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Abstract—Flexible instruction scheduling is essential for per-
formance in out-of-order processors. This is typically achieved
by using CAM-based Instruction Queues (IQs) that provide
complete flexibility in choosing ready instructions for execution,
but at the cost of significant scheduling energy.

In this work we seek to reduce the instruction scheduling
energy by reducing the depth and width of the IQ. We do so by
classifying instructions based on their readiness and criticality,
and using this information to bypass the IQ for instructions that
will not benefit from its expensive scheduling structures and
delay instructions that will not harm performance. Combined,
these approaches allow us to offload a significant portion of the
instructions from the IQ to much cheaper FIFO-based scheduling
structures without hurting performance. As a result we can
reduce the IQ depth and width by half, thereby saving energy.

Our design, Delay and Bypass (DNB), is the first design
to explicitly address both readiness and criticality to reduce
scheduling energy. By handling both classes we are able to
achieve 95% of the baseline out-of-order performance while
only using 33% of the scheduling energy. This represents a
significant improvement over previous designs which addressed
only criticality or readiness (91%/89% performance at 74%/53%
energy).

I. INTRODUCTION

Out-of-order processors invest heavily in complex resources
for extracting instruction- and memory-level parallelism.
Among these resources, the Instruction Queue (IQ) plays a
critical role by identifying and issuing ready instructions for
execution irrespective of their program order [1], [2], [3], [4].
The amount of parallelism that can be extracted by the IQ is
limited by its dimensions: issue width limits the number of
instructions issued per cycle and depth limits the window of
schedulable instructions from which it can identify parallelism.

The IQ is also the most complex and power-intensive (18-
40% of core power) [4], [5], [6], [7] core component. Its
complexity stems from its need to wake-up instructions for
execution when all their operands becomes available and
select them for execution based on priority heuristics [8],
[9]. For wake-up, the IQ must track operand availability,
normally by broadcasting the destination register of completing
instructions to all instructions in the IQ to identify which are
waiting for it. This requires a complex Content-Addressable-
Memory (CAM) structure with comparators for all source
operands of each instruction in the IQ for each possible
destination operand retiring in a cycle. That is, the number
of comparators (and wires) for identifying ready instructions
grows super-linearly with both the depth of the IQ and the issue
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Fig. 1. Energy consumption per access of IQ (CAM-based) and queue (FIFO-
based) instruction storage as a function of width (color) and depth (x-axis). IQ
energy grows very significantly with both width and depth, while the simpler
FIFO implementation is enormously more efficient.

width of the processor. Selecting from the ready instructions
requires reduction trees whose complexity grows linearly
with the issue width of the IQ and logarithmically with its
depth [3], [10], [11]. As a result of this complexity, the power
consumption of the IQ grows dramatically with depth and
width, as shown in Figure 1. Conversely, the energy of simpler
scheduling structures, such as in-order FIFO queues, scales
more gracefully [12]. However, this comes at the cost of less
flexible scheduling and performance: FIFOs can only consider
instructions at the head of their queue.

A large body of work has focused on reducing IQ energy con-
sumption. Previous approaches include circuit-level techniques
that reduce the cost of wakeup and selection logic [13], [14],
[15], dynamically partition the IQ to reduce lookup energy [4],
[16], schedule to prioritize performance critical instructions [17]
to reduce the IQ size and energy while maintaining the same
performance, etc. These approaches reduce the per-instruction
IQ energy. However, these approaches place all instructions
in the IQ, regardless of whether or not they benefit from its
expensive wake-up and select mechanisms.

Recent work has taken the different approach of scheduling
a subset instructions from simpler, more energy-efficient
structures to reduce pressure on the IQ. This allows for the use
of smaller and/or narrower IQs without hurting performance.
Examples of this approach include filtering instructions that
can be executed earlier [18], “parking” instructions that will
not be ready for a while [3], and bypassing instructions that
do not benefit from out-of-order scheduling [19]. Implicit to
the approach of reducing IQ pressure is the need to identify
instructions that do not benefit from the expensive scheduling
capabilities of the IQ. This can be done by classifying



instructions based on their criticality [3] and/or readiness [18].

Ready instructions have all their operands available.
20% of total instructions (Figure 2) are ready early in the
pipeline (e.g., at dispatch), and a significant number (11%)
become ready shortly thereafter (Figure 4). These ready
instructions neither need nor benefit from the expensive
out-of-order scheduling mechanisms of the IQ. This presents
the opportunity to bypass the IQ for ready instructions and
execute them directly. While ready instructions typically
complete quickly, and therefore do not put as much pressure
on the IQ as non-ready ones, bypassing the IQ altogether for
them eliminates the installation, wake-up, and select energy
needed to issue them from the IQ.

Critical instructions hurt performance if their execution
is delayed. They often include instructions that lead up to or
generate memory-level-parallelism (MLP). Conversely, non-
critical instructions can be delayed to a significant degree
without penalty. Non-critical instructions are typically de-
pendent on long-latency operations and often spend a long
time in the IQ before becoming ready, thereby increasing
IQ pressure. The long lifetime of non-critical instructions
presents the opportunity to delay their insertion into the IQ
and thereby reduce IQ pressure. Reducing the number of non-
critical instructions in the IQ also naturally prioritizes the
critical ones.

