. For 640×480 input
videos, the Region Of Interest (ROI) size of KERNEL_PRE
is 512×96 and the other two kernels are configured with
global work size ranging from 210 to 213.

We collect the timing information of these kernels for
the whole video and then calculate the averaged results per
frame. Figure 4 gives the results of the predicted and the
measured time. As can be observed, for all the kernels across
the different GPUs, the estimations keep the same variation
trend with the measured results. The average MAPEs of the
three kernels are 15.45%, 19.60% and 17.10%, respectively.
The average prediction error for this application is 17.38%.

VII. RELATED WORK

There exist lots of studies targeting performance esti-
mation of applications or benchmarks [27] [28] on CPUs
[29] [30]. These approaches can provide reference to the
performance analysis of GPUs.

In general, GPU performance estimation techniques can
be divided into four categories: analytical, machine learning
based, measurement based, and simulation based methods.
In the following we briefly summarize these approaches.

Table VI: Configuration of the lane detection kernels.

Kernel name Global size Local size No. of designs
KERNEL_PRE 49,152 {21, 22, 23, . . . , 210} 10

KERNEL_LD 210, 211, 212, 213 {21, 22, 23, 24, 25} 20

KERNEL_PF 210, 211, 212, 213 {21, 22, 23, 24, 25} 20



Analytical methods first give an abstraction of the work-
load and hardware, and then use equations [31] to deduce the
elapsed time of executing the workload on GPUs. The high-
level abstraction metrics are typically thread- and warp-level
metrics [32] [33]. Other researchers proposed high level
prediction methods [34] [35] based on parallel programming
models, such as BSP [36], PRAM [37], and QRQW [38].
Quantitative analysis techniques [39] [40] [41] [42] are
also used to abstract the components that contribute to
the kernel performance. Most analytical methods require
extra dynamic profiling to obtain hardware performance
counter metrics and some models are either outdated for
new architectures or difficult to use due to the substantial
calibration effort. Machine learning based methods first con-
struct the training set by sampling program- and platform-
related metrics as features and then predict the performance
using training models, such as K-nearest clustering [43],
regression [7], random forest [9] [44], neural network [8]
[45], and so on. Machine learning based methods can esti-
mate the performance with fast response, since the training
stage is performed off-line. However, feature sampling of
the hardware counter metrics over the huge design space
is tedious and the trained model is sensitive to unknown
applications. Measurement based methods grasp the program
behavior by running a portion of the target workload as
samples to seek the correlation and interference between
individual work groups [46] and then estimate the consumed
time when the entire kernel is to be executed. In general,
measurement based approaches are universally applicable to
different architectures, however the effort to calibrate the
model parameters for various applications and platforms is
onerous. Simulation based methods simulate in details how
GPU processes target workloads in cycle level and record the
intermediate status of the hardware and software functional
modules at runtime. In this way, program behavior and
performance can be effectively and accurately sketched [47].
There are some widely-used simulators such as GPGPU-
Sim [25], Barra [48] and Ocelot [49]. Recently a RTL-level
simulator [50] is announced but few studies are reported.

With regards to GPU simulation acceleration, there exist
some research that either choose a portion [51] or perform a
pre-characterization [52] of target workloads and then derive
the execution time from the simulation results. There are
also studies that focus on the generation of GPU benchmarks
[53] to reveal GPU’s performance spectrum, and modeling of
GPU memory systems [54]. These studies are supplementary
for GPU performance estimation techniques.

VIII. CONCLUSION

This paper proposes a hybrid framework to estimate the
performance of parallel workloads on GPUs. The high-
level source code is analyzed to extract the kernel execu-
tion trace, which is used to dynamically mimic the kernel
execution behavior to deduce the kernel execution time.
Our framework requires no prior knowledge about hardware
performance counter metrics or pre-executed measurement
results. Experimental results reveal that our framework can

accurately grasp the variation trend and predict the execution
time with high accuracy and little simulation time cost.

ACKNOWLEDGMENT

This work is supported in part by the China Scholarship
Council (CSC) under the Grant Number 201506270152,
National Natural Science Foundation of China under the
Grant Number 61872393, and National Science Foundation
under the Grant Number NSF-CCF-1657333, NSF-CCF-
1717754, NSF-CNS-1717984, and NSF-CCF-1750656.

REFERENCES

[1] A. Nukada and S. Matsuoka, “Auto-tuning 3-d fft library for cuda
gpus,” in Proceedings of International Conference on High Perfor-
mance Computing Networking, Storage and Analysis (SC), p. 30,
ACM, 2009.

[2] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning
sparse matrix-vector multiplication for gpu architectures.,” in 5th
International Conference on High-Performance Embedded Architec-
tures and Compilers (HiPEAC), pp. 111–125, Springer, 2010.

[3] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on gpus,” in ACM SIGPLAN notices,
vol. 45, pp. 115–126, ACM, 2010.