Prior work has taken advantage of these classes of in-
structions separately: Long Term Parking (LTP) [3] exploited
instruction criticality to delay the IQ allocation of non-critical
instructions by “parking” them in a cheaper in-order FIFO
queue. This reduced capacity pressure on the IQ by keeping
instructions that would not be ready for a long time out of
the IQ. As a result, LTP was able to reduce the IQ depth.
Conversely, the Front-end Execution Architecture (FXA) [18]
exploited instruction readiness by executing ready instructions
through in-order pipeline stages before placing the remaining
instructions in the IQ. This allowed FXA to reduce the IQ
width as fewer instructions needed to be sent from the IQ to
the functional units.

In this work we demonstrate that there are significant benefits
from considering critical and readiness together. To do so,
we first analyze the distribution of instruction classification
across a wide range of benchmarks (Figure 2). We see that if
LTP architecture were made ready-aware it could reduce its
scheduling energy from 74% of the baseline to 44%. Similarly,
a criticality-aware FXA could go from 53% to 46%.

Based on these insights we introduce the Delay-and-Bypass
(DNB) scheduling architecture that leverages instruction crit-
icality together with instruction readiness. DNB first uses
instruction criticality to delay non-critical instructions by
placing them in a cheap, in-order FIFO scheduling queue,
called delay queue (DLQ). Note that during their delay time in
the DLQ many non-ready instructions become ready as well.
When instructions in the DLQ approach the head of the reorder
buffer (ROB) they are taken out of the DLQ and either bypass
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Fig. 2. Readiness and criticality instruction classification in an out-of-order
processor.

the IQ and are issued directly to the functional units if they
are ready, or are inserted into the IQ if not. This reduces IQ
occupancy pressure by keeping non-critical instructions out of
the IQ for most of their lifetimes and reduces IQ issue width
pressure by allowing instructions to issue directly from the
cheaper in-order FIFO.

For the remaining critical instructions, DNB bypasses the
IQ for those that are ready and sends them for immediate
execution1. Only the Critical & Non-Ready instructions are
sent directly into the IQ. This allows the expensive scheduling
logic of the IQ to focus on issuing those instructions as soon
as they become ready (see Figure 3). DNB thereby ensures
that critical instructions execute as quickly and efficiently as
possible by either utilizing the expensive IQ scheduling logic
for those that are not-ready or by bypassing the IQ for direct
execution for those that are ready. This reduces IQ capacity
pressure by keeping Critical & Ready instructions out of the
IQ and reduces IQ width pressure by allowing them to bypass
the IQ altogether.

By addressing both criticality and readiness, DNB is able to
reduce both IQ width and depth while retaining performance.
Our principal contributions include:

• An instruction taxonomy based on criticality and readiness
that provides insights into how to efficiently schedule
instructions. In particular, this taxonomy explains why
instructions can and should bypass the IQ or be delayed
before being inserted into it to save energy without hurting
performance.

• An analysis of instruction criticality/readiness showing how
previous designs addressing only criticality or readiness
have missed significant energy savings opportunities.

• The DNB design that leverages both criticality and readiness
of instructions to reduce IQ width and depth, thereby pro-
viding a significant power savings at minimal performance
degradation.

• Analysis showing that the DNB design is far less sensitive
to reductions in the depth and width of the IQ than other
designs due to more intelligent instruction steering.

1To handle structural hazards and instruction priorities they are actually
inserted into a decoupling queue as described in Section IV.
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non-ready in dashed. Non-ready become ready after a delay and are handled differently across the designs. Note that instructions can only be issued from the
head of the FIFO queues (dark gray areas in LTP, CR, and DLQ) while any instruction in the IQs/OXU can be issued.

II. MOTIVATION

A. Instruction Classification

We classify instructions based on two characteristics: critical-
ity and readiness. Borrowing the definition of criticality from
prior work [3], [20], we define an instruction to be critical if it
contributes to MLP. In our definition, all memory accesses as
well as instructions generating addresses for these accesses are
considered critical. We define an instruction to be ready2 if all
of its operands are available. Based on these two characteristics
an instruction may not require or benefit from IQ allocation, or
IQ allocation may be delayed without a performance penalty:
• Critical & Ready: As these instructions contribute directly

to MLP they are critical for performance and should not
be delayed. However, as they are also ready for execution,
they do not benefit from the expensive wake-up and select
mechanism of the IQ. Therefore, these instructions can
bypass the IQ and be issued directly to functional units for
execution.

• Critical & Non-Ready: Due to their criticality, these
instructions should not be delayed. However, as they do not
have all their operands available, they cannot be issued for
execution immediately. Therefore, they should be allocated
IQ entries so that they can take advantage of the IQ’s
expensive out-of-order wake-up and select mechanism to
be selected for execution as soon as they become ready.

• Non-Critical & Ready: As these instructions are ready
for execution they do not require IQ allocation and can be
directly issued for execution. However, since they are non-
critical, executing them early does not improve performance.
On the contrary, eager execution might hurt performance if
they take slots from critical instructions. Therefore, these

2LTP defined “ready” to mean instructions that do not depend on other
long-latency instructions. Our definition is more strict in that ready instructions
can be immediately executed and are easier to detect in hardware.

instructions can both bypass the IQ placement and their
execution can be delayed.

• Non-Critical & Non-Ready: These instructions are neither
performance critical nor they are ready for execution.
Placing them in the IQ would occupy entries until their
operands become available, potentially at the cost of more
critical instructions. On the other hand, delaying their
scheduling will not harm performance as they are not
performance critical. These instructions should therefore
be delayed.

Figure 2 presents the distribution of criticality and readiness
across the benchmark applications. (Methodology see Section V
and Table I.) The applications are grouped into three categories
based on the amount of ready and non-critical instructions,
Ready Heavy, Non-Critical Heavy, and Balance Ready+Non-
Critical.

As the figure shows through the diversity of instruction
classes across the benchmarks, techniques that exploit only
readiness or criticality will not achieve savings on all appli-
cations. For example, targeting only criticality would miss
significant opportunities on applications with more ready
instructions as they have very few non-critical instructions.
Even a single application can comprise a diverse mix of both
ready and non-critical instructions, such as libquantum or dealll,
leading to sub-optimal power savings by existing techniques
that do not handle both classes.

B. Exploiting Criticality

Long Term Parking [3] (LTP) is the state-of-the-art mech-
anism for exploiting instruction criticality to reduce the
power consumption of instruction scheduling. LTP classifies
instructions in the decode stage based on their contribution
to MLP. The critical instructions (the MLP-generating ones)
are dispatched to the IQ, whereas the rest of the non-critical

3



instructions are delayed by “parking” them in an energy-
efficient FIFO queue. (See Figure 3B.) When the parked
instructions get close to the head of ROB, they are moved to
the IQ to avoid further delaying their execution, which causes
stalls.

As Figure 2 shows, non-critical (Non-Critical & Ready +
Non-Critical & Non-Ready) instructions constitute about 22%
of the dynamic instruction stream. By delaying their insertion to
IQ, LTP can leverage the reduced IQ pressure to reduce the IQ
depth by half with minimal performance penalty [3]. However,
LTP misses the opportunity offered by ready instructions. These
instructions (Critical & Ready + Non-Critical & Ready) account
for 20% of the dynamic instruction stream. In addition, the
delayed Non-Critical & Non-Ready instructions can become
ready by the time LTP decides to pick them for insertion
into the IQ if their producers finish execution. Our results in
Figure 4 show that more than half of the delayed (parked)
instructions become ready for execution while being parked
(11% of dynamic instructions). In summary, a total of 32%
of instructions are ready for execution when they are inserted
to IQ by LTP. These instruction represent a significant power
saving potential missed by LTP.

C. Exploiting Readiness

The Front-end Execution Architecture [18] (FXA) leverages
instruction readiness to reduce the energy of instruction
scheduling. To avoid IQ insertion for ready instructions, FXA
places an in-order execution unit (IXU) between the rename and
dispatch stages. All instructions pass through the IXU in-order
and it directly executes ready instructions. (See Figure 3C.) In
essence, FXA filters the instruction stream and only non-ready
instructions reach the dispatch stage and are placed in the IQ.

To maximize the number of ready instructions the IXU
consists of three pipelined stages of functional units. This
gives each instruction three cycles to become ready and execute
before being placed in the IQ. Our experiments shows that
the total number of ready instructions increases from 18% to
24% due to these additional stages. Note that this delay is
different from the delay introduced by LTP, as FXA delays all
instructions whereas LTP delays only non-critical ones.

As the IXU filters out 24% of dynamic instructions, FXA
leverages the reduced IQ pressure to reduce both IQ width
and depth. However, FXA still allocates IQ entries for all the
instructions that pass through the IXU unexecuted. Among
these are non-critical instructions that could be delayed to
further reduce the IQ pressure. Our results in Figure 4 show
that very few Non-Critical & Non-Ready instructions become
ready during these 3 stages (only 4% of total instructions) and
the remaining (15% of total instructions) both pass through
the IXU stages and are allocated IQ entries. Delaying the
IQ allocation for these 15% of instructions would not only
reduce IQ pressure but also give these instructions a further
opportunity to become ready. Figure 4 shows that such a delay
would significantly increases the number of Non-Critical &
Non-Ready instructions that become ready to 11% of total
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Fig. 4. Readiness of non-Critical instructions, both before issue (blue), after
the 3 cycles of the FXA IXU, and after being delayed in the LTP parking. On
average, 3% of instructions are Non-Critical & Ready and can bypass. 4% are
Non-Critical & Non-Ready that become ready within 3 cycles, and 11% are
Non-Critical & Non-Ready that become ready after being delayed. Combined,
18% of instructions become ready within the time frame of being delayed and
could bypass the IQ as a result.

instructions (up from 4% in FXA), thus provide significant
opportunity for bypassing the IQ altogether after delay.

III. CRITICALITY AND READINESS

Leveraging both criticality and readiness will increase the
number of instructions that can be offloaded from the IQ
without hurting performance. This is because only Critical &
Non-Ready instructions require the sophisticated scheduling
of the IQ, whereas the remaining can either be delayed or
bypassed. By taking advantage of both characteristics, only 61%
of instructions (Critical & Non-Ready ones) require immediate
IQ allocation (Figure 2) compared to 78% (Critical & Ready
+ Critical & Non-Ready) by only considering criticality and
80% (Critical & Non-Ready + Non-Critical & Non-Ready) by
only considering readiness. This drastic increase in offloadable
instructions can be leveraged to reduce the IQ depth. In addition,
as ready instructions can be issued directly (bypassing the IQ)
and in parallel with instructions from IQ, the IQ issue width
itself can also be reduced. Reducing both dimensions of IQ
provides significant power reduction as shown in Figure 1.