[4] A. Davidson, Y. Zhang, and J. D. Owens, “An auto-tuned method
for solving large tridiagonal systems on the gpu,” in IEEE 25th
International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 956–965, IEEE, 2011.

[5] C. Nugteren and V. Codreanu, “Cltune: A generic auto-tuner for
opencl kernels,” in IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pp. 195–202, IEEE,
2015.

[6] T. L. Falch and A. C. Elster, “Machine learning based auto-tuning
for enhanced opencl performance portability,” in IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDP-
SW), pp. 1231–1240, IEEE, 2015.

[7] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-
architecture performance prediction (xapp) using cpu code to predict
gpu performance,” in Proceedings of the 48th International Sympo-
sium on Microarchitecture (MICRO), pp. 725–737, ACM, 2015.

[8] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,”
in IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA), pp. 564–576, IEEE, 2015.

[9] K. O’neal, P. Brisk, A. Abousamra, Z. Waters, and E. Shriver,
“Gpu performance estimation using software rasterization and ma-
chine learning,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 5s, p. 148, 2017.

[10] S. Madougou, A. Varbanescu, C. de Laat, and R. van Nieuwpoort,
“The landscape of gpgpu performance modeling tools,” Parallel
Computing, vol. 56, pp. 18–33, 2016.

[11] Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. John, H. Jin, and C. Xu,
“Accelerating gpgpu architecture simulation,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 41, pp. 331–332, ACM, 2013.

[12] J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee, “Tbpoint: Reducing
simulation time for large-scale gpgpu kernels,” in IEEE 28th Inter-
national Parallel and Distributed Processing Symposium (IPDPS),
pp. 437–446, IEEE, 2014.

[13] A. Munshi, “The opencl specification,” in IEEE Hot Chips Sympo-
sium (HCS), pp. 1–314, IEEE, 2009.

[14] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of
2nd IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), p. 75, IEEE Computer Society, 2004.

[15] S. Lee and W. W. Ro, “Parallel gpu architecture simulation framework
exploiting work allocation unit parallelism,” in IEEE International
Symposium on Performance Analysis of Systems and Software (IS-
PASS), pp. 107–117, IEEE, 2013.

[16] G. Malhotra, S. Goel, and S. R. Sarangi, “Gputejas: A parallel sim-
ulator for gpu architectures,” in IEEE 21st International Conference
on High Performance Computing (HiPC), pp. 1–10, IEEE, 2014.



[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IEEE International Symposium on Workload Characterization
(IISWC), pp. 44–54, IEEE, 2009.

[18] X. Xie, B. Chen, L. Zou, Y. Liu, W. Le, and X. Li, “Automatic loop
summarization via path dependency analysis,” IEEE Transactions on
Software Engineering (TSE), no. 1, pp. 1–1, 2017.

[19] M. Sinn and F. Zuleger, “Loopus: A tool for computing loop bounds
for c programs.,” in Proceedings of the Workshop on Invariant
Generation (WING), pp. 185–186, 2010.

[20] R. A. Van Engelen, “Efficient symbolic analysis for optimizing
compilers,” in International Conference on Compiler Construction
(CC), pp. 118–132, Springer, 2001.

[21] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through mi-
crobenchmarking,” in IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS), pp. 235–246, IEEE, 2010.

[22] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 28, no. 1, pp. 72–86, 2017.

[23] S. Wang, G. Zhong, and T. Mitra, “Cgpredict: Embedded gpu
performance estimation from single-threaded applications,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, p. 146, 2017.

[24] P. Thoman, K. Kofler, H. Studt, J. Thomson, and T. Fahringer,
“Automatic opencl device characterization: guiding optimized kernel
design,” in 17th International European Conference on Parallel
Processing (Euro-Par), pp. 438–452, Springer, 2011.

[25] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 163–174, IEEE, 2009.

[26] K. Huang, B. Hu, L. Chen, A. Knoll, and Z. Wang, “Adas on cots
with opencl: a case study with lane detection,” IEEE Transactions on
Computers (TC), 2017.

[27] K. Ganesan, J. Jo, and L. K. John, “Synthesizing memory-level
parallelism aware miniature clones for spec cpu2006 and implant-
bench workloads,” in IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS), pp. 33–44, IEEE, 2010.

[28] R. Panda, X. Zheng, S. Song, J. H. Ryoo, M. LeBeane, A. Gerstlauer,
and L. K. John, “Genesys: Automatically generating representative
training sets for predictive benchmarking,” in International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), pp. 116–123, IEEE, 2016.

[29] J. Chen, L. K. John, and D. Kaseridis, “Modeling program resource
demand using inherent program characteristics,” in Proceedings of
the ACM SIGMETRICS International Conference on Measurement
and modeling of computer systems, pp. 1–12, ACM, 2011.

[30] X. Zheng, H. Vikalo, S. Song, L. K. John, and A. Gerstlauer,
“Sampling-based binary-level cross-platform performance estima-
tion,” in Proceedings of the Conference on Design, Automation & Test
in Europe (DATE), pp. 1713–1718, European Design and Automation
Association, 2017.