There are two naı̈ve approaches to leveraging both classes:
either add bypassing of ready instructions after parking to
LTP (LTP+Bypass) or add delaying of non-critical instructions
before the IXU to FXA (FXA+Delay). These approaches
significantly reduce scheduling energy from 74% to 44% for
LTP and from 53% to 46% for FXA, as shown in Figure 5
(performance is discussed in Section VI-A). However, there
are significant shortcomings to both:

• Non-ready instructions in the IXU: In FXA+Delay 3, the
61% of instructions that are Critical & Non-Ready pass
through the IXU while fewer than 1% become ready during
its 3 stages. (Overall only 4% of non-ready instructions
become ready during those 3 cycles, see Figure 4.) To
avoid this extra energy, Critical & Non-Ready instructions
should bypass the IXU and be placed directly in the IQ.
Bypassing the IXU for Critical & Non-Ready instructions

3Adding an LTP FIFO to FXA.
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Fig. 5. Instruction scheduling energy reductions for naı̈ve extensions to LTP and FXA.

reduces the percentage of instructions that go through the
IXU from 81% in FXA+Delay (all instructions excluding
Non-Critical & Non-Ready) to 20%. (in the original FXA
100% go through the IXU).

• Ready instructions placed in the IQ: To minimize area
overhead, the IXU has no floating point units and limited
memory functionality. As a result, all ready floating point
instructions must be placed on the IQ before they can be
executed, increasing both capacity and port pressure in
the IQ. Additionally, the IXU arbitrates with the OXU for
shared memory resources and ports, resulting in memory
instructions being placed in both and trying to execute in
both.

• Area: FXA has separate functional units for the in-order
IXU and out-of-order OXU which leads to underutilization
as many instructions are unable to execute in the IXU.

• Pipeline depth: The IXU increases pipeline depth by three
cycles, which potentially increases branch misprediction
penalty and delays the execution of instructions that require
a functional unit only present in OXU.

• Register file port pressure: FXA requires that operands be
read for instruction execution in the IXU and then again
for execution in the OXU if the IXU fails to execute them.

• Load criticality: LTP only marks instructions as critical if
they contribute to generating an address for a load. This
results in some loads being treated as non-critical and
delayed. Our simulations show this reduces performance
by 7% on average.

To address the aforementioned inefficiencies of the
FXA+Delay design, we propose the Delay and Bypass design.
DNB shares functional units between the instructions that are
identified as ready early in the pipeline and those selected
for execution from the IQ. This is achieved by bypassing
the ready instructions to functional units rather than adding
a separate pipeline for executing them before the IQ. DNB
further applies bypassing to instructions that are ready after
delay, eliminating the need to re-insert them into the IQ. This
approach avoids load imbalance, as all functional units are
shared, and does not require more RF ports than the original
design. By delaying non-critical instructions and bypassing the
IQ for ready instructions (both ready at dispatch and ready after
delay) the DNB is able to take advantage of both instruction
criticality and readiness. In the next section we provide more

details of the instructions issue policy and proposed pipeline.

IV. DELAY-AND-BYPASS (DNB)

DNB bypasses the IQ for Critical & Ready instructions
(reducing both IQ capacity- and port-pressure, as well as IQ
reads/writes), delays Non-Critical & Non-Ready and Non-
Critical & Ready instructions by placing them in a FIFO
(reducing IQ capacity pressure), and bypasses the IQ for
delayed instructions that are ready when they reach the head
of the delay FIFO (reducing IQ port pressure, as well as IQ
reads/writes). In DNB only Critical & Non-Ready instructions
are placed directly in the expensive IQ CAM, as these are
the ones that are critical to execute as soon as they become
ready. (See Figure 3D and a comparison across all designs in
Figure 6.)

A. DNB: Details

Figure 7 provides an overview of the DNB architecture: DNB
adds a FIFO queue for delaying instructions (the Delay-Queue,
DLQ), a FIFO queue for decoupling the back-end execution of
Critical & Ready instructions from front-end fetch (the Critical-
Ready-Queue, CRQ), and a Critical Instruction Table (CIT)
for Iterative Backwards Dependency Analysis (IBDA) [21] to
determine instruction criticality. The components common to
both LTP and DNB are shown in light gray and additions in
white.

Fetch, Decode and Rename: The DNB front-end deter-
mines instruction readiness and criticality. As in LTP, after
instruction fetch the CIT is accessed with the PC to check if
the instruction is critical. In rename the operand availability is
used to detect if the instruction is ready.

Detecting Critical Instructions: As with LTP, DNB uses
Iterative Backward Dependency Analysis (IBDA) [21] to
iteratively identify chains of instructions that lead to MLP-
generating instructions (see Section II-B). In addition, we
mark all loads as critical to avoid delaying them and harming
performance.

Detecting Ready Instructions: DNB uses the register
rename stage to identify instructions whose source operands
are both available. This incurs no overhead as the register file
check is part of renaming.

Instruction Dispatch: DNB places Critical & Non-Ready
instructions directly into the IQ for execution as soon as they
are ready and places and all non-critical instructions into the
DLQ to be delayed. Critical & Ready instructions bypass the IQ
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Fig. 6. Comparison of the four designs. Limitations that increase energy: FXA is only able to handle non-ready instructions that become ready within 3 cycles
(6% total) and filters even non-ready instructions, costing energy and adding 3 cycles of delay; LTP inserts all parked instructions into both the LTP parking
FIFO and the IQ; DNB inserts inserts Non-Critical & Non-Ready instructions that do not become ready after delay into both the delay queue and the IQ. (R:
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Fig. 7. The DNB microarchitecture. The Critical Instructions Table (CIT) uses
IBDA to identify critical instructions while the Rename Map Table is used
to identify ready ones. Instructions are placed in the appropriate scheduling
structure based on their readiness and criticality.

for immediate execution via the CRQ. The CRQ is needed as
ready instructions may not be able to be executed immediately
due to structural hazards (lack of available functional units)
and/or instruction priorities (newer ready instructions should
not be prioritized over older ready instructions). The CRQ
decouples the bypassing of ready instructions from the front-
end to the back-end. This allows continued fetching even if
the ready instruction cannot be immediately executed and is
much cheaper than inserting them into the CAM IQ.

Instruction Issue: The DNB back-end can select instruc-
tions to issue from the IQ, CRQ and/or DLQ. The total issue
width remains the same as the Out-of-Order baseline but is
distributed across the three sources: up to two instructions from
the IQ and a combination of up to two instructions from the
CRQ and DLQ, for a total issue width of four. All queues,
including the IQ, apply an age-based instruction issue policy.
Note that CRQ and DLQ are inherently age-based due to their
FIFO nature. Among the three queues, the DLQ has the highest
priority as its instructions are generally the oldest and might
cause CPU stalls if its instructions reach the head of the ROB
and have not issued. The IQ is second priority as it contains
memory instructions. CRQ has the lowest priority as all are
ready to execute and the and instructions have a very short
lifetime in this queue unless there are insufficient functional
units available.

Stalls: Issuing from the CRQ can only stall when the
required functional units are busy, as all instructions in the

CRQ are ready. If an instruction at the head of the DLQ is
not-ready or cannot be issued, it is placed in the IQ, otherwise
it proceeds directly to execute. The DLQ will stall if the IQ is
full and the head entry in the DLQ is not ready. If the CRQ
or DLQ are full, instructions are placed directly into the IQ.
Note that as instructions can be issued from all three sources,
the stalling of one is unlikely to halt execution.

B. Register File Pressure

DNB does not increase the number of in-flight instructions
(it does not change the ROB size) and therefore does not
change the size of the register file. However, as instructions in
the DLQ or CRQ that are not at the head cannot be selected
for scheduling due to the FIFO nature of the queues, these
instructions do not require physical register allocations. This
means that virtual register renaming [22], which tracks register
allocations without allocating physical space for them, could
be used to reduce the size of the physical register file without
penalty. This approach was successfully used in LTP, where the
virtual register renaming allowed them to reduce the size of the
physical register file to just cover the number of instructions
that were eligible for scheduling in the IQ.

DNB does not increase the number of register file ports that
are needed for reading or writing operands as the same number
of instructions can issue in each cycle. However, the DLQ
needs to check the readiness status of the source operands
for the two instructions at its head to determine if they can
be executed or should be moved to the IQ. This increases
the number of status ports needed. The CRQ requires no such
check as all instructions in it were known to have both operands
ready when the instruction was dispatched.

C. Memory Dependency and Ordering

In a typical out-of-order processor, load instructions wait
for earlier stores to the same address or stores with unknown
addresses. If the instruction scheduler executes a load before
an older store with the same address, the load instruction
will read the wrong data [23]. In such cases the load and
all dependant instructions must be re-executed, hurting
performance. Memory dependence prediction is used in this
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TABLE I
THE HASWELL-LIKE [24] BASELINE MICROARCHITECTURAL PARAMETERS.

Freq, ISA 3.4 GHz, x86-64
L1i/d 32KiB, 8-way, 4clk
L2 256KiB, 8-way, 12clk
L3 1MiB, 8-way, 36clk
DRAM 200clk
Branch Predictor Two level, front end penalty 10clk
ROB/IQ/RF(Int,FP)/LQ/SQ 192/60/(130,130),72/42
Prefetcher enabled
Technology/VDD/temp 22nm itrs-hp/0.8/360K

TABLE II
SCHEDULING RESOURCE CONFIGURATIONS.

Design IQ
Depth/Width

Other
Scheduler Issue RF

ports
Baseline 64/4 4 12
LTP [3] 32/4 FIFO 128/4 4 12
FXA [18] 32/2 3-stage pipeline 5 16
DNB 32/2 FIFOs 32/2, 128/2 4 12

case not only to predict if issuing a load is likely to cause a
memory-order violation but also to delay the issue of load(s)
to avoid memory-order violation. LTP placed dependent loads
in the LTP if a store instruction was parked to avoid pipeline
squashes due to memory dependency violations. This has
the potential of parking load instructions that are critical
and reducing the performance. In DNB all loads and stores
are placed in the IQ (the same queue), allowing us to use
standard memory dependency analysis and recovery techniques.

V. METHODOLOGY

We use the Multi2sim simulator [25], x86 target, with SPEC
CPU2006 [26], fast-forwarding 1B instructions, cache warming
for 250M, and then 1B instructions of detailed simulation. For
energy modeling we use Cacti and McPAT [27], [28].

We simulate a baseline out-of-order, Haswell-like core [24]
(Table I). The baseline IQ has 64 entries and 4r/4w ports. LTP,
FXA, and DNB have 32-entry IQs, or half of the baseline’s.
The DNB RDQ has 32 entries with 2r/4w ports to support
inserting 4 Critical & Ready instructions at the same time. The
DLQ has 64 entries and 2r/4w. The DNB IQ has 32 entries
and 2r/4w ports to support inserting 4 Critical & Non-Ready
instructions at the same time. The LTP IQ has 4r/8w ports to
cover burst insertion back from the LTP FIFO to the IQ and
a 128-entry 4r/4w port LTP, based on the published design.
We present energy (dynamic plus static) for the scheduling
structures: IQ, FIFOs, and ROB. The FXA IXU is a three stage
pipeline with each stage consisting of 4 integer functional units,
covering a total of 12 in-flight instructions. All 12 functional
units are connected for value read and forwarding. We model
this fully-connected forwarding network as a CAM.