[31] J. Lai and A. Seznec, “Break down gpu execution time with an ana-
lytical method,” in Proceedings of the Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, pp. 33–39, ACM,
2012.

[32] S. Hong and H. Kim, “An analytical model for a gpu architecture
with memory-level and thread-level parallelism awareness,” in ACM
SIGARCH Computer Architecture News, vol. 37, pp. 152–163, ACM,
2009.

[33] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and
W.-m. W. Hwu, “An adaptive performance modeling tool for gpu
architectures,” in ACM SIGPLAN Notices, vol. 45, pp. 105–114,
ACM, 2010.

[34] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. Narayanan,
and K. Srinathan, “A performance prediction model for the cuda
gpgpu platform,” in IEEE 16th International Conference on High
Performance Computing (HiPC), pp. 463–472, IEEE, 2009.

[35] M. Amarı́s, D. Cordeiro, A. Goldman, and R. Y. de Camargo, “A
simple bsp-based model to predict execution time in gpu applica-
tions,” in IEEE 22nd International Conference on High Performance
Computing (HiPC), pp. 285–294, IEEE, 2015.

[36] L. G. Valiant, “A bridging model for parallel computation,” Commu-
nications of the ACM (CACM), vol. 33, no. 8, pp. 103–111, 1990.

[37] S. Fortune and J. Wyllie, “Parallelism in random access machines,”
in Proceedings of the 10th Annual ACM Symposium on Theory of
Computing (STOC), pp. 114–118, ACM, 1978.

[38] P. B. Gibbons, Y. Matias, and V. Ramachandran, “The queue-
read queue-write pram model: Accounting for contention in parallel
algorithms,” SIAM Journal on Computing, pp. 638–648, 1997.

[39] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for gpu architectures,” in IEEE 17th International Symposium
on High Performance Computer Architecture (HPCA), pp. 382–393,
IEEE, 2011.

[40] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and
accurate model of power-performance efficiency on emergent gpu
architectures,” in IEEE 27th International Symposium on Parallel and
Distributed Processing (IPDPS), pp. 673–686, IEEE, 2013.

[41] Q. Wang and X. Chu, “Gpgpu performance estimation with core and
memory frequency scaling,” arXiv preprint arXiv:1701.05308, 2017.

[42] K. Zhou, G. Tan, X. Zhang, C. Wang, and N. Sun, “A performance
analysis framework for exploiting gpu microarchitectural capability,”
in Proceedings of the International Conference on Supercomputing
(ICS), p. 15, ACM, 2017.

[43] I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance
from cpu runs using machine learning,” in IEEE 26th International
Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD), pp. 254–261, IEEE, 2014.

[44] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power
analysis of ati gpu: A statistical approach,” in IEEE 6th International
Conference on Networking, Architecture and Storage (NAS), pp. 149–
158, IEEE, 2011.

[45] M. Amarı́s, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trys-
tram, “A comparison of gpu execution time prediction using machine
learning and analytical modeling,” in IEEE 15th International Sympo-
sium on Network Computing and Applications (NCA), pp. 326–333,
IEEE, 2016.

[46] T. T. Dao, J. Kim, S. Seo, B. Egger, and J. Lee, “A performance
model for gpus with caches,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 26, no. 7, pp. 1800–1813, 2015.

[47] C. Gerum, O. Bringmann, and W. Rosenstiel, “Source level perfor-
mance simulation of gpu cores,” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
pp. 217–222, EDA Consortium, 2015.

[48] S. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A
parallel functional simulator for gpgpu,” in 18th Annual IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 351–
360, IEEE, 2010.

[49] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: a
dynamic optimization framework for bulk-synchronous applications
in heterogeneous systems,” in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques
(PACT), pp. 353–364, ACM, 2010.

[50] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,
J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, and
K. Sankaralingam, “Enabling gpgpu low-level hardware explorations
with miaow: an open-source rtl implementation of a gpgpu,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 12,
no. 2, p. 21, 2015.

[51] Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. K. John, H. Jin, C. Xu, and
J. Wu, “Gpgpu-minibench: Accelerating gpgpu micro-architecture
simulation,” IEEE Transactions on Computers (TC), vol. 64, no. 11,
pp. 3153–3166, 2015.

[52] K. Punniyamurthy, B. Boroujerdian, and A. Gerstlauer, “Gatsim: ab-
stract timing simulation of gpus,” in Proceedings of the Conference on
Design, Automation & Test in Europe (DATE), pp. 43–48, European
Design and Automation Association, 2017.

[53] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and
L. K. John, “Gpgpu benchmark suites: How well do they sample the
performance spectrum?,” in 44th International Conference on Parallel
Processing (ICPP), pp. 320–329, IEEE, 2015.

[54] R. Panda, X. Zheng, J. Wang, A. Gerstlauer, and L. K. John,
“Statistical pattern based modeling of gpu memory access streams,”
in Proceedings of the 54th Annual Design Automation Conference
(DAC), p. 81, ACM, 2017.