VI. EVALUATION

Our evaluation focuses on the ability of the three designs
to reduce instruction scheduling energy while maintaining

performance. As such, all results are normalized to the out-
of-order baseline with its twice as large (64 vs 32) IQ. In
addition, we include a fourth comparison point, BaselineHalf,
to show the effects of directly reducing the IQ by half without
bypass or delay. We expect that BaselineHalf will show the
worst performance of the group as it has no ability to offload
instructions from the IQ.

The applications are sorted as discussed in Section II-A, and
we generally expect applications with more ready instructions
to benefit more from FXA and DNB and applications with
more non-critical ones to benefit more from LTP and DNB. In
addition to energy and performance of the chosen architectures,
we analyze sensitivity to reductions in IQ depth and width.
We expect DNB to be the least sensitive as it is able to offload
(via bypass and delay) a greater range of instructions than the
other designs.

A. Performance

Figure 8 shows that reducing the IQ size of our baseline
out-of-order processor from 64 to 32 reduces performance to
84% (BaselineHalf), while the ready/criticality-aware designs
fare much better at 91% (LTP) 89% (FXA), and 95% (DNB)
of the baseline performance. DNB delivers 4 and 6 percentage
points better performance than LTP and FXA by offloading
32% of the instructions, vs. 22% and 24% for LTP and FXA.
This is quite close to the maximum potential of offloading
39% of instructions, given that 61% are Critical & Non-Ready
and should go directly into the IQ (Section III, Figure 2).
Performance analysis by application category largely follows
the expected behavior:

• Ready Heavy: show better performance with the designs
that support bypassing of ready instructions (FXA and
DNB), and the more ready instructions, the better they do.
Despite having somewhat more ready instructions, hmmer
performs worse than h264 as it is a more memory-bound
application [29], [30] and is therefore more sensitive to
reductions in in-flight instructions. Several applications
perform better on LTP than FXA, likely due to LTP’s
wider issue width which combines with FXA’s lack of
floating point support in the IXU.
In all cases DNB is able to perform better due to its
ability to take advantage of non-critical instructions, with
its largest gains over FXA on the applications with the
most non-critical instructions (e.g., bzip2_chicken and
bzip2_liberty).

• Non-Critical Heavy: show better performance with the
designs that support delaying non-critical instructions (LTP
and DNB), and the more non-critical instructions the
better they do. calculix, which has essentially no ready
instructions, performs remarkably well on FXA as it is
rather memory-bound [29], [30] and therefore benefits from
the larger number of effective in-flight instructions that FXA
provides (12 in the IXU plus the 32 in the IQ).
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Fig. 8. IPC comparison between all designs normalized to the baseline.

• Balance Ready + Non-Critical: demonstrate that DNB’s
ability to both bypass and delay leads to significantly better
performance than either alone. LTP performs surprisingly
well on several benchmarks due to its wider IQ.

B. Energy

The energy-saving potential of these designs comes from two
sources: reducing the energy cost of each IQ access by making
the IQ itself smaller and narrower and avoiding inserting
instructions into the IQ via bypass. The three designs have
different abilities to achieve these, as outlined in Figure 6:

• LTP only reduces IQ depth by delaying but pays for
inserting all instructions into the IQ and must support
a wide issue from it.

• FXA reduces IQ depth, width, and accesses by executing
ready instructions early, but pays extra for trying to execute
those instructions that are not ready early and for the data
forwarding paths in the IXU for each instruction.

• DNB reduces IQ depth, width, and accesses, but avoids
paying for inserting ready instructions into the IQ, trying
to execute non-ready instructions early, and re-inserting
instructions that are ready after a delay into the IQ. DNB
does pay extra for delaying instructions that do not become
ready during the delay, as they have to be inserted into the
IQ regardless.

Overall FXA and LTP achieve scheduling energies (IQ and
other queues) of 53% and 74% of the baseline, while DNB is
significantly more efficient at 34% (see figure 9). In detail:

• Ready Heavy: For these applications LTP acts more-or-
less as a narrower OoO processor as there are very few
non-critical instructions for it to delay. As a result, it saves
energy vs. the baseline due to its smaller IQ. FXA is able to
significantly reduce the energy for the ready instructions by
executing them earlier and for non-critical instructions due
to its narrower IQ compared to LTP (4 vs. 2 wide). DNB
does even better on Critical & Non-Ready instructions
by avoiding passing them through the IXU, as can be
seen by its lower energy on the for the applications with

fewer ready instructions (left side). FXA’s energy on ready
instructions is higher than DNB’s due the cost of the
complex forwarding logic between each functional unit
in the IXU.

• Non-Critical Heavy: LTP consumes significantly more
energy as a large number of non-critical instructions are
delayed and each delayed instruction pays both the delayed
FIFO energy and the IQ energy. DNB is able to entirely
avoid the IQ energy for the non-critical instructions that
become ready after delay (Figure 4), which can be seen in
the in four last gobmk applications, and reduces Critical
& Non-Ready energy due to its narrower IQ (4 vs. 2 wide).
FXA is able to reduce energy further than LTP on these
applications due to its narrower IQ (reduced energy for
Critical & Non-Ready and other instructions inserted into
the IQ) but pays more energy for those same instructions
as they pass through the IXU. Again, DNB spends less
energy on ready instructions by avoiding the complex
forwarding logic of the IXU. calculix is a challenge for
DNB as it has very few (5%) Non-Critical & Non-Ready
instructions that become ready after being delayed, resulting
in essentially all delayed instructions being inserted into the
IQ. As a result, DNB is only more efficient than FXA by
avoiding putting non-ready instructions through the IXU.

• Balance Ready + Non-Critical: These applications show
a mixture of the behaviors seen in the other two classes.
Libquantum shows this behavior well as it has a large
number of instructions that can be bypassed (35% Critical &
Ready) and delayed (33% Non-Critical & Non-Ready), as
well as having roughly 25% of its instructions become ready
after being delayed. As a result DNB shows a particularly
large energy advantage of 14% percentage points over FXA
and 58% percentage points over LTP.

C. IQ Depth/Width Sensitivity

All three designs are able to offload some instructions from
the IQ. However, their ability to maintain performance with
fewer IQ entries varies according to the instruction mix in
the application, as seen in Section VI-A. Figure 10 explores
the overall sensitivity of the designs to the depth of the
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IQ. As expected, the baseline OoO processor loses the most
performance as its IQ depth is reduced, as it has no ability to
offload instructions to other scheduling structures. DNB is the
least sensitive as it has the ability to handle both instruction
classes. DNB with a 64-entry IQ is 5% slower than the baseline
with a 128-entry IQ, and otherwise delivers performance better
than or equal to that of twice the IQ size for the other designs.
DNB with a 16-entry IQ even exceeds the performance of both
LTP and FXA with their proposed 32-entry IQs. LTP is less
sensitive to IQ size than FXA as its offloading of long-lived
non-critical instructions is more effective than bypassing of
short-lived ready ones. None of LTP, FXA, nor DNB, are able
to fully match the baseline OoO with a 128-entry IQ due to
reduced IQ width (FXA and DNB) and reduced scheduling
flexibility from delaying instructions (LTP and DNB).

The three designs differ significantly in where they can issue
instructions from, which directly affect each design’s ability to
find the best instructions at any given time. LTP can issue 4
only from the IQ, FXA can issue 3 from the IXU and 2 from
its IQ, and DNB can issue up to 2 from both the CRQ and
the DLQ and 2 from its IQ. This means that LTP cannot issue
any parked instructions, FXA can only use its IXU issue width
for instructions that are in the IXU, and DNB can only use
its CRQ and DLQ issue width for instructions that are at the
head of those queues. As a result, the sensitivity to changes in
IQ issue width will vary across the designs.

Figure 11 shows that LTP’s sensitivity to IQ issue width
follows that of the baseline, but with an offset due to the
flexibility lost from not being able to issue instructions directly
from the LTP FIFO. This is expected, as they both issue all
instructions from their IQs and have the same baseline issue
width.

FXA is less sensitive as the IXU is able to issue ready
instructions regardless of the IQ width, but it suffers from
not being able to delay long-lived non-critical instructions to
reduce IQ pressure. DNB is able to both take advantage of the
ready instructions and avoid the increased IQ pressure from
long-lived non-critical instructions, resulting in significantly
lower sensitivity to IQ width. At an IQ issue width of 1, DNB
is only 17% slower than the 4-wide OoO baseline, while LTP
and FXA architectures are 25% and 31% slower, respectively.
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Fig. 10. Sensitivity to IQ depth, normalized to the baseline 128-entry 4-wide
OoO. IQ widths and total issue widths are listed in Table II.
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Fig. 11. Sensitivity to IQ issue width with all IQs having depth 64. See table
I for more details about each design.

VII. RELATED WORK

A. Ready-aware Approaches

Front-end Execution Architecture: Shoiya et al. [18]
proposed the Front-end Execution Architecture (FXA) which
inserts a three-stage in-order pipeline (IXU) with forwarding
before IQ allocation (dispatch). The IXU filters out ready
instructions by executing them before they reach the IQ.
FXA adds dedicated register file ports for the IXU and
supports issuing 3 in-order (IXU) plus 2 out-of-order (IQ/OXU)
instructions per cycle. FXA suffers from the energy and delay
of filtering all instructions through the IXU, even if they are
not ready.

FIFOrder: The FIFOrder architecture, proposed by Alipour
et al. [19], offloads and issues instructions from three FIFO
queues covering ready, “almost-ready”, and “load tail” instruc-
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tions. By separating instructions into these classes they can
reduce cross-FIFO stalls due to dependencies on long-latency
loads. As a result, the IQ primarily sees memory instructions
and they are able to maintain enough out-of-orderness to deliver
good performance with an IQ issue width of 1, but are unable
to reduce its depth.

B. Criticality-aware Approaches

Long Term Parking: Sembrant et al. [3] proposed Long-
Term-Parking (LTP) which delays inserting non-critical instruc-
tions into the IQ to reduce the IQ depth. To do so, they detect
and cache instruction criticality at the rename stage with a
Critical/Urgent Instruction Table (UIT/CIT) that uses iterative
backwards dependency analysis [20]. Instructions marked in
the CIT are placed directly into the IQ, and the rest are parked
into a FIFO queue called Long-Term-Parking (LTP). When
the parked instructions reach the head of ROB, they are read
out from LTP and inserted into the IQ to be issued. Because
instructions in the LTP are not eligible to execute, they do not
need physical registers allocated. LTP leveraged this to reduce
the size of the physical register file via virtual register renaming.
LTP suffers from the need to insert all parked instructions into
the IQ before execution, which increases IQ pressure and
energy.

Load Slice Core: Carlson et al. [20] demonstrated that the
Load-Slice-Core (LSC) can improve MLP and the performance
of in-order cores. LSC constructs groups, or slices, of MLP-
generating instructions that contain the address generating
instructions leading up to loads and/or stores. The slices
are executed out-of-order with respect to the rest of the
instructions, but in-order between slices and between the
remaining instructions, by placing them in two separate queues.
The MLP-generating slices bypass the rest of the potentially
stalled instructions via a bypass queue. Such bypassing enables
LSC to extract significant MLP compared to an in-order core.
However, the overall performance remains low compared to
an out-of-order core, as LSC is unable to extract much ILP.

Freeway: Kumar et.al. [31] showed that LSC misses signif-
icant MLP opportunities due to inter-slice dependencies which
cause the bypass queue to stall frequently. Their proposed
design, Freeway, addresses this bottleneck by identifying and
moving the dependent slices out of the bypass queue to a
new FIFO queue. With dependent slices out of their way, the
independent slices execute unobstructed, thus generating higher
MLP. Though Freeway boosts MLP, it is still unable to extract
ILP. Therefore, the overall performance stays well below that
of an out-of-order core.

Dual Issue Queue: Moreshet et al. [17] took advantage of
IQs that hold instructions after issue for replay to divide the
IQ into two portions: the Main IQ (MIQ) for not-yet-issued
instructions and the Replay IQ (RIQ) for instructions that have
been issued, but have not yet committed, and may need to be
replayed. They found that 5-55% of instructions were placed
in the RIQ, including load-dependent instructions that may
need to be re-issued in case of a cache miss. Both the RIQ
and the MIQ are CAM-based structures, but the RIQ is only

searched when a load receives its data. This allowed them to
use simpler, lower-power circuits for this portion of the IQ.

Execution Locality: Pericas et al. [32], [33] take a related
approach of categorizing instructions as cheap or expensive
depending on how much out-of-orderness they require. Both
the Decoupled Kilo-Instruction processor [32] and the Two-
Level Load/Store Queue [33] attempt to eliminate or reduce the
cost of CAM structures. They observe that programs exhibit
“execution locality” which makes it possible for them to provide
a large instruction window at a low cost in single- and multi-
core processors.

C. Circuit Approaches

Half Price: Kim et al. [14] observed that only a small subset
(3-16%) of instructions need to wake-up on both operands
simultaneously. To take advantage of this, they proposed the
Half Price architecture which provides full-flexibility wake-up
and select for instructions awaiting one or zero operands, while
instructions waiting for two operands have their operand wake-
up serialized, and may be slower. This reduces the wake-up
circuitry overhead, but does not reduce the pressure on the IQ.

Select Free: Brown et al. [13] reduced the cost of instruction
wake-up and select by pipelining the logic. This allowed them
to provide a critical circuit for wake-up and a non-critical,
potentially multi-cycle, circuit for select. They assume that all
woken instructions are selected immediately for execution and
thereby avoid the need for selection prioritization.

Tag Reduction: Ernst et al. [15] proposed a tag reduction
methodology for instructions with multiple operands. They
proposed a separate scheduler for instructions with zero to
two operands, with reduced tag comparisons for wake-up and
select. For instructions with more than two operands, they
propose last tag speculation to predict the last arriving tag
(latest operand) and execute based on it. This is applicable
since earlier operands, even if all are ready but the last one,
can not initiate the execution. Based on this observation, they
keep a single tag comparator for the last arriving operand and
eliminate the rest.

VIII. CONCLUSION

In this work we have explored how to reduce the energy
cost of out-of-order instruction scheduling while maintaining
performance. Our approach is to both reduce the width and
depth of the IQ and avoid inserting instructions into the
IQ that do not benefit from its expensive scheduling. To
accomplish this we apply two complementary approaches to
scheduling instructions: delaying, to reduce IQ pressure and
allow only important instructions to access the expensive IQ,
and bypassing, to reduce IQ pressure and avoid the cost of
accessing the IQ altogether.

However, to be able to maintain performance while reducing
the IQ width and depth, the right instructions must be delayed
and/or bypassed. To achieve this, we classify instructions based
on their criticality and readiness: ready instructions do not
need nor benefit from the IQ, and so they should be bypassed,
while non-critical instructions are likely to block the IQ for a
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long time with little benefit, and so should be delayed to make
space for more important ones. We further observe that the
instructions that are delayed may become ready during their
delay, providing yet another opportunity for bypassing.

While these classes have been used separately to reduce
scheduling costs previously, we demonstrate that combining
them leads to significantly better performance, lower energy,
and reduced sensitivity to IQ depth and width. Compared to a
standard out-of-order baseline, our criticality- and readiness-
aware Delay and Bypass (DNB) design is able to achieve
66% scheduler energy savings while only sacrificing 5%
performance, which is significantly better than the best ex-
isting criticality-aware design (26% energy savings with 9%
performance loss) and the best existing readiness-aware design
(47% energy savings with 11% performance loss). Beyond this,
by handling both classes of instructions, our DNB design is
far less sensitive to both reductions in IQ width and depth,
suggesting that it will work well for a wide range of design
points.
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